Doc update of polygon_triangulate

This commit is contained in:
RonaldoCMP 2021-11-04 19:27:14 +00:00
parent e60f5fd932
commit abab41a2db
2 changed files with 3 additions and 30 deletions

View File

@ -1698,7 +1698,7 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Function: polygon_triangulate()
// Usage:
// triangles = polygon_triangulate(poly, [ind], [eps])
// triangles = polygon_triangulate(poly, [ind], [error], [eps])
// Description:
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
// of triples indexing into the polygon vertices. When the optional argument `ind` is
@ -1728,6 +1728,7 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Arguments:
// poly = Array of the polygon vertices.
// ind = A list indexing the vertices of the polygon in `poly`.
// error = If false, returns `undef` when the polygon cannot be triangulated; otherwise, issues an assert error. Default: true.
// eps = A maximum tolerance in geometrical tests. Default: EPSILON
// Example(2D,NoAxes): a simple polygon; see from above
// poly = star(id=10, od=15,n=11);

View File

@ -384,34 +384,6 @@ function _join_paths_at_vertices(path1,path2,v1,v2) =
];
// Given a region that is connected and has its outer border in region[0],
// produces a polygon with the same points that has overlapping connected paths
// to join internal holes to the outer border. Output is a single path.
function _old_cleave_connected_region(region) =
len(region)==0? [] :
len(region)<=1? clockwise_polygon(region[0]) :
let(
dists = [
for (i=[1:1:len(region)-1])
_path_path_closest_vertices(region[0],region[i])
],
idxi = min_index(column(dists,0)),
newoline = _join_paths_at_vertices(
region[0], region[idxi+1],
dists[idxi][1], dists[idxi][2]
)
) len(region)==2? clockwise_polygon(newoline) :
let(
orgn = [
newoline,
for (i=idx(region))
if (i>0 && i!=idxi+1)
region[i]
]
)
assert(len(orgn)<len(region))
_old_cleave_connected_region(orgn);
/// Internal Function: _cleave_connected_region(region, eps)
/// Description:
/// Given a region that is connected and has its outer border in region[0],