From 8d753b471bb13a336802ce78632192682875d53e Mon Sep 17 00:00:00 2001 From: Garth Minette Date: Tue, 19 Jan 2021 04:32:40 -0800 Subject: [PATCH] Enable using apply() on VNF and bezier patches. --- affine.scad | 44 ++++++++++++++++++++++++-------------------- version.scad | 2 +- 2 files changed, 25 insertions(+), 21 deletions(-) diff --git a/affine.scad b/affine.scad index 71a1e81..487c053 100644 --- a/affine.scad +++ b/affine.scad @@ -274,7 +274,7 @@ function affine3d_rot_from_to(from, to) = // Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified // axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system. // If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you -// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option +// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option // with non-orthogonal inputs. // Arguments: // x = Destination vector for x axis @@ -423,24 +423,28 @@ function affine3d_chain(affines, _m=undef, _i=0) = // pts = apply(transform, points); // Description: // Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed -// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling. +// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling. // Examples: // transformed = apply(xrot(45), path3d(circle(r=3))); // Rotates 3d circle data around x axis // transformed = apply(rot(45), circle(r=3)); // Rotates 2d circle data by 45 deg // transformed = apply(rot(45)*right(4)*scale(3), circle(r=3)); // Scales, translates and rotates 2d circle data function apply(transform,points) = - points==[] ? [] : - is_vector(points) ? apply(transform, [points])[0] : - let( - tdim = len(transform[0])-1, - datadim = len(points[0]) - ) - tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] : - tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] : - tdim == 3 && datadim == 2 ? - assert(is_2d_transform(transform),str("Transforms is 3d but points are 2d")) - [for(p=points) point2d(transform*concat(p,[0,1]))] : - assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); + points==[] ? [] : + is_vector(points) ? apply(transform, [points])[0] : + is_list(points) && len(points)==2 && is_path(points[0],3) && is_list(points[1]) && is_vector(points[1][0]) + ? [apply(transform, points[0]), points[1]] : + is_list(points) && is_list(points[0]) && is_vector(points[0][0]) + ? [for (x=points) apply(transform,x)] : + let( + tdim = len(transform[0])-1, + datadim = len(points[0]) + ) + tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] : + tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] : + tdim == 3 && datadim == 2 ? + assert(is_2d_transform(transform), str("Transforms is 3d but points are 2d")) + [for(p=points) point2d(transform*concat(p,[0,1]))] : + assert(false, str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); // Function: apply_list() @@ -451,7 +455,7 @@ function apply(transform,points) = // the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be // 2d or 3d, and it is also allowed to supply 3d transformations with 2d data as long as the the only action on the z coordinate // is a simple scaling. All transformations on `transform_list` must have the same dimension: you cannot mix 2d and 3d transformations -// even when acting on 2d data. +// even when acting on 2d data. // Examples: // transformed = apply_list(path3d(circle(r=3)),[xrot(45)]); // Rotates 3d circle data around x axis // transformed = apply_list(circle(r=3), [scale(3), right(4), rot(45)]); // Scales, then translates, and then rotates 2d circle data @@ -466,21 +470,21 @@ function apply_list(points,transform_list) = let( tdim = tdims[1]-1 ) tdim==2 && datadim == 2 ? apply(affine2d_chain(transform_list), points) : tdim==3 && datadim == 3 ? apply(affine3d_chain(transform_list), points) : - tdim==3 && datadim == 2 ? + tdim==3 && datadim == 2 ? let( badlist = [for(i=idx(transform_list)) if (!is_2d_transform(transform_list[i])) i] ) assert(badlist==[],str("Transforms with indices ",badlist," are 3d but points are 2d")) apply(affine3d_chain(transform_list), points) : - assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); - + assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); + // Function: is_2d_transform() // Usage: // x = is_2d_transform(t); // Description: // Checks if the input is a 3d transform that does not act on the z coordinate, except -// possibly for a simple scaling of z. Note that an input which is only a zscale returns false. +// possibly for a simple scaling of z. Note that an input which is only a zscale returns false. function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && (t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale() @@ -499,7 +503,7 @@ function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][ // This decomposition makes it possible to perform interpolation. If you construct a transformation using `rot` // the decoding may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector, // and the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different -// than the centerpoint you used to construct the transformation. +// than the centerpoint you used to construct the transformation. // Example: // rot_decode(rot(45)); // Returns [45,[0,0,1], [0,0,0], [0,0,0]] // rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7]))); // Returns [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]] diff --git a/version.scad b/version.scad index 371329a..8d9f009 100644 --- a/version.scad +++ b/version.scad @@ -6,7 +6,7 @@ ////////////////////////////////////////////////////////////////////// -BOSL_VERSION = [2,0,528]; +BOSL_VERSION = [2,0,529]; // Section: BOSL Library Version Functions