Massive reworking of documentation production.

This commit is contained in:
Revar Desmera
2019-03-22 21:13:18 -07:00
parent 045e5bafe6
commit 9a3c25d3d3
26 changed files with 8977 additions and 3257 deletions

View File

@@ -1,5 +1,10 @@
//////////////////////////////////////////////////////////////////////
// Useful Constants
// LibFile: constants.scad
// Useful Constants.
// To use this, add the following line to the top of your file.
// ```
// include <BOSL/constants.scad>
// ```
//////////////////////////////////////////////////////////////////////
/*
@@ -31,79 +36,273 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Vectors useful for mirror(), offsetcube(), rotate(), etc.
// Section: General Constants
PRINTER_SLOP = 0.20; // The printer specific amount of slop in mm to print with to make parts fit exactly. You may need to override this value for your printer.
// Section: Directional Vectors
// Vectors useful for `rotate()`, `mirror()`, and `align` arguments for `cuboid()`, `cyl()`, etc.
// Constant: V_LEFT
// Description: Vector pointing left. [-1,0,0]
// Example(3D): Usage with `align`
// cuboid(20, align=V_LEFT);
V_LEFT = [-1, 0, 0];
// Constant: V_RIGHT
// Description: Vector pointing right. [1,0,0]
// Example(3D): Usage with `align`
// cuboid(20, align=V_RIGHT);
V_RIGHT = [ 1, 0, 0];
// Constant: V_FWD
// Description: Vector pointing forward. [0,-1,0]
// Example(3D): Usage with `align`
// cuboid(20, align=V_FWD);
V_FWD = [ 0, -1, 0];
// Constant: V_BACK
// Description: Vector pointing back. [0,1,0]
// Example(3D): Usage with `align`
// cuboid(20, align=V_BACK);
V_BACK = [ 0, 1, 0];
// Constant: V_DOWN
// Description: Vector pointing down. [0,0,-1]
// Example(3D): Usage with `align`
// cuboid(20, align=V_DOWN);
V_DOWN = [ 0, 0, -1];
// Constant: V_UP
// Description: Vector pointing up. [0,0,1]
// Example(3D): Usage with `align`
// cuboid(20, align=V_UP);
V_UP = [ 0, 0, 1];
V_ZERO = [ 0, 0, 0];
// Constant: V_ALLPOS
// Description: Vector pointing right, back, and up. [1,1,1]
// Example(3D): Usage with `align`
// cuboid(20, align=V_ALLPOS);
V_ALLPOS = [ 1, 1, 1]; // Vector pointing X+,Y+,Z+.
// Constant: V_ALLNEG
// Description: Vector pointing left, forwards, and down. [-1,-1,-1]
// Example(3D): Usage with `align`
// cuboid(20, align=V_ALLNEG);
V_ALLNEG = [-1, -1, -1]; // Vector pointing X-,Y-,Z-.
// Constant: V_ZERO
// Description: Zero vector. Centered. [0,0,0]
// Example(3D): Usage with `align`
// cuboid(20, align=V_ZERO);
V_ZERO = [ 0, 0, 0]; // Centered zero vector.
// Orientations for cyl(), etc. Euller angles for rotating a vertical shape into the given orientations.
ORIENT_X = [ 0, 90, 0];
ORIENT_Y = [-90, 0, 0];
ORIENT_Z = [ 0, 0, 0];
ORIENT_XNEG = [ 0,-90, 0];
ORIENT_YNEG = [ 90, 0, 0];
ORIENT_ZNEG = [ 0,180, 0];
// Section: Vector Aliases
// Useful aliases for use with `align`.
V_CENTER = V_ZERO; // Centered, alias to `V_ZERO`.
V_ABOVE = V_UP; // Vector pointing up, alias to `V_UP`.
V_BELOW = V_DOWN; // Vector pointing down, alias to `V_DOWN`.
V_BEFORE = V_FWD; // Vector pointing forward, alias to `V_FWD`.
V_BEHIND = V_BACK; // Vector pointing back, alias to `V_BACK`.
V_TOP = V_UP; // Vector pointing up, alias to `V_UP`.
V_BOTTOM = V_DOWN; // Vector pointing down, alias to `V_DOWN`.
V_FRONT = V_FWD; // Vector pointing forward, alias to `V_FWD`.
V_REAR = V_BACK; // Vector pointing back, alias to `V_BACK`.
// Constants for defining edges for chamfer(), etc.
EDGE_TOP_BK = [[1,0,0,0], [0,0,0,0], [0,0,0,0]];
EDGE_TOP_FR = [[0,1,0,0], [0,0,0,0], [0,0,0,0]];
EDGE_BOT_FR = [[0,0,1,0], [0,0,0,0], [0,0,0,0]];
EDGE_BOT_BK = [[0,0,0,1], [0,0,0,0], [0,0,0,0]];
EDGE_TOP_RT = [[0,0,0,0], [1,0,0,0], [0,0,0,0]];
EDGE_TOP_LF = [[0,0,0,0], [0,1,0,0], [0,0,0,0]];
EDGE_BOT_LF = [[0,0,0,0], [0,0,1,0], [0,0,0,0]];
EDGE_BOT_RT = [[0,0,0,0], [0,0,0,1], [0,0,0,0]];
EDGE_BK_RT = [[0,0,0,0], [0,0,0,0], [1,0,0,0]];
EDGE_BK_LF = [[0,0,0,0], [0,0,0,0], [0,1,0,0]];
EDGE_FR_LF = [[0,0,0,0], [0,0,0,0], [0,0,1,0]];
EDGE_FR_RT = [[0,0,0,0], [0,0,0,0], [0,0,0,1]];
EDGES_X_TOP = [[1,1,0,0], [0,0,0,0], [0,0,0,0]];
EDGES_X_BOT = [[0,0,1,1], [0,0,0,0], [0,0,0,0]];
EDGES_X_FR = [[0,1,1,0], [0,0,0,0], [0,0,0,0]];
EDGES_X_BK = [[1,0,0,1], [0,0,0,0], [0,0,0,0]];
EDGES_X_ALL = [[1,1,1,1], [0,0,0,0], [0,0,0,0]];
EDGES_Y_TOP = [[0,0,0,0], [1,1,0,0], [0,0,0,0]];
EDGES_Y_BOT = [[0,0,0,0], [0,0,1,1], [0,0,0,0]];
EDGES_Y_LF = [[0,0,0,0], [0,1,1,0], [0,0,0,0]];
EDGES_Y_RT = [[0,0,0,0], [1,0,0,1], [0,0,0,0]];
EDGES_Y_ALL = [[0,0,0,0], [1,1,1,1], [0,0,0,0]];
EDGES_Z_BK = [[0,0,0,0], [0,0,0,0], [1,1,0,0]];
EDGES_Z_FR = [[0,0,0,0], [0,0,0,0], [0,0,1,1]];
EDGES_Z_LF = [[0,0,0,0], [0,0,0,0], [0,1,1,0]];
EDGES_Z_RT = [[0,0,0,0], [0,0,0,0], [1,0,0,1]];
EDGES_Z_ALL = [[0,0,0,0], [0,0,0,0], [1,1,1,1]];
EDGES_LEFT = [[0,0,0,0], [0,1,1,0], [0,1,1,0]];
EDGES_RIGHT = [[0,0,0,0], [1,0,0,1], [1,0,0,1]];
EDGES_FRONT = [[0,1,1,0], [0,0,0,0], [0,0,1,1]];
EDGES_BACK = [[1,0,0,1], [0,0,0,0], [1,1,0,0]];
EDGES_BOTTOM = [[0,0,1,1], [0,0,1,1], [0,0,0,0]];
EDGES_TOP = [[1,1,0,0], [1,1,0,0], [0,0,0,0]];
EDGES_NONE = [[0,0,0,0], [0,0,0,0], [0,0,0,0]];
EDGES_ALL = [[1,1,1,1], [1,1,1,1], [1,1,1,1]];
// Section: Pre-Orientation Alignments
// Constants for pre-orientation alignments.
EDGE_OFFSETS = [
// Constant: ALIGN_POS
// Description: Align the axis-positive end to the origin.
// Example(3D): orient=ORIENT_X
// cyl(d1=10, d2=5, h=20, orient=ORIENT_X, align=ALIGN_POS);
// Example(3D): orient=ORIENT_Y
// cyl(d1=10, d2=5, h=20, orient=ORIENT_Y, align=ALIGN_POS);
// Example(3D): orient=ORIENT_Z
// cyl(d1=10, d2=5, h=20, orient=ORIENT_Z, align=ALIGN_POS);
// Example(3D): orient=ORIENT_XNEG
// cyl(d1=10, d2=5, h=20, orient=ORIENT_XNEG, align=ALIGN_POS);
// Example(3D): orient=ORIENT_YNEG
// cyl(d1=10, d2=5, h=20, orient=ORIENT_YNEG, align=ALIGN_POS);
// Example(3D): orient=ORIENT_ZNEG
// cyl(d1=10, d2=5, h=20, orient=ORIENT_ZNEG, align=ALIGN_POS);
ALIGN_POS = 1;
ALIGN_CENTER = 0; // Align centered.
// Constant: ALIGN_NEG
// Description: Align the axis-negative end to the origin.
// Example(3D): orient=ORIENT_X
// cyl(d1=10, d2=5, h=20, orient=ORIENT_X, align=ALIGN_NEG);
// Example(3D): orient=ORIENT_Y
// cyl(d1=10, d2=5, h=20, orient=ORIENT_Y, align=ALIGN_NEG);
// Example(3D): orient=ORIENT_Z
// cyl(d1=10, d2=5, h=20, orient=ORIENT_Z, align=ALIGN_NEG);
// Example(3D): orient=ORIENT_XNEG
// cyl(d1=10, d2=5, h=20, orient=ORIENT_XNEG, align=ALIGN_NEG);
// Example(3D): orient=ORIENT_YNEG
// cyl(d1=10, d2=5, h=20, orient=ORIENT_YNEG, align=ALIGN_NEG);
// Example(3D): orient=ORIENT_ZNEG
// cyl(d1=10, d2=5, h=20, orient=ORIENT_ZNEG, align=ALIGN_NEG);
ALIGN_NEG = -1;
// CommonCode:
// orientations = [
// ORIENT_X, ORIENT_Y, ORIENT_Z,
// ORIENT_XNEG, ORIENT_YNEG, ORIENT_ZNEG,
// ORIENT_X_90, ORIENT_Y_90, ORIENT_Z_90,
// ORIENT_XNEG_90, ORIENT_YNEG_90, ORIENT_ZNEG_90,
// ORIENT_X_180, ORIENT_Y_180, ORIENT_Z_180,
// ORIENT_XNEG_180, ORIENT_YNEG_180, ORIENT_ZNEG_180,
// ORIENT_X_270, ORIENT_Y_270, ORIENT_Z_270,
// ORIENT_XNEG_270, ORIENT_YNEG_270, ORIENT_ZNEG_270
// ];
// axiscolors = ["red", "forestgreen", "dodgerblue"];
// module text3d(text, h=0.01, size=3) {
// linear_extrude(height=h, convexity=10) {
// text(text=text, size=size, valign="center", halign="center");
// }
// }
// module orient_cube(ang) {
// color("lightgray") cube(20, center=true);
// color(axiscolors.x) up ((20-1)/2+0.01) back ((20-1)/2+0.01) cube([18,1,1], center=true);
// color(axiscolors.y) up ((20-1)/2+0.01) right((20-1)/2+0.01) cube([1,18,1], center=true);
// color(axiscolors.z) back((20-1)/2+0.01) right((20-1)/2+0.01) cube([1,1,18], center=true);
// for (axis=[0:2], neg=[0:1]) {
// idx = axis + 3*neg + 6*ang/90;
// rotate(orientations[idx]) {
// up(10) {
// back(4) color("black") text3d(text=str(ang), size=4);
// fwd(4) color(axiscolors[axis]) text3d(text=str(["X","Y","Z"][axis], ["+","NEG"][neg]), size=4);
// }
// }
// }
// }
// Section: Standard Orientations
// Orientations for `cyl()`, `prismoid()`, etc. They take the form of standard [X,Y,Z]
// rotation angles for rotating a vertical shape into the given orientations.
// Figure(Spin): Standard Orientations
// orient_cube(0);
ORIENT_X = [ 90, 0, 90]; // Orient along the X axis.
ORIENT_Y = [ 90, 0, 180]; // Orient along the Y axis.
ORIENT_Z = [ 0, 0, 0]; // Orient along the Z axis.
ORIENT_XNEG = [ 90, 0, -90]; // Orient reversed along the X axis.
ORIENT_YNEG = [ 90, 0, 0]; // Orient reversed along the Y axis.
ORIENT_ZNEG = [ 0, 180, 0]; // Orient reversed along the Z axis.
// Section: Orientations Rotated 90º
// Orientations for `cyl()`, `prismoid()`, etc. They take the form of standard [X,Y,Z]
// rotation angles for rotating a vertical shape into the given orientations.
// Figure(Spin): Orientations Rotated 90º
// orient_cube(90);
ORIENT_X_90 = [ 90, -90, 90]; // Orient along the X axis, then rotate 90 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_Y_90 = [ 90, -90, 180]; // Orient along the Y axis, then rotate 90 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_Z_90 = [ 0, 0, 90]; // Orient along the Z axis, then rotate 90 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_XNEG_90 = [ 0, -90, 0]; // Orient reversed along the X axis, then rotate 90 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_YNEG_90 = [ 90, -90, 0]; // Orient reversed along the Y axis, then rotate 90 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_ZNEG_90 = [ 0, 180, -90]; // Orient reversed along the Z axis, then rotate 90 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
// Section: Orientations Rotated 180º
// Orientations for `cyl()`, `prismoid()`, etc. They take the form of standard [X,Y,Z]
// rotation angles for rotating a vertical shape into the given orientations.
// Figure(Spin): Orientations Rotated 180º
// orient_cube(180);
ORIENT_X_180 = [-90, 0, -90]; // Orient along the X axis, then rotate 180 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_Y_180 = [-90, 0, 0]; // Orient along the Y axis, then rotate 180 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_Z_180 = [ 0, 0, 180]; // Orient along the Z axis, then rotate 180 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_XNEG_180 = [-90, 0, 90]; // Orient reversed along the X axis, then rotate 180 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_YNEG_180 = [-90, 0, 180]; // Orient reversed along the Y axis, then rotate 180 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_ZNEG_180 = [ 0, 180, 180]; // Orient reversed along the Z axis, then rotate 180 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
// Section: Orientations Rotated 270º
// Orientations for `cyl()`, `prismoid()`, etc. They take the form of standard [X,Y,Z]
// rotation angles for rotating a vertical shape into the given orientations.
// Figure(Spin): Orientations Rotated 270º
// orient_cube(270);
ORIENT_X_270 = [ 90, 90, 90]; // Orient along the X axis, then rotate 270 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_Y_270 = [ 90, 90, 180]; // Orient along the Y axis, then rotate 270 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_Z_270 = [ 0, 0, -90]; // Orient along the Z axis, then rotate 270 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_XNEG_270 = [ 90, 90, -90]; // Orient reversed along the X axis, then rotate 270 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_YNEG_270 = [ 90, 90, 0]; // Orient reversed along the Y axis, then rotate 270 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
ORIENT_ZNEG_270 = [ 0, 180, 90]; // Orient reversed along the Z axis, then rotate 270 degrees counter-clockwise on that axis, as seen when facing the origin from that axis orientation.
// Section: Individual Edges
// Constants for specifying edges for `cuboid()`, etc.
EDGE_TOP_BK = [[1,0,0,0], [0,0,0,0], [0,0,0,0]]; // Top Back edge.
EDGE_TOP_FR = [[0,1,0,0], [0,0,0,0], [0,0,0,0]]; // Top Front edge.
EDGE_BOT_FR = [[0,0,1,0], [0,0,0,0], [0,0,0,0]]; // Bottom Front Edge.
EDGE_BOT_BK = [[0,0,0,1], [0,0,0,0], [0,0,0,0]]; // Bottom Back Edge.
EDGE_TOP_RT = [[0,0,0,0], [1,0,0,0], [0,0,0,0]]; // Top Right edge.
EDGE_TOP_LF = [[0,0,0,0], [0,1,0,0], [0,0,0,0]]; // Top Left edge.
EDGE_BOT_LF = [[0,0,0,0], [0,0,1,0], [0,0,0,0]]; // Bottom Left edge.
EDGE_BOT_RT = [[0,0,0,0], [0,0,0,1], [0,0,0,0]]; // Bottom Right edge.
EDGE_BK_RT = [[0,0,0,0], [0,0,0,0], [1,0,0,0]]; // Back Right edge.
EDGE_BK_LF = [[0,0,0,0], [0,0,0,0], [0,1,0,0]]; // Back Left edge.
EDGE_FR_LF = [[0,0,0,0], [0,0,0,0], [0,0,1,0]]; // Front Left edge.
EDGE_FR_RT = [[0,0,0,0], [0,0,0,0], [0,0,0,1]]; // Front Right edge.
// Section: Sets of Edges
// Constants for specifying edges for `cuboid()`, etc.
EDGES_X_TOP = [[1,1,0,0], [0,0,0,0], [0,0,0,0]]; // Both X-aligned Top edges.
EDGES_X_BOT = [[0,0,1,1], [0,0,0,0], [0,0,0,0]]; // Both X-aligned Bottom edges.
EDGES_X_FR = [[0,1,1,0], [0,0,0,0], [0,0,0,0]]; // Both X-aligned Front edges.
EDGES_X_BK = [[1,0,0,1], [0,0,0,0], [0,0,0,0]]; // Both X-aligned Back edges.
EDGES_X_ALL = [[1,1,1,1], [0,0,0,0], [0,0,0,0]]; // All four X-aligned edges.
EDGES_Y_TOP = [[0,0,0,0], [1,1,0,0], [0,0,0,0]]; // Both Y-aligned Top edges.
EDGES_Y_BOT = [[0,0,0,0], [0,0,1,1], [0,0,0,0]]; // Both Y-aligned Bottom edges.
EDGES_Y_LF = [[0,0,0,0], [0,1,1,0], [0,0,0,0]]; // Both Y-aligned Left edges.
EDGES_Y_RT = [[0,0,0,0], [1,0,0,1], [0,0,0,0]]; // Both Y-aligned Right edges.
EDGES_Y_ALL = [[0,0,0,0], [1,1,1,1], [0,0,0,0]]; // All four Y-aligned edges.
EDGES_Z_BK = [[0,0,0,0], [0,0,0,0], [1,1,0,0]]; // Both Z-aligned Back edges.
EDGES_Z_FR = [[0,0,0,0], [0,0,0,0], [0,0,1,1]]; // Both Z-aligned Front edges.
EDGES_Z_LF = [[0,0,0,0], [0,0,0,0], [0,1,1,0]]; // Both Z-aligned Left edges.
EDGES_Z_RT = [[0,0,0,0], [0,0,0,0], [1,0,0,1]]; // Both Z-aligned Right edges.
EDGES_Z_ALL = [[0,0,0,0], [0,0,0,0], [1,1,1,1]]; // All four Z-aligned edges.
EDGES_LEFT = [[0,0,0,0], [0,1,1,0], [0,1,1,0]]; // All four Left edges.
EDGES_RIGHT = [[0,0,0,0], [1,0,0,1], [1,0,0,1]]; // All four Right edges.
EDGES_FRONT = [[0,1,1,0], [0,0,0,0], [0,0,1,1]]; // All four Front edges.
EDGES_BACK = [[1,0,0,1], [0,0,0,0], [1,1,0,0]]; // All four Back edges.
EDGES_BOTTOM = [[0,0,1,1], [0,0,1,1], [0,0,0,0]]; // All four Bottom edges.
EDGES_TOP = [[1,1,0,0], [1,1,0,0], [0,0,0,0]]; // All four Top edges.
EDGES_NONE = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]; // No edges.
EDGES_ALL = [[1,1,1,1], [1,1,1,1], [1,1,1,1]]; // All edges.
// Section: Edge Helpers
EDGE_OFFSETS = [ // Array of XYZ offsets to the center of each edge.
[[0, 1, 1], [ 0,-1, 1], [ 0,-1,-1], [0, 1,-1]],
[[1, 0, 1], [-1, 0, 1], [-1, 0,-1], [1, 0,-1]],
[[1, 1, 0], [-1, 1, 0], [-1,-1, 0], [1,-1, 0]]
];
// Function: corner_edge_count()
// Description: Counts how many given edges intersect at a specific corner.
// Arguments:
// edges = Standard edges array.
// v = Vector pointing to the corner to count edge intersections at.
function corner_edge_count(edges, v) =
(v[2]<=0)? (
(v[1]<=0)? (
@@ -136,4 +335,5 @@ function corner_edge_count(edges, v) =
);
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap