diff --git a/arrays.scad b/arrays.scad index 5c0e7e7..47e3dde 100644 --- a/arrays.scad +++ b/arrays.scad @@ -5,7 +5,6 @@ // include ////////////////////////////////////////////////////////////////////// - // Terminology: // **List** = An ordered collection of zero or more items. ie: `["a", "b", "c"]` // **Vector** = A list of numbers. ie: `[4, 5, 6]` @@ -251,7 +250,7 @@ function __find_approx(val, list, eps, i=0) = // list = The list to get the portion of. // start = Either the index of the first item or an index range or a list of indices. // end = The index of the last item when `start` is a number. When `start` is a list or a range, `end` should not be given. -// See Also: slice(), columns(), last() +// See Also: slice(), column(), last() // Example: // l = [3,4,5,6,7,8,9]; // a = select(l, 5, 6); // Returns [8,9] @@ -292,7 +291,7 @@ function select(list, start, end) = // list = The list to get the slice of. // s = The index of the first item to return. // e = The index of the last item to return. -// See Also: select(), columns(), last() +// See Also: select(), column(), last() // Example: // a = slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7,8] // b = slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9] @@ -317,7 +316,7 @@ function slice(list,s=0,e=-1) = // Usage: // item = last(list); // Topics: List Handling -// See Also: select(), slice(), columns() +// See Also: select(), slice(), column() // Description: // Returns the last element of a list, or undef if empty. // Arguments: @@ -1471,63 +1470,6 @@ function permutations(l,n=2) = : [for (i=idx(l), p=permutations([for (j=idx(l)) if (i!=j) l[j]], n=n-1)) concat([l[i]], p)]; -// Function: zip() -// Usage: -// pairs = zip(a,b); -// triples = zip(a,b,c); -// quads = zip([LIST1,LIST2,LIST3,LIST4]); -// Topics: List Handling, Iteration -// See Also: zip_long() -// Description: -// Zips together two or more lists into a single list. For example, if you have two -// lists [3,4,5], and [8,7,6], and zip them together, you get [ [3,8],[4,7],[5,6] ]. -// The list returned will be as long as the shortest list passed to zip(). -// Arguments: -// a = The first list, or a list of lists if b and c are not given. -// b = The second list, if given. -// c = The third list, if given. -// Example: -// a = [9,8,7,6]; b = [1,2,3]; -// for (p=zip(a,b)) echo(p); -// // ECHO: [9,1] -// // ECHO: [8,2] -// // ECHO: [7,3] -function zip(a,b,c) = - b!=undef? zip([a,b,if (c!=undef) c]) : - let(n = min_length(a)) - [for (i=[0:1:n-1]) [for (x=a) x[i]]]; - - -// Function: zip_long() -// Usage: -// pairs = zip_long(a,b); -// triples = zip_long(a,b,c); -// quads = zip_long([LIST1,LIST2,LIST3,LIST4]); -// Topics: List Handling, Iteration -// See Also: zip() -// Description: -// Zips together two or more lists into a single list. For example, if you have two -// lists [3,4,5], and [8,7,6], and zip them together, you get [ [3,8],[4,7],[5,6] ]. -// The list returned will be as long as the longest list passed to zip_long(), with -// shorter lists padded by the value in `fill`. -// Arguments: -// a = The first list, or a list of lists if b and c are not given. -// b = The second list, if given. -// c = The third list, if given. -// fill = The value to pad shorter lists with. Default: undef -// Example: -// a = [9,8,7,6]; b = [1,2,3]; -// for (p=zip_long(a,b,fill=88)) echo(p); -// // ECHO: [9,1] -// // ECHO: [8,2] -// // ECHO: [7,3] -// // ECHO: [6,88]] -function zip_long(a,b,c,fill) = - b!=undef? zip_long([a,b,if (c!=undef) c],fill=fill) : - let(n = max_length(a)) - [for (i=[0:1:n-1]) [for (x=a) i0) - [for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]]; - - -// Function: submatrix_set() -// Usage: -// mat = submatrix_set(M, A, [m], [n]); -// Topics: Matrices, Array Handling -// See Also: columns(), submatrix() -// Description: -// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but -// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds -// of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be -// returned unchanged. Note that the input M need not be rectangular in shape. -// Arguments: -// M = Original matrix. -// A = Sub-matrix of parts to set. -// m = Row number of upper-left corner to place A at. -// n = Column number of upper-left corner to place A at. -function submatrix_set(M,A,m=0,n=0) = - assert(is_list(M)) - assert(is_list(A)) - assert(is_int(m)) - assert(is_int(n)) - let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i]) - assert(badrows==[], str("Input submatrix malformed rows: ",badrows)) - [for(i=[0:1:len(M)-1]) - assert(is_list(M[i]), str("Row ",i," of input matrix is not a list")) - [for(j=[0:1:len(M[i])-1]) - i>=m && i =n && j len(dimlist))? 0 : dimlist[depth-1] ; - - -// Function: transpose() +// Function: zip() // Usage: -// arr = transpose(arr, [reverse]); -// Topics: Matrices, Array Handling -// See Also: submatrix(), block_matrix(), hstack(), flatten() +// pairs = zip(a,b); +// triples = zip(a,b,c); +// quads = zip([LIST1,LIST2,LIST3,LIST4]); +// Topics: List Handling, Iteration +// See Also: zip_long() // Description: -// Returns the transpose of the given input array. The input should be a list of lists that are -// all the same length. If you give a vector then transpose returns it unchanged. -// When reverse=true, the transpose is done across to the secondary diagonal. (See example below.) -// By default, reverse=false. -// Example: -// arr = [ -// ["a", "b", "c"], -// ["d", "e", "f"], -// ["g", "h", "i"] -// ]; -// t = transpose(arr); -// // Returns: -// // [ -// // ["a", "d", "g"], -// // ["b", "e", "h"], -// // ["c", "f", "i"], -// // ] -// Example: -// arr = [ -// ["a", "b", "c"], -// ["d", "e", "f"] -// ]; -// t = transpose(arr); -// // Returns: -// // [ -// // ["a", "d"], -// // ["b", "e"], -// // ["c", "f"], -// // ] -// Example: -// arr = [ -// ["a", "b", "c"], -// ["d", "e", "f"], -// ["g", "h", "i"] -// ]; -// t = transpose(arr, reverse=true); -// // Returns: -// // [ -// // ["i", "f", "c"], -// // ["h", "e", "b"], -// // ["g", "d", "a"] -// // ] -// Example: Transpose on a list of numbers returns the list unchanged -// transpose([3,4,5]); // Returns: [3,4,5] -function transpose(arr, reverse=false) = - assert( is_list(arr) && len(arr)>0, "Input to transpose must be a nonempty list.") - is_list(arr[0]) - ? let( len0 = len(arr[0]) ) - assert([for(a=arr) if(!is_list(a) || len(a)!=len0) 1 ]==[], "Input to transpose has inconsistent row lengths." ) - reverse - ? [for (i=[0:1:len0-1]) - [ for (j=[0:1:len(arr)-1]) arr[len(arr)-1-j][len0-1-i] ] ] - : [for (i=[0:1:len0-1]) - [ for (j=[0:1:len(arr)-1]) arr[j][i] ] ] - : assert( is_vector(arr), "Input to transpose must be a vector or list of lists.") - arr; - - -// Section: Matrices - -// Function: is_matrix_symmetric() -// Usage: -// b = is_matrix_symmetric(A, [eps]) -// Description: -// Returns true if the input matrix is symmetric, meaning it equals its transpose. -// Matrix should have numerical entries. +// Zips together two or more lists into a single list. For example, if you have two +// lists [3,4,5], and [8,7,6], and zip them together, you get [ [3,8],[4,7],[5,6] ]. +// The list returned will be as long as the shortest list passed to zip(). // Arguments: -// A = matrix to test -// eps = epsilon for comparing equality. Default: 1e-12 -function is_matrix_symmetric(A,eps=1e-12) = - approx(A,transpose(A), eps); +// a = The first list, or a list of lists if b and c are not given. +// b = The second list, if given. +// c = The third list, if given. +// Example: +// a = [9,8,7,6]; b = [1,2,3]; +// for (p=zip(a,b)) echo(p); +// // ECHO: [9,1] +// // ECHO: [8,2] +// // ECHO: [7,3] +function zip(a,b,c) = + b!=undef? zip([a,b,if (c!=undef) c]) : + let(n = min_length(a)) + [for (i=[0:1:n-1]) [for (x=a) x[i]]]; -// Function&Module: echo_matrix() +// Function: zip_long() // Usage: -// echo_matrix(M, [description=], [sig=], [eps=]); -// dummy = echo_matrix(M, [description=], [sig=], [eps=]), +// pairs = zip_long(a,b); +// triples = zip_long(a,b,c); +// quads = zip_long([LIST1,LIST2,LIST3,LIST4]); +// Topics: List Handling, Iteration +// See Also: zip() // Description: -// Display a numerical matrix in a readable columnar format with `sig` significant -// digits. Values smaller than eps display as zero. If you give a description -// it is displayed at the top. -function echo_matrix(M,description,sig=4,eps=1e-9) = - let( - horiz_line = chr(8213), - matstr = matrix_strings(M,sig=sig,eps=eps), - separator = str_join(repeat(horiz_line,10)), - dummy=echo(str(separator," ",is_def(description) ? description : "")) - [for(row=matstr) echo(row)] - ) - echo(separator); +// Zips together two or more lists into a single list. For example, if you have two +// lists [3,4,5], and [8,7,6], and zip them together, you get [ [3,8],[4,7],[5,6] ]. +// The list returned will be as long as the longest list passed to zip_long(), with +// shorter lists padded by the value in `fill`. +// Arguments: +// a = The first list, or a list of lists if b and c are not given. +// b = The second list, if given. +// c = The third list, if given. +// fill = The value to pad shorter lists with. Default: undef +// Example: +// a = [9,8,7,6]; b = [1,2,3]; +// for (p=zip_long(a,b,fill=88)) echo(p); +// // ECHO: [9,1] +// // ECHO: [8,2] +// // ECHO: [7,3] +// // ECHO: [6,88]] +function zip_long(a,b,c,fill) = + b!=undef? zip_long([a,b,if (c!=undef) c],fill=fill) : + let(n = max_length(a)) + [for (i=[0:1:n-1]) [for (x=a) i= -eps && max(zs) >= -eps && min(ys) <= eps && min(zs) <= eps) @@ -1640,7 +1640,7 @@ function _find_anchor(anchor, geom) = ) assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.") let( - furthest = max_index(columns(hits,0)), + furthest = max_index(column(hits,0)), dist = hits[furthest][0], pos = hits[furthest][2], hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]], @@ -1665,7 +1665,7 @@ function _find_anchor(anchor, geom) = ) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : let( rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]), - maxx = max(columns(rpts,0)), + maxx = max(column(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], avep = sum(select(rpts,idxs))/len(idxs), mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep, @@ -1716,7 +1716,7 @@ function _find_anchor(anchor, geom) = ) if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2] ], - maxidx = max_index(columns(isects,0)), + maxidx = max_index(column(isects,0)), isect = isects[maxidx], pos = point2d(cp) + isect[1], vec = unit(isect[2],[0,1]) @@ -1728,7 +1728,7 @@ function _find_anchor(anchor, geom) = anchor = point2d(anchor), m = rot(from=anchor, to=RIGHT) * move(-[cp.x, cp.y, 0]), rpts = apply(m, flatten(rgn)), - maxx = max(columns(rpts,0)), + maxx = max(column(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], miny = min([for (i=idxs) rpts[i].y]), maxy = max([for (i=idxs) rpts[i].y]), @@ -1757,7 +1757,7 @@ function _find_anchor(anchor, geom) = if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2] ], - maxidx = max_index(columns(isects,0)), + maxidx = max_index(column(isects,0)), isect = isects[maxidx], pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2, xyvec = unit(isect[2],[0,1]), @@ -1775,7 +1775,7 @@ function _find_anchor(anchor, geom) = rot(from=xyanch, to=RIGHT, planar=true) ) * move(-[cp.x, cp.y]), rpts = apply(m, flatten(rgn)), - maxx = max(columns(rpts,0)), + maxx = max(column(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], ys = [for (i=idxs) rpts[i].y], midy = (min(ys)+max(ys))/2, diff --git a/beziers.scad b/beziers.scad index f4b034f..1ad0cd8 100644 --- a/beziers.scad +++ b/beziers.scad @@ -1043,9 +1043,9 @@ function bezier_patch_points(patch, u, v) = assert(is_num(u) || !is_undef(u[0])) assert(is_num(v) || !is_undef(v[0])) let( - vbezes = [for (i = idx(patch[0])) bezier_points(columns(patch,i), is_num(u)? [u] : u)] + vbezes = [for (i = idx(patch[0])) bezier_points(column(patch,i), is_num(u)? [u] : u)] ) - [for (i = idx(vbezes[0])) bezier_points(columns(vbezes,i), is_num(v)? [v] : v)]; + [for (i = idx(vbezes[0])) bezier_points(column(vbezes,i), is_num(v)? [v] : v)]; // Function: bezier_triangle_point() @@ -1358,7 +1358,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed all(row_degen) && all(col_degen) ? // fully degenerate case [EMPTY_VNF, repeat([patch[0][0]],4)] : all(row_degen) ? // degenerate to a line (top to bottom) - let(pts = bezier_points(columns(patch,0), samplepts)) + let(pts = bezier_points(column(patch,0), samplepts)) [EMPTY_VNF, [pts,pts,[pts[0]],[last(pts)]]] : all(col_degen) ? // degenerate to a line (left to right) let(pts = bezier_points(patch[0], samplepts)) @@ -1367,7 +1367,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed let(pts = bezier_patch_points(patch, samplepts, samplepts)) [ vnf_vertex_array(pts, reverse=!reverse), - [columns(pts,0), columns(pts,len(pts)-1), pts[0], last(pts)] + [column(pts,0), column(pts,len(pts)-1), pts[0], last(pts)] ] : top_degen && bot_degen ? let( @@ -1376,17 +1376,17 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed if (splinesteps%2==0) splinesteps+1, each reverse(list([3:2:splinesteps])) ], - bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(columns(patch,i), samplepts)], + bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(column(patch,i), samplepts)], pts = [ [bpatch[0][0]], - for(j=[0:splinesteps-2]) bezier_points(columns(bpatch,j+1), lerpn(0,1,rowcount[j])), + for(j=[0:splinesteps-2]) bezier_points(column(bpatch,j+1), lerpn(0,1,rowcount[j])), [last(bpatch[0])] ], vnf = vnf_tri_array(pts, reverse=!reverse) ) [ vnf, [ - columns(pts,0), + column(pts,0), [for(row=pts) last(row)], pts[0], last(pts), @@ -1405,16 +1405,16 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed full_degen = len(patch)>=4 && all(select(row_degen,1,ceil(len(patch)/2-1))), rowmax = full_degen ? count(splinesteps+1) : [for(j=[0:splinesteps]) j<=splinesteps/2 ? 2*j : splinesteps], - bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(columns(patch,i), samplepts)], + bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(column(patch,i), samplepts)], pts = [ [bpatch[0][0]], - for(j=[1:splinesteps]) bezier_points(columns(bpatch,j), lerpn(0,1,rowmax[j]+1)) + for(j=[1:splinesteps]) bezier_points(column(bpatch,j), lerpn(0,1,rowmax[j]+1)) ], vnf = vnf_tri_array(pts, reverse=!reverse) ) [ vnf, [ - columns(pts,0), + column(pts,0), [for(row=pts) last(row)], pts[0], last(pts), diff --git a/linalg.scad b/linalg.scad new file mode 100644 index 0000000..235e003 --- /dev/null +++ b/linalg.scad @@ -0,0 +1,713 @@ +////////////////////////////////////////////////////////////////////// +// LibFile: linalg.scad +// This file provides linear algebra, with support for matrix construction, +// solutions to linear systems of equations, QR and Cholesky factorizations, and +// matrix inverse. +// Includes: +// include +////////////////////////////////////////////////////////////////////// + +// Section: Matrices +// The matrix, a rectangular array of numbers which represents a linear transformation, +// is the fundamental object in linear algebra. In OpenSCAD a matrix is a list of lists of numbers +// with a rectangular structure. Because OpenSCAD treats all data the same, most of the functions that +// index matrices or construct them will work on matrices (lists of lists) whose elements are not numbers but may be +// arbitrary data: strings, booleans, or even other lists. It may even be acceptable in some cases if the structure is non-rectangular. +// Of course, linear algebra computations and solutions require true matrices with rectangular structure, where all the entries are +// finite numbers. +// . +// Matrices in OpenSCAD are lists of row vectors. However, a potential source of confusion is that OpenSCAD +// treats vectors as either column vectors or row vectors as demanded by +// context. Thus both `v*M` and `M*v` are valid if `M` is square and `v` has the right length. If you want to multiply +// `M` on the left by `v` and `w` you can do this with `[v,w]*M` but if you want to multiply on the right side with `v` and `w` as +// column vectors, you now need to use {{transpose()}} because OpenSCAD doesn't adjust matrices +// contextually: `A=M*transpose([v,w])`. The solutions are now columns of A and you must extract +// them with {{column()}} or take the transpose of `A`. + + +// Section: Matrix testing and display + +// Function: is_matrix() +// Usage: +// test = is_matrix(A, [m], [n], [square]) +// Description: +// Returns true if A is a numeric matrix of height m and width n with finite entries. If m or n +// are omitted or set to undef then true is returned for any positive dimension. +// Arguments: +// A = The matrix to test. +// m = If given, requires the matrix to have this height. +// n = Is given, requires the matrix to have this width. +// square = If true, matrix must have height equal to width. Default: false +function is_matrix(A,m,n,square=false) = + is_list(A) + && (( is_undef(m) && len(A) ) || len(A)==m) + && (!square || len(A) == len(A[0])) + && is_vector(A[0],n) + && is_consistent(A); + + +// Function: is_matrix_symmetric() +// Usage: +// b = is_matrix_symmetric(A, [eps]) +// Description: +// Returns true if the input matrix is symmetric, meaning it approximately equals its transpose. +// The matrix can have arbitrary entries. +// Arguments: +// A = matrix to test +// eps = epsilon for comparing equality. Default: 1e-12 +function is_matrix_symmetric(A,eps=1e-12) = + approx(A,transpose(A), eps); + + +// Function&Module: echo_matrix() +// Usage: +// echo_matrix(M, [description=], [sig=], [eps=]); +// dummy = echo_matrix(M, [description=], [sig=], [eps=]), +// Description: +// Display a numerical matrix in a readable columnar format with `sig` significant +// digits. Values smaller than eps display as zero. If you give a description +// it is displayed at the top. +function echo_matrix(M,description,sig=4,eps=1e-9) = + let( + horiz_line = chr(8213), + matstr = matrix_strings(M,sig=sig,eps=eps), + separator = str_join(repeat(horiz_line,10)), + dummy=echo(str(separator," ",is_def(description) ? description : "")) + [for(row=matstr) echo(row)] + ) + echo(separator); + +module echo_matrix(M,description,sig=4,eps=1e-9) +{ + dummy = echo_matrix(M,description,sig,eps); +} + + +// Section: Matrix indexing + +// Function: column() +// Usage: +// list = column(M, i); +// Topics: Array Handling, List Handling +// See Also: select(), slice() +// Description: +// Extracts entry i from each list in M, or equivalently column i from the matrix M, and returns it as a vector. +// This function will return `undef` at all entry positions indexed by i not found in M. +// Arguments: +// M = The given list of lists. +// idx = The index, list of indices, or range of indices to fetch. +// Example: +// M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]; +// a = column(M,2); // Returns [3, 7, 11, 15] +// b = column(M,0); // Returns [1, 5, 9, 13] +// N = [ [1,2], [3], [4,5], [6,7,8] ]; +// c = column(N,1); // Returns [1,undef,5,7] +// data = [[1,[3,4]], [3, [9,3]], [4, [3,1]]]; // Matrix with non-numeric entries +// d = column(data,0); // Returns [1,3,4] +// e = column(data,1); // Returns [[3,4],[9,3],[3,1]] +function column(M, i) = + assert( is_list(M), "The input is not a list." ) + assert( is_int(i) && i>=0, "Invalid index") + [for(row=M) row[i]]; + + + +// Function: submatrix() +// Usage: +// mat = submatrix(M, idx1, idx2); +// Topics: Matrices, Array Handling +// See Also: column(), block_matrix(), submatrix_set() +// Description: +// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2. +// Arguments: +// M = Given list of lists +// idx1 = rows index list or range +// idx2 = column index list or range +// Example: +// M = [[ 1, 2, 3, 4, 5], +// [ 6, 7, 8, 9,10], +// [11,12,13,14,15], +// [16,17,18,19,20], +// [21,22,23,24,25]]; +// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]] +// submatrix(M,[1], [3,4])); // Returns [[9,10]] +// submatrix(M,1, [3,4])); // Returns [[9,10]] +// submatrix(M,1,3)); // Returns [[9]] +// submatrix(M, [3,4],1); // Returns [[17],[22]]); +// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]); +// A = [[true, 17, "test"], +// [[4,2], 91, false], +// [6, [3,4], undef]]; +// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]] +function submatrix(M,idx1,idx2) = + [for(i=idx1) [for(j=idx2) M[i][j] ] ]; + + +// Section: Matrix construction and modification + +// Function: ident() +// Usage: +// mat = ident(n); +// Topics: Affine, Matrices +// Description: +// Create an `n` by `n` square identity matrix. +// Arguments: +// n = The size of the identity matrix square, `n` by `n`. +// Example: +// mat = ident(3); +// // Returns: +// // [ +// // [1, 0, 0], +// // [0, 1, 0], +// // [0, 0, 1] +// // ] +// Example: +// mat = ident(4); +// // Returns: +// // [ +// // [1, 0, 0, 0], +// // [0, 1, 0, 0], +// // [0, 0, 1, 0], +// // [0, 0, 0, 1] +// // ] +function ident(n) = [ + for (i = [0:1:n-1]) [ + for (j = [0:1:n-1]) (i==j)? 1 : 0 + ] +]; + + +// Function: diagonal_matrix() +// Usage: +// mat = diagonal_matrix(diag, [offdiag]); +// Topics: Matrices, Array Handling +// See Also: column(), submatrix() +// Description: +// Creates a square matrix with the items in the list `diag` on +// its diagonal. The off diagonal entries are set to offdiag, +// which is zero by default. +// Arguments: +// diag = A list of items to put in the diagnal cells of the matrix. +// offdiag = Value to put in non-diagonal matrix cells. +function diagonal_matrix(diag, offdiag=0) = + assert(is_list(diag) && len(diag)>0) + [for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]]; + + +// Function: transpose() +// Usage: +// M = transpose(M, [reverse]); +// Topics: Matrices, Array Handling +// See Also: submatrix(), block_matrix(), hstack(), flatten() +// Description: +// Returns the transpose of the given input matrix. The input can be a matrix with arbitrary entries or +// a numerical vector. If you give a vector then transpose returns it unchanged. +// When reverse=true, the transpose is done across to the secondary diagonal. (See example below.) +// By default, reverse=false. +// Example: +// M = [ +// [1, 2, 3], +// [4, 5, 6], +// [7, 8, 9] +// ]; +// t = transpose(M); +// // Returns: +// // [ +// // [1, 4, 7], +// // [2, 5, 8], +// // [3, 6, 9] +// // ] +// Example: +// M = [ +// [1, 2, 3], +// [4, 5, 6] +// ]; +// t = transpose(M); +// // Returns: +// // [ +// // [1, 4], +// // [2, 5], +// // [3, 6], +// // ] +// Example: +// M = [ +// [1, 2, 3], +// [4, 5, 6], +// [7, 8, 9] +// ]; +// t = transpose(M, reverse=true); +// // Returns: +// // [ +// // [9, 6, 3], +// // [8, 5, 2], +// // [7, 4, 1] +// // ] +// Example: Transpose on a list of numbers returns the list unchanged +// transpose([3,4,5]); // Returns: [3,4,5] +// Example: Transpose on non-numeric input +// arr = [ +// [ "a", "b", "c"], +// [ "d", "e", "f"], +// [[1,2],[3,4],[5,6]] +// ]; +// t = transpose(arr); +// // Returns: +// // [ +// // ["a", "d", [1,2]], +// // ["b", "e", [3,4]], +// // ["c", "f", [5,6]], +// // ] + +function transpose(M, reverse=false) = + assert( is_list(M) && len(M)>0, "Input to transpose must be a nonempty list.") + is_list(M[0]) + ? let( len0 = len(M[0]) ) + assert([for(a=M) if(!is_list(a) || len(a)!=len0) 1 ]==[], "Input to transpose has inconsistent row lengths." ) + reverse + ? [for (i=[0:1:len0-1]) + [ for (j=[0:1:len(M)-1]) M[len(M)-1-j][len0-1-i] ] ] + : [for (i=[0:1:len0-1]) + [ for (j=[0:1:len(M)-1]) M[j][i] ] ] + : assert( is_vector(M), "Input to transpose must be a vector or list of lists.") + M; + + +// Function: outer_product() +// Usage: +// x = outer_product(u,v); +// Description: +// Compute the outer product of two vectors, a matrix. +// Usage: +// M = outer_product(u,v); +function outer_product(u,v) = + assert(is_vector(u) && is_vector(v), "The inputs must be vectors.") + [for(ui=u) ui*v]; + +// Function: submatrix_set() +// Usage: +// mat = submatrix_set(M, A, [m], [n]); +// Topics: Matrices, Array Handling +// See Also: column(), submatrix() +// Description: +// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but +// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds +// of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be +// returned unchanged. This function works on arbitrary lists of lists and the input M need not be rectangular in shape. +// Arguments: +// M = Original matrix. +// A = Submatrix of new values to write into M +// m = Row number of upper-left corner to place A at. Default: 0 +// n = Column number of upper-left corner to place A at. Default: 0 +function submatrix_set(M,A,m=0,n=0) = + assert(is_list(M)) + assert(is_list(A)) + assert(is_int(m)) + assert(is_int(n)) + let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i]) + assert(badrows==[], str("Input submatrix malformed rows: ",badrows)) + [for(i=[0:1:len(M)-1]) + assert(is_list(M[i]), str("Row ",i," of input matrix is not a list")) + [for(j=[0:1:len(M[i])-1]) + i>=m && i =n && jj ? 0 : ri[j] + ] + ] + ) [qr[0], Rzero, qr[2]]; + +function _qr_factor(A,Q,P, pivot, col, m, n) = + col >= min(m-1,n) ? [Q,A,P] : + let( + swap = !pivot ? 1 + : _swap_matrix(n,col,col+max_index([for(i=[col:n-1]) sqr([for(j=[col:m-1]) A[j][i]])])), + A = pivot ? A*swap : A, + x = [for(i=[col:1:m-1]) A[i][col]], + alpha = (x[0]<=0 ? 1 : -1) * norm(x), + u = x - concat([alpha],repeat(0,m-1)), + v = alpha==0 ? u : u / norm(u), + Qc = ident(len(x)) - 2*outer_product(v,v), + Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i=0 && j>=0, "Swap indices out of bounds") + [for(y=[0:n-1]) [for (x=[0:n-1]) + x==i ? (y==j ? 1 : 0) + : x==j ? (y==i ? 1 : 0) + : x==y ? 1 : 0]]; + + + +// Function: back_substitute() +// Usage: +// x = back_substitute(R, b, [transpose]); +// Description: +// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are +// ignored. If transpose==true then instead solve transpose(R)*x=b. +// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to +// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix +// is singular (e.g. has a zero on the diagonal) then it returns []. +function back_substitute(R, b, transpose = false) = + assert(is_matrix(R, square=true)) + let(n=len(R)) + assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b))) + transpose + ? reverse(_back_substitute(transpose(R, reverse=true), reverse(b))) + : _back_substitute(R,b); + +function _back_substitute(R, b, x=[]) = + let(n=len(R)) + len(x) == n ? x + : let(ind = n - len(x) - 1) + R[ind][ind] == 0 ? [] + : let( + newvalue = len(x)==0 + ? b[ind]/R[ind][ind] + : (b[ind]-list_tail(R[ind],ind+1) * x)/R[ind][ind] + ) + _back_substitute(R, b, concat([newvalue],x)); + + + +// Function: cholesky() +// Usage: +// L = cholesky(A); +// Description: +// Compute the cholesky factor, L, of the symmetric positive definite matrix A. +// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is +// not symmetric then an error is displayed. If the matrix is symmetric but +// not positive definite then undef is returned. +function cholesky(A) = + assert(is_matrix(A,square=true),"A must be a square matrix") + assert(is_matrix_symmetric(A),"Cholesky factorization requires a symmetric matrix") + _cholesky(A,ident(len(A)), len(A)); + +function _cholesky(A,L,n) = + A[0][0]<0 ? undef : // Matrix not positive definite + len(A) == 1 ? submatrix_set(L,[[sqrt(A[0][0])]], n-1,n-1): + let( + i = n+1-len(A) + ) + let( + sqrtAii = sqrt(A[0][0]), + Lnext = [for(j=[0:n-1]) + [for(k=[0:n-1]) + j ////////////////////////////////////////////////////////////////////// - // Section: Math Constants // Constant: PHI @@ -669,7 +668,7 @@ function lcm(a,b=[]) = function sum(v, dflt=0) = v==[]? dflt : assert(is_consistent(v), "Input to sum is non-numeric or inconsistent") - is_vector(v) || is_matrix(v) ? [for(i=v) 1]*v : + is_finite(v[0]) || is_vector(v[0]) ? [for(i=v) 1]*v : _sum(v,v[0]*0); function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1); @@ -799,18 +798,6 @@ function _cumprod_vec(v,_i=0,_acc=[]) = ); -// Function: outer_product() -// Usage: -// x = outer_product(u,v); -// Description: -// Compute the outer product of two vectors, a matrix. -// Usage: -// M = outer_product(u,v); -function outer_product(u,v) = - assert(is_vector(u) && is_vector(v), "The inputs must be vectors.") - [for(ui=u) ui*v]; - - // Function: mean() // Usage: // x = mean(v); @@ -877,335 +864,6 @@ function convolve(p,q) = -// Section: Matrix math - -// Function: ident() -// Usage: -// mat = ident(n); -// Topics: Affine, Matrices -// Description: -// Create an `n` by `n` square identity matrix. -// Arguments: -// n = The size of the identity matrix square, `n` by `n`. -// Example: -// mat = ident(3); -// // Returns: -// // [ -// // [1, 0, 0], -// // [0, 1, 0], -// // [0, 0, 1] -// // ] -// Example: -// mat = ident(4); -// // Returns: -// // [ -// // [1, 0, 0, 0], -// // [0, 1, 0, 0], -// // [0, 0, 1, 0], -// // [0, 0, 0, 1] -// // ] -function ident(n) = [ - for (i = [0:1:n-1]) [ - for (j = [0:1:n-1]) (i==j)? 1 : 0 - ] -]; - - -// Function: linear_solve() -// Usage: -// solv = linear_solve(A,b) -// Description: -// Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined -// the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned. -// If `A` is rank deficient or singular then linear_solve returns `[]`. If `b` is a matrix that is compatible with `A` -// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you -// want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then -// transpose the returned value. -function linear_solve(A,b,pivot=true) = - assert(is_matrix(A), "Input should be a matrix.") - let( - m = len(A), - n = len(A[0]) - ) - assert(is_vector(b,m) || is_matrix(b,m),"Invalid right hand side or incompatible with the matrix") - let ( - qr = mj ? 0 : ri[j] - ] - ] - ) [qr[0], Rzero, qr[2]]; - -function _qr_factor(A,Q,P, pivot, column, m, n) = - column >= min(m-1,n) ? [Q,A,P] : - let( - swap = !pivot ? 1 - : _swap_matrix(n,column,column+max_index([for(i=[column:n-1]) sqr([for(j=[column:m-1]) A[j][i]])])), - A = pivot ? A*swap : A, - x = [for(i=[column:1:m-1]) A[i][column]], - alpha = (x[0]<=0 ? 1 : -1) * norm(x), - u = x - concat([alpha],repeat(0,m-1)), - v = alpha==0 ? u : u / norm(u), - Qc = ident(len(x)) - 2*outer_product(v,v), - Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i=0 && j>=0, "Swap indices out of bounds") - [for(y=[0:n-1]) [for (x=[0:n-1]) - x==i ? (y==j ? 1 : 0) - : x==j ? (y==i ? 1 : 0) - : x==y ? 1 : 0]]; - - - -// Function: back_substitute() -// Usage: -// x = back_substitute(R, b, [transpose]); -// Description: -// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are -// ignored. If transpose==true then instead solve transpose(R)*x=b. -// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to -// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix -// is singular (e.g. has a zero on the diagonal) then it returns []. -function back_substitute(R, b, transpose = false) = - assert(is_matrix(R, square=true)) - let(n=len(R)) - assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b))) - transpose - ? reverse(_back_substitute(transpose(R, reverse=true), reverse(b))) - : _back_substitute(R,b); - -function _back_substitute(R, b, x=[]) = - let(n=len(R)) - len(x) == n ? x - : let(ind = n - len(x) - 1) - R[ind][ind] == 0 ? [] - : let( - newvalue = len(x)==0 - ? b[ind]/R[ind][ind] - : (b[ind]-list_tail(R[ind],ind+1) * x)/R[ind][ind] - ) - _back_substitute(R, b, concat([newvalue],x)); - - - -// Function: cholesky() -// Usage: -// L = cholesky(A); -// Description: -// Compute the cholesky factor, L, of the symmetric positive definite matrix A. -// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is -// not symmetric then an error is displayed. If the matrix is symmetric but -// not positive definite then undef is returned. -function cholesky(A) = - assert(is_matrix(A,square=true),"A must be a square matrix") - assert(is_matrix_symmetric(A),"Cholesky factorization requires a symmetric matrix") - _cholesky(A,ident(len(A)), len(A)); - -function _cholesky(A,L,n) = - A[0][0]<0 ? undef : // Matrix not positive definite - len(A) == 1 ? submatrix_set(L,[[sqrt(A[0][0])]], n-1,n-1): - let( - i = n+1-len(A) - ) - let( - sqrtAii = sqrt(A[0][0]), - Lnext = [for(j=[0:n-1]) - [for(k=[0:n-1]) - j1) select(ptind[i],k)]], - risect = [for(i=[0:1]) concat(columns(intersections,i), cornerpts[i])], + risect = [for(i=[0:1]) concat(column(intersections,i), cornerpts[i])], counts = [count(len(region1)), count(len(region2))], pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)] ) diff --git a/rounding.scad b/rounding.scad index 69e2bf1..45e77e2 100644 --- a/rounding.scad +++ b/rounding.scad @@ -1270,7 +1270,7 @@ module convex_offset_extrude( // The entry r[i] is [radius,z] for a given layer r = move([0,bottom_height],p=concat( reverse(offsets_bot), [[0,0], [0,middle]], move([0,middle], p=offsets_top))); - delta = [for(val=deltas(columns(r,0))) sign(val)]; + delta = [for(val=deltas(column(r,0))) sign(val)]; below=[-thickness,0]; above=[0,thickness]; // layers is a list of pairs of the relative positions for each layer, e.g. [0,thickness] @@ -1937,8 +1937,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b verify_vert = [for(i=[0:N-1],j=[0:4]) let( - vline = concat(select(columns(top_patch[i],j),2,4), - select(columns(bot_patch[i],j),2,4)) + vline = concat(select(column(top_patch[i],j),2,4), + select(column(bot_patch[i],j),2,4)) ) if (!is_collinear(vline)) [i,j]], //verify horiz edges @@ -1955,8 +1955,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b "Roundovers interfere with each other on bottom face: either input is self intersecting or top joint length is too large") assert(debug || (verify_vert==[] && verify_horiz==[]), "Curvature continuity failed") let( - vnf = vnf_merge([ each columns(top_samples,0), - each columns(bot_samples,0), + vnf = vnf_merge([ each column(top_samples,0), + each column(bot_samples,0), for(pts=edge_points) vnf_vertex_array(pts), debug ? vnf_from_polygons(faces) : vnf_triangulate(vnf_from_polygons(faces)) @@ -2114,7 +2114,7 @@ function _circle_mask(r) = // ]), // radius = [0,0,each repeat(slotradius,4),0,0], closed=false // ) -// ) apply(left(max(columns(slot,0))/2)*fwd(min(columns(slot,1))), slot); +// ) apply(left(max(column(slot,0))/2)*fwd(min(column(slot,1))), slot); // stroke(slot(15,29,7)); // Example: A cylindrical container with rounded edges and a rounded finger slot. // function slot(slotwidth, slotheight, slotradius) = let( @@ -2138,7 +2138,7 @@ function _circle_mask(r) = // ]), // radius = [0,0,each repeat(slotradius,4),0,0], closed=false // ) -// ) apply(left(max(columns(slot,0))/2)*fwd(min(columns(slot,1))), slot); +// ) apply(left(max(column(slot,0))/2)*fwd(min(column(slot,1))), slot); // diam = 80; // wall = 4; // height = 40; @@ -2162,12 +2162,12 @@ module bent_cutout_mask(r, thickness, path, radius, convexity=10) path = clockwise_polygon(path); curvepoints = arc(d=thickness, angle = [-180,0]); profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(path,delta=thickness/2+pt.y,check_valid=false,closed=true)))]; - pathx = columns(path,0); + pathx = column(path,0); minangle = (min(pathx)-thickness/2)*360/(2*PI*r); maxangle = (max(pathx)+thickness/2)*360/(2*PI*r); mindist = (r+thickness/2)/cos((maxangle-minangle)/2); assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180."); - zmean = mean(columns(path,1)); + zmean = mean(column(path,1)); innerzero = repeat([0,0,zmean], len(path)); outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(path)); vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity); diff --git a/shapes2d.scad b/shapes2d.scad index f1565d4..6936ba3 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -363,7 +363,7 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false ) each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n) ], - maxx_idx = max_index(columns(path2,0)), + maxx_idx = max_index(column(path2,0)), path3 = polygon_shift(path2,maxx_idx) ) path3 ), @@ -1005,7 +1005,7 @@ function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) = [-cap_w,cap_h] ], closed=true ), - maxx_idx = max_index(columns(path,0)), + maxx_idx = max_index(column(path,0)), path2 = polygon_shift(path,maxx_idx) ) reorient(anchor,spin, two_d=true, path=path2, p=path2); @@ -1060,7 +1060,7 @@ function glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) = [for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1], tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2] ), - maxx_idx = max_index(columns(path,0)), + maxx_idx = max_index(column(path,0)), path2 = reverse_polygon(polygon_shift(path,maxx_idx)) ) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2); diff --git a/shapes3d.scad b/shapes3d.scad index dcdd8cc..8f63b38 100644 --- a/shapes3d.scad +++ b/shapes3d.scad @@ -2266,7 +2266,7 @@ module path_text(path, text, font, size, thickness, lettersize, offset=0, revers usernorm = is_def(normal); usetop = is_def(top); - normpts = is_undef(normal) ? (reverse?1:-1)*columns(pts,3) : _cut_interp(pts,path, normal); + normpts = is_undef(normal) ? (reverse?1:-1)*column(pts,3) : _cut_interp(pts,path, normal); toppts = is_undef(top) ? undef : _cut_interp(pts,path,top); for(i=idx(text)) let( tangent = pts[i][2] ) diff --git a/skin.scad b/skin.scad index e019846..37f01cc 100644 --- a/skin.scad +++ b/skin.scad @@ -985,7 +985,7 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edg [for(pt = profile) let( ofs = offset(path, delta=-flip*pt.x, return_faces=true,closed=closed, quality=quality), - map = columns(_ofs_vmap(ofs,closed=closed),1) + map = column(_ofs_vmap(ofs,closed=closed),1) ) select(path3d(ofs[0],pt.y),map) ] diff --git a/std.scad b/std.scad index 8c9066d..bde5526 100644 --- a/std.scad +++ b/std.scad @@ -22,6 +22,7 @@ include include include include +include include include include diff --git a/tests/test_arrays.scad b/tests/test_arrays.scad index a269f07..20cdc73 100644 --- a/tests/test_arrays.scad +++ b/tests/test_arrays.scad @@ -451,36 +451,6 @@ module test_add_scalar() { test_add_scalar(); -module test_columns() { - v = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]; - assert(columns(v,2) == [3, 7, 11, 15]); - assert(columns(v,[2]) == [[3], [7], [11], [15]]); - assert(columns(v,[2,1]) == [[3, 2], [7, 6], [11, 10], [15, 14]]); - assert(columns(v,[1:3]) == [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]); -} -test_columns(); - - -// Need decision about behavior for out of bounds ranges, empty ranges -module test_submatrix(){ - M = [[1,2,3,4,5], - [6,7,8,9,10], - [11,12,13,14,15], - [16,17,18,19,20], - [21,22,23,24,25]]; - assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]); - assert_equal(submatrix(M,[1], [3,4]), [[9,10]]); - assert_equal(submatrix(M,1, [3,4]), [[9,10]]); - assert_equal(submatrix(M, [3,4],1), [[17],[22]]); - assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]); - assert_equal(submatrix(M, 1,3), [[9]]); - A = [[true, 17, "test"], - [[4,2], 91, false], - [6, [3,4], undef]]; - assert_equal(submatrix(A,[0,2],[1,2]),[[17, "test"], [[3, 4], undef]]); -} -test_submatrix(); - module test_force_list() { assert_equal(force_list([3,4,5]), [3,4,5]); @@ -535,67 +505,8 @@ module test_zip() { v3 = [8,9,10,11]; assert(zip(v1,v3) == [[1,8],[2,9],[3,10],[4,11]]); assert(zip([v1,v3]) == [[1,8],[2,9],[3,10],[4,11]]); - assert(zip([v1,v2],fit="short") == [[1,5],[2,6],[3,7]]); - assert(zip([v1,v2],fit="long") == [[1,5],[2,6],[3,7],[4,undef]]); - assert(zip([v1,v2],fit="long", fill=0) == [[1,5],[2,6],[3,7],[4,0]]); - assert(zip([v1,v2,v3],fit="long") == [[1,5,8],[2,6,9],[3,7,10],[4,undef,11]]); } -//test_zip(); - -module test_hstack() { - M = ident(3); - v1 = [2,3,4]; - v2 = [5,6,7]; - v3 = [8,9,10]; - a = hstack(v1,v2); - b = hstack(v1,v2,v3); - c = hstack([M,v1,M]); - d = hstack(columns(M,0), columns(M,[1, 2])); - assert_equal(a,[[2, 5], [3, 6], [4, 7]]); - assert_equal(b,[[2, 5, 8], [3, 6, 9], [4, 7, 10]]); - assert_equal(c,[[1, 0, 0, 2, 1, 0, 0], [0, 1, 0, 3, 0, 1, 0], [0, 0, 1, 4, 0, 0, 1]]); - assert_equal(d,M); - strmat = [["three","four"], ["five","six"]]; - assert_equal(hstack(strmat,strmat), [["three", "four", "three", "four"], ["five", "six", "five", "six"]]); - strvec = ["one","two"]; - assert_equal(hstack(strvec,strmat),[["o", "n", "e", "three", "four"], ["t", "w", "o", "five", "six"]]); -} -test_hstack(); - - -module test_block_matrix() { - A = [[1,2],[3,4]]; - B = ident(2); - assert_equal(block_matrix([[A,B],[B,A],[A,B]]), [[1,2,1,0],[3,4,0,1],[1,0,1,2],[0,1,3,4],[1,2,1,0],[3,4,0,1]]); - assert_equal(block_matrix([[A,B],ident(4)]), [[1,2,1,0],[3,4,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]); - text = [["aa","bb"],["cc","dd"]]; - assert_equal(block_matrix([[text,B]]), [["aa","bb",1,0],["cc","dd",0,1]]); -} -test_block_matrix(); - - -module test_diagonal_matrix() { - assert_equal(diagonal_matrix([1,2,3]), [[1,0,0],[0,2,0],[0,0,3]]); - assert_equal(diagonal_matrix([1,"c",2]), [[1,0,0],[0,"c",0],[0,0,2]]); - assert_equal(diagonal_matrix([1,"c",2],"X"), [[1,"X","X"],["X","c","X"],["X","X",2]]); - assert_equal(diagonal_matrix([[1,1],[2,2],[3,3]], [0,0]), [[ [1,1],[0,0],[0,0]], [[0,0],[2,2],[0,0]], [[0,0],[0,0],[3,3]]]); -} -test_diagonal_matrix(); - -module test_submatrix_set() { - test = [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]; - ragged = [[1,2,3,4,5],[6,7,8,9,10],[11,12], [16,17]]; - assert_equal(submatrix_set(test,[[9,8],[7,6]]), [[9,8,3,4,5],[7,6,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(test,[[9,7],[8,6]],1),[[1,2,3,4,5],[9,7,8,9,10],[8,6,13,14,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(test,[[9,8],[7,6]],n=1), [[1,9,8,4,5],[6,7,6,9,10],[11,12,13,14,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(test,[[9,8],[7,6]],1,2), [[1,2,3,4,5],[6,7,9,8,10],[11,12,7,6,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(test,[[9,8],[7,6]],-1,-1), [[6,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(test,[[9,8],[7,6]],n=4), [[1,2,3,4,9],[6,7,8,9,7],[11,12,13,14,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(test,[[9,8],[7,6]],7,7), [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]); - assert_equal(submatrix_set(ragged, [["a","b"],["c","d"]], 1, 1), [[1,2,3,4,5],[6,"a","b",9,10],[11,"c"], [16,17]]); - assert_equal(submatrix_set(test, [[]]), test); -} -test_submatrix_set(); +test_zip(); module test_array_group() { @@ -645,13 +556,4 @@ module test_array_dim() { test_array_dim(); -module test_transpose() { - assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]); - assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]); - assert(transpose([[1,2,3],[4,5,6]],reverse=true) == [[6,3], [5,2], [4,1]]); - assert(transpose([3,4,5]) == [3,4,5]); -} -test_transpose(); - - // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/tests/test_math.scad b/tests/test_math.scad index 2cbabf0..c5820f5 100644 --- a/tests/test_math.scad +++ b/tests/test_math.scad @@ -595,13 +595,13 @@ module test_mean() { } test_mean(); -/* + module test_median() { - assert_equal(median([2,3,7]), 4.5); - assert_equal(median([[1,2,3], [3,4,5], [8,9,10]]), [4.5,5.5,6.5]); + assert_equal(median([2,3,7]), 3); + assert_equal(median([2,4,5,8]), 4.5); } test_median(); -*/ + module test_convolve() { @@ -618,40 +618,6 @@ test_convolve(); -module test_matrix_inverse() { - assert_approx(matrix_inverse(rot([20,30,40])), [[0.663413948169,0.556670399226,-0.5,0],[-0.47302145844,0.829769465589,0.296198132726,0],[0.579769465589,0.0400087565481,0.813797681349,0],[0,0,0,1]]); -} -test_matrix_inverse(); - - -module test_det2() { - assert_equal(det2([[6,-2], [1,8]]), 50); - assert_equal(det2([[4,7], [3,2]]), -13); - assert_equal(det2([[4,3], [3,4]]), 7); -} -test_det2(); - - -module test_det3() { - M = [ [6,4,-2], [1,-2,8], [1,5,7] ]; - assert_equal(det3(M), -334); -} -test_det3(); - - -module test_determinant() { - M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ]; - assert_equal(determinant(M), 2267); -} -test_determinant(); - - -module test_matrix_trace() { - M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ]; - assert_equal(matrix_trace(M), 6-2+7+1); -} -test_matrix_trace(); - // Logic @@ -975,40 +941,6 @@ test_back_substitute(); -module test_norm_fro(){ - assert_approx(norm_fro([[2,3,4],[4,5,6]]), 10.29563014098700); - -} test_norm_fro(); - - -module test_linear_solve(){ - M = [[-2,-5,-1,3], - [3,7,6,2], - [6,5,-1,-6], - [-7,1,2,3]]; - assert_approx(linear_solve(M, [-3,43,-11,13]), [1,2,3,4]); - assert_approx(linear_solve(M, [[-5,8],[18,-61],[4,7],[-1,-12]]), [[1,-2],[1,-3],[1,-4],[1,-5]]); - assert_approx(linear_solve([[2]],[4]), [2]); - assert_approx(linear_solve([[2]],[[4,8]]), [[2, 4]]); - assert_approx(linear_solve(select(M,0,2), [2,4,4]), [ 2.254871220604705e+00, - -8.378819388897780e-01, - 2.330507118860985e-01, - 8.511278195488737e-01]); - assert_approx(linear_solve(columns(M,[0:2]), [2,4,4,4]), - [-2.457142857142859e-01, - 5.200000000000000e-01, - 7.428571428571396e-02]); - assert_approx(linear_solve([[1,2,3,4]], [2]), [0.066666666666666, 0.13333333333, 0.2, 0.266666666666]); - assert_approx(linear_solve([[1],[2],[3],[4]], [4,3,2,1]), [2/3]); - rd = [[-2,-5,-1,3], - [3,7,6,2], - [3,7,6,2], - [-7,1,2,3]]; - assert_equal(linear_solve(rd,[1,2,3,4]),[]); - assert_equal(linear_solve(select(rd,0,2), [2,4,4]), []); - assert_equal(linear_solve(transpose(select(rd,0,2)), [2,4,3,4]), []); -} -test_linear_solve(); module test_cumprod(){ @@ -1186,85 +1118,6 @@ module test_quadratic_roots(){ test_quadratic_roots(); -module test_null_space(){ - assert_equal(null_space([[3,2,1],[3,6,3],[3,9,-3]]),[]); - - function nullcheck(A,dim) = - let(v=null_space(A)) - len(v)==dim && all_zero(A*transpose(v),eps=1e-12); - - A = [[-1, 2, -5, 2],[-3,-1,3,-3],[5,0,5,0],[3,-4,11,-4]]; - assert(nullcheck(A,1)); - - B = [ - [ 4, 1, 8, 6, -2, 3], - [ 10, 5, 10, 10, 0, 5], - [ 8, 1, 8, 8, -6, 1], - [ -8, -8, 6, -1, -8, -1], - [ 2, 2, 0, 1, 2, 1], - [ 2, -3, 10, 6, -8, 1], - ]; - assert(nullcheck(B,3)); -} -test_null_space(); - -module test_qr_factor() { - // Check that R is upper triangular - function is_ut(R) = - let(bad = [for(i=[1:1:len(R)-1], j=[0:min(i-1, len(R[0])-1)]) if (!approx(R[i][j],0)) 1]) - bad == []; - - // Test the R is upper trianglar, Q is orthogonal and qr=M - function qrok(qr,M) = - is_ut(qr[1]) && approx(qr[0]*transpose(qr[0]), ident(len(qr[0]))) && approx(qr[0]*qr[1],M) && qr[2]==ident(len(qr[2])); - - // Test the R is upper trianglar, Q is orthogonal, R diagonal non-increasing and qrp=M - function qrokpiv(qr,M) = - is_ut(qr[1]) - && approx(qr[0]*transpose(qr[0]), ident(len(qr[0]))) - && approx(qr[0]*qr[1]*transpose(qr[2]),M) - && is_decreasing([for(i=[0:1:min(len(qr[1]),len(qr[1][0]))-1]) abs(qr[1][i][i])]); - - - M = [[1,2,9,4,5], - [6,7,8,19,10], - [11,12,13,14,15], - [1,17,18,19,20], - [21,22,10,24,25]]; - - assert(qrok(qr_factor(M),M)); - assert(qrok(qr_factor(select(M,0,3)),select(M,0,3))); - assert(qrok(qr_factor(transpose(select(M,0,3))),transpose(select(M,0,3)))); - - A = [[1,2,9,4,5], - [6,7,8,19,10], - [0,0,0,0,0], - [1,17,18,19,20], - [21,22,10,24,25]]; - assert(qrok(qr_factor(A),A)); - - B = [[1,2,0,4,5], - [6,7,0,19,10], - [0,0,0,0,0], - [1,17,0,19,20], - [21,22,0,24,25]]; - - assert(qrok(qr_factor(B),B)); - assert(qrok(qr_factor([[7]]), [[7]])); - assert(qrok(qr_factor([[1,2,3]]), [[1,2,3]])); - assert(qrok(qr_factor([[1],[2],[3]]), [[1],[2],[3]])); - - - assert(qrokpiv(qr_factor(M,pivot=true),M)); - assert(qrokpiv(qr_factor(select(M,0,3),pivot=true),select(M,0,3))); - assert(qrokpiv(qr_factor(transpose(select(M,0,3)),pivot=true),transpose(select(M,0,3)))); - assert(qrokpiv(qr_factor(B,pivot=true),B)); - assert(qrokpiv(qr_factor([[7]],pivot=true), [[7]])); - assert(qrokpiv(qr_factor([[1,2,3]],pivot=true), [[1,2,3]])); - assert(qrokpiv(qr_factor([[1],[2],[3]],pivot=true), [[1],[2],[3]])); -} -test_qr_factor(); - module test_poly_mult(){ assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]); diff --git a/vectors.scad b/vectors.scad index c57ebdd..2f2d9e2 100644 --- a/vectors.scad +++ b/vectors.scad @@ -543,8 +543,8 @@ function vector_nearest(query, k, target) = "More results are requested than the number of points.") tgpts ? let( tree = _bt_tree(target, count(len(target))) ) - columns(_bt_nearest( query, k, target, tree),0) - : columns(_bt_nearest( query, k, target[0], target[1]),0); + column(_bt_nearest( query, k, target, tree),0) + : column(_bt_nearest( query, k, target[0], target[1]),0); //Ball tree nearest