From a934cededfd7a01a5e190add9165cd353d68d269 Mon Sep 17 00:00:00 2001 From: Alex Matulich Date: Thu, 3 Apr 2025 20:09:47 -0700 Subject: [PATCH] minor doc changes --- isosurface.scad | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/isosurface.scad b/isosurface.scad index e0484025..f32b6a58 100644 --- a/isosurface.scad +++ b/isosurface.scad @@ -3127,7 +3127,7 @@ function _metaballs2dfield(funclist, transmatrix, bbox, pixsize, nballs) = let( // **Parameter `isovalue:`** The isovalue must be specified as a range `[c_min,c_max]`. // The range can be finite or unbounded at one end, with either `c_min=-INF` or `c_max=INF`. // For isosurface, the returned object is the set of points `[x,y,z]` that satisfy `c_min <= f(x,y,z) <= c_max`, -// or in 2D, the points `[x,y]` satisfying `c_min <= f(x,y) <= c_max`. Strictly speaking, the isothis means the +// or in 2D, the points `[x,y]` satisfying `c_min <= f(x,y) <= c_max`. Strictly speaking, this means the // isosurface and contour modules don't return a single contour or isovalue by the shape **bounded** by isosurfaces // or contours. If the function has values larger than `c_min` and values smaller than `c_max`, then the result // is a shell object (3D) or ring object (2D) with two @@ -3564,7 +3564,7 @@ function _showstats_isosurface(voxsize, bbox, isoval, cubes, triangles, faces) = // repeated points or produce incorrect results. You can use {{list_unwrap()}} to remove the extra endpoint. // Arguments: // f = The contour function or array. -// isovalue = A scalar giving the isovalue for the contour, or a 2-vector giving an isovalue range (resulting in a polygon bounded by two contours). For an unbounded range, use `[-INF,max_isovalue]` or `[min_isovalue,INF]`. A scalar isovalue is equivalent to the range `[isovalue,INF]`. +// isovalue = A scalar giving the isovalue for the contour, or a 2-vector giving an isovalue range (resulting in a polygon bounded by two contours). For an unbounded range, use `[-INF,max_isovalue]` or `[min_isovalue,INF]`. // bounding_box = The area in which to perform computations, expressed as a scalar size of a square centered on the origin, or a pair of 2D points `[[xmin,ymin], [xmax,ymax]]` specifying the minimum and maximum box corner coordinates. Unless you set `exact_bounds=true`, the bounding box size may be enlarged to fit whole pixels. When `f` is an array of values, `bounding_box` cannot be supplied if `pixel_size` is supplied because the bounding box is already implied by the array size combined with `pixel_size`, in which case this implied bounding box is centered around the origin. // pixel_size = Size of the pixels used to sample the bounding box volume, can be a scalar or 2-vector, or omitted if `pixel_count` is set. You may get rectangular pixels of a slightly different size than requested if `exact_bounds=true`. // --- @@ -3639,7 +3639,7 @@ function _showstats_isosurface(voxsize, bbox, isoval, cubes, triangles, faces) = // Example(2D,NoAxes): Here's a simple function that produces a contour in the shape of a flower with some petals. Note that the function has smaller values inside the shape so we choose a `-INF` bound for the isovalue. // f = function (x, y, petals=5) // sin(petals*atan2(y,x)) + norm([x,y]); -// contour(f, isovalue=[-INF,2], bounding_box=8.1); +// contour(f, isovalue=[-INF,3], bounding_box=8.1); // Example(2D,NoAxes): If we instead use a `+INF` bound then we get the bounding box with the flower shape removed. // f = function (x, y, petals=5) // sin(petals*atan2(y,x)) + norm([x,y]);