diff --git a/tests/test_vectors.scad b/tests/test_vectors.scad index 399be01..be3e542 100644 --- a/tests/test_vectors.scad +++ b/tests/test_vectors.scad @@ -1,4 +1,4 @@ -include +include <../std.scad> module test_is_vector() { @@ -9,17 +9,14 @@ module test_is_vector() { assert(is_vector(1) == false); assert(is_vector("foo") == false); assert(is_vector(true) == false); + assert(is_vector([0,0],nonzero=true) == false); + assert(is_vector([0,1e-12,0],nonzero=true) == false); + assert(is_vector([0,1e-6,0],nonzero=true) == true); + assert(is_vector([0,1e-6,0],nonzero=true,eps=1e-4) == false); } test_is_vector(); -module test_add_scalar() { - assert(add_scalar([1,2,3],3) == [4,5,6]); - assert(add_scalar([[1,2,3],[3,4,5]],3) == [[4,5,6],[6,7,8]]); -} -test_add_scalar(); - - module test_vfloor() { assert_equal(vfloor([2.0, 3.14, 18.9, 7]), [2,3,18,7]); assert_equal(vfloor([-2.0, -3.14, -18.9, -7]), [-2,-4,-19,-7]); @@ -56,7 +53,7 @@ module test_vabs() { } test_vabs(); -include +include <../strings.scad> module test_vang() { assert(vang([1,0])==0); assert(vang([0,1])==90); diff --git a/vectors.scad b/vectors.scad index 0030160..92e4866 100644 --- a/vectors.scad +++ b/vectors.scad @@ -20,32 +20,29 @@ // v = The value to test to see if it is a vector. // length = If given, make sure the vector is `length` items long. // Example: -// is_vector(4); // Returns false -// is_vector([4,true,false]); // Returns false -// is_vector([3,4,INF,5]); // Returns false -// is_vector([3,4,5,6]); // Returns true -// is_vector([3,4,undef,5]); // Returns false -// is_vector([3,4,5],3); // Returns true -// is_vector([3,4,5],4); // Returns true -// is_vector([]); // Returns false -function is_vector(v,length) = - is_list(v) && is_num(0*(v*v)) && (is_undef(length)||len(v)==length); +// is_vector(4); // Returns false +// is_vector([4,true,false]); // Returns false +// is_vector([3,4,INF,5]); // Returns false +// is_vector([3,4,5,6]); // Returns true +// is_vector([3,4,undef,5]); // Returns false +// is_vector([3,4,5],3); // Returns true +// is_vector([3,4,5],4); // Returns true +// is_vector([]); // Returns false +// is_vector([0,4,0],3,nonzero=true); // Returns true +// is_vector([0,0,0],nonzero=true); // Returns false +// is_vector([0,0,1e-12],nonzero=true); // Returns false +// is_vector([],nonzero=true); // Returns false +function is_vector(v,length, nonzero=false, eps=EPSILON) = + is_list(v) && is_num(0*(v*v)) + && (is_undef(length)|| len(v)==length) + && ( ! nonzero || ([]!=[for(vi=v) if(abs(vi)>=eps) 1]) ); +//*** +// including non_zero option +// extended examples -// Function: add_scalar() -// Usage: -// add_scalar(v,s); -// Description: -// Given a vector and a scalar, returns the vector with the scalar added to each item in it. -// If given a list of vectors, recursively adds the scalar to the each vector. -// Arguments: -// v = The initial list of values. -// s = A scalar value to add to every item in the vector. -// Example: -// add_scalar([1,2,3],3); // Returns: [4,5,6] -// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]] -function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s]; - +//*** +// add_scalar() is an array operation: moved to array.scad // Function: vang() // Usage: @@ -55,6 +52,7 @@ function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s]; // Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane. // Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane. function vang(v) = + assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector") len(v)==2? atan2(v.y,v.x) : let(res=xyz_to_spherical(v)) [res[1], 90-res[2]]; @@ -68,7 +66,9 @@ function vang(v) = // v2 = The second vector. // Example: // vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30] -function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]]; +function vmul(v1, v2) = + assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors") + [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]]; // Function: vdiv() @@ -80,7 +80,9 @@ function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]]; // v2 = The second vector. // Example: // vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5] -function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]]; +function vdiv(v1, v2) = + assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors") + [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]]; // Function: vabs() @@ -89,19 +91,25 @@ function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]]; // v = The vector to get the absolute values of. // Example: // vabs([-1,3,-9]); // Returns: [1,3,9] -function vabs(v) = [for (x=v) abs(x)]; +function vabs(v) = + assert( is_vector(v), "Invalid vector" ) + [for (x=v) abs(x)]; // Function: vfloor() // Description: // Returns the given vector after performing a `floor()` on all items. -function vfloor(v) = [for (x=v) floor(x)]; +function vfloor(v) = + assert( is_vector(v), "Invalid vector" ) + [for (x=v) floor(x)]; // Function: vceil() // Description: // Returns the given vector after performing a `ceil()` on all items. -function vceil(v) = [for (x=v) ceil(x)]; +function vceil(v) = + assert( is_vector(v), "Invalid vector" ) + [for (x=v) ceil(x)]; // Function: unit() @@ -129,6 +137,7 @@ function unit(v, error=[[["ASSERT"]]]) = // Function: vector_angle() // Usage: // vector_angle(v1,v2); +// vector_angle([v1,v2]); // vector_angle(PT1,PT2,PT3); // vector_angle([PT1,PT2,PT3]); // Description: @@ -148,34 +157,38 @@ function unit(v, error=[[["ASSERT"]]]) = // vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120 // vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120 function vector_angle(v1,v2,v3) = - let( - vecs = !is_undef(v3)? [v1-v2,v3-v2] : - !is_undef(v2)? [v1,v2] : - len(v1) == 3? [v1[0]-v1[1],v1[2]-v1[1]] : - len(v1) == 2? v1 : - assert(false, "Bad arguments to vector_angle()"), - is_valid = is_vector(vecs[0]) && is_vector(vecs[1]) && vecs[0]*0 == vecs[1]*0 + assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) ) + || is_consistent([v1,v2,v3]) , + "Bad arguments.") + assert( is_vector(v1) || is_consistent(v1), "Bad arguments.") + let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] : + ! is_undef(v2) ? [v1,v2] : + len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]] + : v1 ) - assert(is_valid, "Bad arguments to vector_angle()") + assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.") let( norm0 = norm(vecs[0]), norm1 = norm(vecs[1]) ) - assert(norm0>0 && norm1>0,"Zero length vector given to vector_angle()") + assert(norm0>0 && norm1>0, "Zero length vector.") // NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain. acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1)); - + +//*** +// completing input data check // Function: vector_axis() // Usage: // vector_axis(v1,v2); +// vector_axis([v1,v2]); // vector_axis(PT1,PT2,PT3); // vector_axis([PT1,PT2,PT3]); // Description: // If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2. -// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular the line segments AB and BC. -// If given two vectors, like `vector_axis(V1,V1)`, returns the vector perpendicular the two vectors V1 and V2. -// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular the line segments AB and BC. +// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C. +// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2. +// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C. // Arguments: // v1 = First vector or point. // v2 = Second vector or point. @@ -188,22 +201,29 @@ function vector_angle(v1,v2,v3) = // vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735] // vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735] function vector_axis(v1,v2=undef,v3=undef) = - (is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? ( - assert(is_vector(v1.x)) - assert(is_vector(v1.y)) - len(v1)==3? assert(is_vector(v1.z)) vector_axis(v1.x, v1.y, v1.z) : - len(v1)==2? vector_axis(v1.x, v1.y) : - assert(false, "Bad arguments.") - ) : - (is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_axis(v1-v2, v3-v2) : - (is_vector(v1) && is_vector(v2) && is_undef(v3))? let( - eps = 1e-6, - v1 = point3d(v1/norm(v1)), - v2 = point3d(v2/norm(v2)), - v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 : - (norm(vabs(v2)-UP) > eps)? UP : - RIGHT - ) unit(cross(v1,v3)) : assert(false, "Bad arguments."); + is_vector(v3) + ? assert(is_consistent([v3,v2,v1]), "Bad arguments.") + vector_axis(v1-v2, v3-v2) + : assert( is_undef(v3), "Bad arguments.") + is_undef(v2) + ? assert( is_list(v1), "Bad arguments.") + len(v1) == 2 + ? vector_axis(v1[0],v1[1]) + : vector_axis(v1[0],v1[1],v1[2]) + : assert( is_vector(v1,nonzero=true) && is_vector(v2,nonzero=true) && is_consistent([v1,v2]) + , "Bad arguments.") + let( + eps = 1e-6, + w1 = point3d(v1/norm(v1)), + w2 = point3d(v2/norm(v2)), + w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2 + : (norm(vabs(w2)-UP) > eps)? UP + : RIGHT + ) unit(cross(w1,w3)); +//*** +// completing input data check and refactoring +// Note: vector_angle and vector_axis have the same kind of inputs and two code strategy alternatives + // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap