mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Merge remote-tracking branch 'upstream/master'
This commit is contained in:
commit
aed62329df
106
math.scad
106
math.scad
@ -721,15 +721,16 @@ function deltas(v, wrap=false) =
|
||||
// cumsum([1,2,3]); // returns [1,3,6]
|
||||
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
|
||||
function cumsum(v) =
|
||||
v==[] ? [] :
|
||||
assert(is_consistent(v), "The input is not consistent." )
|
||||
len(v)<=1 ? v :
|
||||
_cumsum(v,_i=1,_acc=[v[0]]);
|
||||
|
||||
function _cumsum(v,_i=0,_acc=[]) =
|
||||
_i>=len(v) ? _acc :
|
||||
_cumsum( v, _i+1, [ each _acc, _acc[len(_acc)-1] + v[_i] ] );
|
||||
|
||||
|
||||
[for (a = v[0],
|
||||
i = 1
|
||||
;
|
||||
i <= len(v)
|
||||
;
|
||||
a = i<len(v) ? a+v[i] : a,
|
||||
i = i+1)
|
||||
a];
|
||||
|
||||
// Function: product()
|
||||
// Synopsis: Returns the multiplicative product of a list of values.
|
||||
@ -739,24 +740,35 @@ function _cumsum(v,_i=0,_acc=[]) =
|
||||
// x = product(v);
|
||||
// Description:
|
||||
// Returns the product of all entries in the given list.
|
||||
// If passed a list of vectors of same dimension, returns a vector of products of each part.
|
||||
// If passed a list of square matrices, returns the resulting product matrix.
|
||||
// If passed a list of vectors of same length, returns a vector of the component-wise products of the input.
|
||||
// If passed a list of square matrices, returns the resulting product matrix. Matrices are multiplied in the order they appear in the list.
|
||||
// Arguments:
|
||||
// v = The list to get the product of.
|
||||
// Example:
|
||||
// product([2,3,4]); // returns 24.
|
||||
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
||||
function product(v) =
|
||||
assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)),
|
||||
"Invalid input.")
|
||||
_product(v, 1, v[0]);
|
||||
|
||||
function _product(v, i=0, _tot) =
|
||||
i>=len(v) ? _tot :
|
||||
_product( v,
|
||||
i+1,
|
||||
( is_vector(v[i])? v_mul(_tot,v[i]) : _tot*v[i] ) );
|
||||
|
||||
function product(list,right=true) =
|
||||
list==[] ? [] :
|
||||
is_matrix(list) ?
|
||||
[for (a = list[0],
|
||||
i = 1
|
||||
;
|
||||
i <= len(list)
|
||||
;
|
||||
a = i<len(list) ? v_mul(a,list[i]) : 0,
|
||||
i = i+1)
|
||||
if (i==len(list)) a][0]
|
||||
:
|
||||
assert(is_vector(list) || (is_matrix(list[0],square=true) && is_consistent(list)),
|
||||
"Input must be a vector, a list of vectors, or a list of matrices.")
|
||||
[for (a = list[0],
|
||||
i = 1
|
||||
;
|
||||
i <= len(list)
|
||||
;
|
||||
a = i<len(list) ? a*list[i] : 0,
|
||||
i = i+1)
|
||||
if (i==len(list)) a][0];
|
||||
|
||||
|
||||
// Function: cumprod()
|
||||
@ -777,37 +789,29 @@ function _product(v, i=0, _tot) =
|
||||
// cumprod([1,3,5]); // returns [1,3,15]
|
||||
// cumprod([2,2,2]); // returns [2,4,8]
|
||||
// cumprod([[1,2,3], [3,4,5], [5,6,7]])); // returns [[1, 2, 3], [3, 8, 15], [15, 48, 105]]
|
||||
|
||||
function cumprod(list,right=false) =
|
||||
is_vector(list) ? _cumprod(list) :
|
||||
assert(is_consistent(list), "Input must be a consistent list of scalars, vectors or square matrices")
|
||||
assert(is_bool(right))
|
||||
is_matrix(list[0]) ? assert(len(list[0])==len(list[0][0]), "Matrices must be square") _cumprod(list,right)
|
||||
: _cumprod_vec(list);
|
||||
|
||||
function _cumprod(v,right,_i=0,_acc=[]) =
|
||||
_i==len(v) ? _acc :
|
||||
_cumprod(
|
||||
v, right, _i+1,
|
||||
concat(
|
||||
_acc,
|
||||
[
|
||||
_i==0 ? v[_i]
|
||||
: right? _acc[len(_acc)-1]*v[_i]
|
||||
: v[_i]*_acc[len(_acc)-1]
|
||||
]
|
||||
)
|
||||
);
|
||||
|
||||
function _cumprod_vec(v,_i=0,_acc=[]) =
|
||||
_i==len(v) ? _acc :
|
||||
_cumprod_vec(
|
||||
v, _i+1,
|
||||
concat(
|
||||
_acc,
|
||||
[_i==0 ? v[_i] : v_mul(_acc[len(_acc)-1],v[_i])]
|
||||
)
|
||||
);
|
||||
|
||||
list==[] ? [] :
|
||||
is_matrix(list) ?
|
||||
[for (a = list[0],
|
||||
i = 1
|
||||
;
|
||||
i <= len(list)
|
||||
;
|
||||
a = i<len(list) ? v_mul(a,list[i]) : 0,
|
||||
i = i+1)
|
||||
a]
|
||||
:
|
||||
assert(is_vector(list) || (is_matrix(list[0],square=true) && is_consistent(list)),
|
||||
"Input must be a listector, a list of listectors, or a list of matrices.")
|
||||
[for (a = list[0],
|
||||
i = 1
|
||||
;
|
||||
i <= len(list)
|
||||
;
|
||||
a = i<len(list) ? (right ? a*list[i] : list[i]*a) : 0,
|
||||
i = i+1)
|
||||
a];
|
||||
|
||||
|
||||
// Function: convolve()
|
||||
|
@ -371,6 +371,7 @@ test_deltas();
|
||||
|
||||
|
||||
module test_product() {
|
||||
assert_equal(product([]),[]);
|
||||
assert_equal(product([2,3,4]), 24);
|
||||
assert_equal(product([[1,2,3], [3,4,5], [5,6,7]]), [15, 48, 105]);
|
||||
m1 = [[2,3,4],[4,5,6],[6,7,8]];
|
||||
@ -613,6 +614,7 @@ module test_cumprod(){
|
||||
assert_equal(cumprod([]),[]);
|
||||
assert_equal(cumprod([[2,3],[4,5],[6,7]]), [[2,3],[8,15],[48,105]]);
|
||||
assert_equal(cumprod([[5,6,7]]),[[5,6,7]]);
|
||||
assert_equal(cumprod([up(5),down(5)]), [up(5),IDENT]);
|
||||
assert_equal(cumprod([
|
||||
[[1,2],[3,4]],
|
||||
[[-4,5],[6,4]],
|
||||
@ -623,6 +625,16 @@ module test_cumprod(){
|
||||
[[11,12],[18,28]],
|
||||
[[45,24],[98,132]]
|
||||
]);
|
||||
assert_equal(cumprod([
|
||||
[[1,2],[3,4]],
|
||||
[[-4,5],[6,4]],
|
||||
[[9,-3],[4,3]]
|
||||
],right=true),
|
||||
[
|
||||
[[1,2],[3,4]],
|
||||
[[8, 13],[12,31]],
|
||||
[[124, 15],[232,57]]
|
||||
]);
|
||||
assert_equal(cumprod([[[1,2],[3,4]]]), [[[1,2],[3,4]]]);
|
||||
}
|
||||
test_cumprod();
|
||||
|
Loading…
x
Reference in New Issue
Block a user