diff --git a/shapes2d.scad b/shapes2d.scad index 1561c7b..24b452f 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -914,6 +914,30 @@ module right_triangle(size=[1,1], center, anchor, spin=0) { // trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim",flip=true) show_anchors(); // Example(2D): Called as Function // stroke(closed=true, trapezoid(h=30, w1=40, w2=20)); + +function _trapezoid_dims(h,w1,w2,shift,ang) = + let( + h = is_def(h)? h + : num_defined([w1,w2,each ang])==4 ? (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]) + : undef + ) + is_undef(h) ? [h] + : + let( + x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]), + x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]), + w1 = is_def(w1)? w1 + : is_def(w2) && is_def(ang[0]) ? w2 + x1 + x2 + : undef, + w2 = is_def(w2)? w2 + : is_def(w1) && is_def(ang[0]) ? w1 - x1 - x2 + : undef, + shift = first_defined([shift,(x1-x2)/2]) + ) + [h,w1,w2,shift]; + + + function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0,atype="box", _return_override, angle) = assert(is_undef(angle), "The angle parameter has been replaced by ang, which specifies trapezoid interior angle") assert(is_undef(h) || is_finite(h)) @@ -927,17 +951,15 @@ function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anc assert(is_finite(rounding) || is_vector(rounding,4)) let( ang = force_list(ang,2), - angOK = ang==[undef,undef] || (all_positive(ang) && ang[0]<180 && ang[1]<180) + angOK = len(ang)==2 && (ang==[undef,undef] || (all_positive(ang) && ang[0]<180 && ang[1]<180)) ) - assert(angOK, "trapezoid angles must be strictly between 0 and 180") + assert(angOK, "trapezoid angles must be scalar or 2-vector, strictly between 0 and 180") let( - simple = chamfer==0 && rounding==0, - h = is_def(h)? h : (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]), - x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]), - x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]), - w1 = is_def(w1)? w1 : w2 + x1 + x2, - w2 = is_def(w2)? w2 : w1 - x1 - x2, - shift = first_defined([shift,(x1-x2)/2]), + h_w1_w2_shift = _trapezoid_dims(h,w1,w2,shift,ang), + h = h_w1_w2_shift[0], + w1 = h_w1_w2_shift[1], + w2 = h_w1_w2_shift[2], + shift = h_w1_w2_shift[3], chamfer = force_list(chamfer,4), rounding = force_list(rounding,4) ) @@ -1018,16 +1040,16 @@ function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anc module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, atype="box", angle) { - path_over = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip, angle=angle,atype=atype,_return_override=true); + path_over = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding, + flip=flip, angle=angle,atype=atype,_return_override=true); path=path_over[0]; override = path_over[1]; ang = force_list(ang,2); - h = is_def(h)? h : (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]); - x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]); - x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]); - w1 = is_def(w1)? w1 : w2 + x1 + x2; - w2 = is_def(w2)? w2 : w1 - x1 - x2; - shift = first_defined([shift,(x1-x2)/2]); + h_w1_w2_shift = _trapezoid_dims(h,w1,w2,shift,ang); + h = h_w1_w2_shift[0]; + w1 = h_w1_w2_shift[1]; + w2 = h_w1_w2_shift[2]; + shift = h_w1_w2_shift[3]; attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, override=override) { polygon(path); children(); diff --git a/shapes3d.scad b/shapes3d.scad index 4516d81..0f60c95 100644 --- a/shapes3d.scad +++ b/shapes3d.scad @@ -565,30 +565,32 @@ function cuboid( // Function&Module: prismoid() // -// Usage: Typical Prismoids -// prismoid(size1, size2, h|l, [shift], ...) [ATTACHMENTS]; -// Usage: Chamfered Prismoids -// prismoid(size1, size2, h|l, [chamfer=], ...) [ATTACHMENTS]; -// prismoid(size1, size2, h|l, [chamfer1=], [chamfer2=], ...) [ATTACHMENTS]; -// Usage: Rounded Prismoids -// prismoid(size1, size2, h|l, [rounding=], ...) [ATTACHMENTS]; -// prismoid(size1, size2, h|l, [rounding1=], [rounding2=], ...) [ATTACHMENTS]; +// Usage: +// prismoid(size1, size2, [h|l|height|length], [shift], [xang=], [yang=], ...) [ATTACHMENTS]; +// Usage: Chamfered and/or Rounded Prismoids +// prismoid(size1, size2, h|l|height|length, [chamfer=], [rounding=]...) [ATTACHMENTS]; +// prismoid(size1, size2, h|l|height|length, [chamfer1=], [chamfer2=], [rounding1=], [rounding2=], ...) [ATTACHMENTS]; // Usage: As Function -// vnf = prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]); -// vnf = prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]); -// +// vnf = prismoid(...); // Description: // Creates a rectangular prismoid shape with optional roundovers and chamfering. // You can only round or chamfer the vertical(ish) edges. For those edges, you can // specify rounding and/or chamferring per-edge, and for top and bottom separately. // If you want to round the bottom or top edges see {{rounded_prism()}}. -// +// . +// Specification of the prismoid is similar to specification for {{trapezoid()}}. You can specify the dimensions of the +// bottom and top and its height to get a symmetric prismoid. You can use the shift argument to shift the top face around. +// You can also specify base angles either in the X direction, Y direction or both. In order to avoid overspecification, +// you may need to specify a parameter such as size2 as a list of two values, one of which is undef. For example, +// specifying `size2=[100,undef]` sets the size in the X direction but allows the size in the Y direction to be computed based on yang. // Arguments: // size1 = [width, length] of the bottom end of the prism. // size2 = [width, length] of the top end of the prism. -// h/l = Height of the prism. +// h/l/height/length = Height of the prism. // shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end. // --- +// xang = base angle in the X direction. Can be a scalar or list of two values, one of which may be undef +// yang = base angle in the Y direction. Can be a scalar or list of two values, one of which may be undef // rounding = The roundover radius for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // rounding1 = The roundover radius for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // rounding2 = The roundover radius for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. @@ -599,14 +601,14 @@ function cuboid( // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // -// See Also: cuboid(), rounded_prism() +// See Also: cuboid(), rounded_prism(), trapezoid() // +// Example: Truncated Pyramid +// prismoid(size1=[35,50], size2=[20,30], h=20); // Example: Rectangular Pyramid // prismoid([40,40], [0,0], h=20); // Example: Prism // prismoid(size1=[40,40], size2=[0,40], h=20); -// Example: Truncated Pyramid -// prismoid(size1=[35,50], size2=[20,30], h=20); // Example: Wedge // prismoid(size1=[60,35], size2=[30,0], h=30); // Example: Truncated Tetrahedron @@ -617,9 +619,19 @@ function cuboid( // prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30); // Example(FlatSpin,VPD=160,VPT=[0,0,10]): Shifting/Skewing // prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]); +// Example: Specifying bottom, height and angle +// prismoid(size1=[100,75], h=30, xang=50, yang=70); +// Example: Specifying top, height and angle, with asymmetric angles +// prismoid(size2=[100,75], h=30, xang=[50,60], yang=[70,40]); +// Example: Specifying top, bottom and angle for X and using that to define height. Note that giving yang here would likely give a conflicting height calculation, which is not allowed. +// prismoid(size1=[100,75], size2=[75,35], xang=50); +// Example: The same as the previous example but we give a shift in Y. Note that shift.x must be undef because you cannot give combine an angle with a shift, so a shift.x value would conflict with xang being defined. +// prismoid(size1=[100,75], size2=[75,35], xang=50, shift=[undef,20]); +// Example: The X dimensions defined by the base length, angle and height; the Y dimensions defined by the top length, angle, and height. +// prismoid(size1=[100,undef], size2=[undef,75], h=30, xang=[20,90], yang=30); // Example: Rounding // prismoid(100, 80, rounding=10, h=30); -// Example: Outer Chamfer Only +// Example: Chamfers // prismoid(100, 80, chamfer=5, h=30); // Example: Gradiant Rounding // prismoid(100, 80, rounding1=10, rounding2=0, h=30); @@ -644,46 +656,25 @@ function cuboid( // show_anchors(); module prismoid( - size1, size2, h, shift=[0,0], + size1=undef, size2=undef, h, shift=[undef,undef], + xang, yang, rounding=0, rounding1, rounding2, chamfer=0, chamfer1, chamfer2, l, height, length, center, anchor, spin=0, orient=UP -) { - checks = - assert(is_num(size1) || is_vector(size1,2)) - assert(is_num(size2) || is_vector(size2,2)) - assert(is_num(h) || is_num(l)) - assert(is_vector(shift,2)) - assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.") - assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.") - assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.") - assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.") - assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.") - assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument."); - eps = pow(2,-14); - size1 = is_num(size1)? [size1,size1] : size1; - size2 = is_num(size2)? [size2,size2] : size2; - checks2 = - assert(all_nonnegative(size1)) - assert(all_nonnegative(size2)) - assert(size1.x + size2.x > 0) - assert(size1.y + size2.y > 0); - s1 = [max(size1.x, eps), max(size1.y, eps)]; - s2 = [max(size2.x, eps), max(size2.y, eps)]; - rounding1 = default(rounding1, rounding); - rounding2 = default(rounding2, rounding); - chamfer1 = default(chamfer1, chamfer); - chamfer2 = default(chamfer2, chamfer); - anchor = get_anchor(anchor, center, BOT, BOT); - vnf = prismoid( +) +{ + vnf_s1_s2_shift = prismoid( size1=size1, size2=size2, h=h, shift=shift, + xang=xang, yang=yang, + rounding=rounding, chamfer=chamfer, rounding1=rounding1, rounding2=rounding2, chamfer1=chamfer1, chamfer2=chamfer2, - l=l, center=CENTER + l=l, height=height, length=length, center=CENTER, _return_dim=true ); - attachable(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift) { - vnf_polyhedron(vnf, convexity=4); + anchor = get_anchor(anchor, center, BOT, BOT); + attachable(anchor,spin,orient, size=vnf_s1_s2_shift[1], size2=vnf_s1_s2_shift[2], shift=vnf_s1_s2_shift[3]) { + vnf_polyhedron(vnf_s1_s2_shift[0], convexity=4); children(); } } @@ -693,78 +684,90 @@ function prismoid( rounding=0, rounding1, rounding2, chamfer=0, chamfer1, chamfer2, l, height, length, center, - anchor=DOWN, spin=0, orient=UP + anchor=DOWN, spin=0, orient=UP, xang, yang, + _return_dim=false + ) = - assert(is_vector(size1,2)) - assert(is_vector(size2,2)) - assert(is_num(h) || is_num(l)) - assert(is_vector(shift,2)) - assert( - (is_num(rounding) && rounding>=0) || - (is_vector(rounding,4) && all_nonnegative(rounding)), - "Bad rounding argument." + assert(is_undef(shift) || is_num(shift) || len(shift)==2, "shift must be a number or list of length 2") + assert(is_undef(size1) || is_num(size1) || len(size1)==2, "size1 must be a number or list of length 2") + assert(is_undef(size2) || is_num(size2) || len(size2)==2, "size2 must be a number or list of length 2") + let( + xang = force_list(xang,2), + yang = force_list(yang,2), + yangOK = len(yang)==2 && (yang==[undef,undef] || (all_positive(yang) && yang[0]<180 && yang[1]<180)), + xangOK = len(xang)==2 && (xang==[undef,undef] || (all_positive(xang) && xang[0]<180 && xang[1]<180)), + size1=force_list(size1,2), + size2=force_list(size2,2), + h=first_defined([l,h,length,height]), + shift = force_list(shift,2), + + fff=echo(size1=size1,size2=size2) ) - assert( - is_undef(rounding1) || (is_num(rounding1) && rounding1>=0) || - (is_vector(rounding1,4) && all_nonnegative(rounding1)), - "Bad rounding1 argument." + assert(xangOK, "prismoid angles must be scalar or 2-vector, strictly between 0 and 180") + assert(yangOK, "prismoid angles must be scalar or 2-vector, strictly between 0 and 180") + assert(xang==[undef,undef] || shift.x==undef, "Cannot specify xang and a shift.x value together") + assert(yang==[undef,undef] || shift.y==undef, "Cannot specify yang and a shift.y value together") + assert(all_positive([h]) || is_undef(h), "h must be a positive value") + let( + hx = _trapezoid_dims(h,size1.x,size2.x,shift.x,xang)[0], + hy = _trapezoid_dims(h,size1.y,size2.y,shift.y,yang)[0] + ,eerr=echo(hx=hx,hy=hy,xang=xang,yang=yang) ) - assert( - is_undef(rounding2) || (is_num(rounding2) && rounding2>=0) || - (is_vector(rounding2,4) && all_nonnegative(rounding2)), - "Bad rounding2 argument." - ) - assert( - (is_num(chamfer) && chamfer>=0) || - (is_vector(chamfer,4) && all_nonnegative(chamfer)), - "Bad chamfer argument." - ) - assert( - is_undef(chamfer1) || (is_num(chamfer1) && chamfer1>=0) || - (is_vector(chamfer1,4) && all_nonnegative(chamfer1)), - "Bad chamfer1 argument." - ) - assert( - is_undef(chamfer2) || (is_num(chamfer2) && chamfer2>=0) || - (is_vector(chamfer2,4) && all_nonnegative(chamfer2)), - "Bad chamfer2 argument." + assert(num_defined([hx,hy])>0, "Height not given and specification does not determine prismoid height") + assert(hx==undef || hy==undef || approx(hx,hy), + str("X and Y angle specifications give rise to conflicting height values ",hx," and ",hy)) + let( + h = first_defined([hx,hy]), + x_h_w1_w2_shift = _trapezoid_dims(h,size1.x,size2.x,shift.x,xang), + y_h_w1_w2_shift = _trapezoid_dims(h,size1.y,size2.y,shift.y,yang) ) let( - eps = pow(2,-14), - h = one_defined([h,l,length,height],"h,l,length,height",dflt=1), - shiftby = point3d(point2d(shift)), - s1 = [max(size1.x, eps), max(size1.y, eps)], - s2 = [max(size2.x, eps), max(size2.y, eps)], + s1 = [x_h_w1_w2_shift[1], y_h_w1_w2_shift[1]], + s2 = [x_h_w1_w2_shift[2], y_h_w1_w2_shift[2]], + shift = [x_h_w1_w2_shift[3], y_h_w1_w2_shift[3]] + ) + assert(is_vector(s1,2), "Insufficient information to define prismoid") + assert(is_vector(s2,2), "Insufficient information to define prismoid") + assert(all_nonnegative(concat(s1,s2)),"Degenerate prismoid geometry") + assert(s1.x+s2.x>0 && s1.y+s2.y>0, "Degenerate prismoid geometry") + assert(is_num(rounding) || is_vector(rounding,4), "rounding must be a number or 4-vector") + assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "rounding1 must be a number or 4-vector") + assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "rounding2 must be a number or 4-vector") + assert(is_num(chamfer) || is_vector(chamfer,4), "chamfer must be a number or 4-vector") + assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "chamfer1 must be a number or 4-vector") + assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "chamfer2 must be a number or 4-vector") + let( + chamfer1=force_list(default(chamfer1,chamfer),4), + chamfer2=force_list(default(chamfer2,chamfer),4), + rounding1=force_list(default(rounding1,rounding),4), + rounding2=force_list(default(rounding2,rounding),4) + ) + assert(all_nonnegative(chamfer1), "chamfer/chamfer1 must be non-negative") + assert(all_nonnegative(chamfer2), "chamfer/chamfer2 must be non-negative") + assert(all_nonnegative(rounding1), "rounding/rounding1 must be non-negative") + assert(all_nonnegative(rounding2), "rounding/rounding2 must be non-negative") + assert(all_zero(v_mul(rounding1,chamfer1),0), + "rounding1 and chamfer1 (possibly inherited from rounding and chamfer) cannot both be nonzero at the same corner") + assert(all_zero(v_mul(rounding2,chamfer2),0), + "rounding2 and chamfer2 (possibly inherited from rounding and chamfer) cannot both be nonzero at the same corner") + let( + ffda=echo(s1=s1,s2=s2,h=h,shift=shift), rounding1 = default(rounding1, rounding), rounding2 = default(rounding2, rounding), chamfer1 = default(chamfer1, chamfer), chamfer2 = default(chamfer2, chamfer), anchor = get_anchor(anchor, center, BOT, BOT), - vnf = (rounding1==0 && rounding2==0 && chamfer1==0 && chamfer2==0)? ( - let( - corners = [[1,1],[1,-1],[-1,-1],[-1,1]] * 0.5, - points = [ - for (p=corners) point3d(v_mul(s2,p), +h/2) + shiftby, - for (p=corners) point3d(v_mul(s1,p), -h/2) - ], - faces=[ - [0,1,2], [0,2,3], [0,4,5], [0,5,1], - [1,5,6], [1,6,2], [2,6,7], [2,7,3], - [3,7,4], [3,4,0], [4,7,6], [4,6,5], - ] - ) [points, faces] - ) : ( - let( - path1 = rect(size1, rounding=rounding1, chamfer=chamfer1, anchor=CTR), - path2 = rect(size2, rounding=rounding2, chamfer=chamfer2, anchor=CTR), - points = [ + path1 = rect(s1, rounding=rounding1, chamfer=chamfer1, anchor=CTR), + path2 = rect(s2, rounding=rounding2, chamfer=chamfer2, anchor=CTR), + points = [ each path3d(path1, -h/2), - each path3d(move(shiftby, p=path2), +h/2), - ], - faces = hull(points) - ) [points, faces] - ) - ) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf); + each path3d(move(shift, path2), +h/2), + ], + faces = hull(points), + vnf = [points, faces] + ) + _return_dim ? [reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf),point3d(s1,h),s2,shift] + : reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf); // Function&Module: octahedron() @@ -1009,7 +1012,7 @@ module rect_tube( assert(is_undef(ichamfer) || is_num(ichamfer) || (is_list(ichamfer) && len(ichamfer)==4), "ichamfer must be a number or 4-vector") assert(is_undef(ichamfer1) || is_num(ichamfer1) || (is_list(ichamfer1) && len(ichamfer1)==4), "ichamfer1 must be a number or 4-vector") assert(is_undef(ichamfer2) || is_num(ichamfer2) || (is_list(ichamfer2) && len(ichamfer2)==4), "ichamfer2 must be a number or 4-vector"); - chamfer1=force_list( is_def(chamfer1)?chamfer1 : default(chamfer1,chamfer),4); + chamfer1=force_list(default(chamfer1,chamfer),4); chamfer2=force_list(default(chamfer2,chamfer),4); rounding1=force_list(default(rounding1,rounding),4); rounding2=force_list(default(rounding2,rounding),4);