mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
add vnf_slice
This commit is contained in:
parent
0093d10993
commit
b0611c0daf
215
vnf.scad
215
vnf.scad
@ -683,6 +683,109 @@ function _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount, newfaces=
|
||||
|
||||
|
||||
|
||||
// Function: vnf_slice()
|
||||
// Usage:
|
||||
// sliced = vnf_slice(vnf, dir, cuts);
|
||||
// Description:
|
||||
// Slice the faces of a VNF along a specified axis direction at a given list
|
||||
// of cut points. You can use this to refine the faces of a VNF before applying
|
||||
// a nonlinear transformation to its vertex set.
|
||||
// Example:
|
||||
// include <BOSL2-fork/polyhedra.scad>
|
||||
// vnf = regular_polyhedron_info("vnf", "dodecahedron", side=12);
|
||||
// vnf_polyhedron(vnf);
|
||||
// sliced = vnf_slice(vnf, "X", [-6,-1,10]);
|
||||
// color("red")vnf_wireframe(sliced,width=.3);
|
||||
function vnf_slice(vnf,dir,cuts) =
|
||||
let(
|
||||
vert = vnf[0],
|
||||
faces = [for(face=vnf[1]) select(vert,face)],
|
||||
poly_list = _slice_3dpolygons(faces, dir, cuts)
|
||||
)
|
||||
vnf_add_faces(faces=poly_list);
|
||||
|
||||
|
||||
function _split_polygon_at_x(poly, x) =
|
||||
let(
|
||||
xs = subindex(poly,0)
|
||||
) (min(xs) >= x || max(xs) <= x)? [poly] :
|
||||
let(
|
||||
poly2 = [
|
||||
for (p = pair(poly,true)) each [
|
||||
p[0],
|
||||
if(
|
||||
(p[0].x < x && p[1].x > x) ||
|
||||
(p[1].x < x && p[0].x > x)
|
||||
) let(
|
||||
u = (x - p[0].x) / (p[1].x - p[0].x)
|
||||
) [
|
||||
x, // Important for later exact match tests
|
||||
u*(p[1].y-p[0].y)+p[0].y
|
||||
]
|
||||
]
|
||||
],
|
||||
out1 = [for (p = poly2) if(p.x <= x) p],
|
||||
out2 = [for (p = poly2) if(p.x >= x) p],
|
||||
out3 = [
|
||||
if (len(out1)>=3) each split_path_at_self_crossings(out1),
|
||||
if (len(out2)>=3) each split_path_at_self_crossings(out2),
|
||||
],
|
||||
out = [for (p=out3) if (len(p) > 2) cleanup_path(p)]
|
||||
) out;
|
||||
|
||||
|
||||
function _split_2dpolygons_at_each_x(polys, xs, _i=0) =
|
||||
_i>=len(xs)? polys :
|
||||
_split_2dpolygons_at_each_x(
|
||||
[
|
||||
for (poly = polys)
|
||||
each _split_polygon_at_x(poly, xs[_i])
|
||||
], xs, _i=_i+1
|
||||
);
|
||||
|
||||
/// Function: _slice_3dpolygons()
|
||||
/// Usage:
|
||||
/// splitpolys = _slice_3dpolygons(polys, dir, cuts);
|
||||
/// Topics: Geometry, Polygons, Intersections
|
||||
/// Description:
|
||||
/// Given a list of 3D polygons, a choice of X, Y, or Z, and a cut list, `cuts`, splits all of the polygons where they cross
|
||||
/// X/Y/Z at any value given in cuts.
|
||||
/// Arguments:
|
||||
/// polys = A list of 3D polygons to split.
|
||||
/// dir_ind = slice direction, 0=X, 1=Y, or 2=Z
|
||||
/// cuts = A list of scalar values for locating the cuts
|
||||
function _slice_3dpolygons(polys, dir, cuts) =
|
||||
assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.")
|
||||
assert( is_vector(cuts), "The split list must be a vector.")
|
||||
assert( in_list(dir, ["X", "Y", "Z"]))
|
||||
let(
|
||||
I = ident(3),
|
||||
dir_ind = ord(dir)-ord("X")
|
||||
)
|
||||
flatten([for (poly = polys)
|
||||
let(
|
||||
plane = plane_from_polygon(poly),
|
||||
normal = point3d(plane),
|
||||
pnormal = normal - (normal*I[dir_ind])*I[dir_ind]
|
||||
)
|
||||
approx(pnormal,[0,0,0]) ? [poly] :
|
||||
let (
|
||||
pind = max_index(v_abs(pnormal)), // project along this direction
|
||||
otherind = 3-pind-dir_ind, // keep dir_ind and this direction
|
||||
keep = [I[dir_ind], I[otherind]], // dir ind becomes the x dir
|
||||
poly2d = poly*transpose(keep), // project to 2d, putting selected direction in the X position
|
||||
poly_list = [for(p=_split_2dpolygons_at_each_x([poly2d], cuts))
|
||||
let(
|
||||
a = p*keep, // unproject, but pind dimension data is missing
|
||||
ofs = outer_product((repeat(plane[3], len(a))-a*normal)/plane[pind],I[pind])
|
||||
)
|
||||
a+ofs] // ofs computes the missing pind dimension data and adds it back in
|
||||
)
|
||||
poly_list
|
||||
]);
|
||||
|
||||
|
||||
|
||||
function _triangulate_planar_convex_polygons(polys) =
|
||||
polys==[]? [] :
|
||||
let(
|
||||
@ -783,7 +886,7 @@ function _triangulate_planar_convex_polygons(polys) =
|
||||
// vnf = apply(fwd(5)*yrot(30),cube([100,2,5],center=true));
|
||||
// bent = vnf_bend(vnf, axis="Z");
|
||||
// vnf_polyhedron(bent);
|
||||
function vnf_bend(vnf,r,d,axis="Z") =
|
||||
function old_vnf_bend(vnf,r,d,axis="Z") =
|
||||
let(
|
||||
chk_axis = assert(in_list(axis,["X","Y","Z"])),
|
||||
vnf = vnf_triangulate(vnf),
|
||||
@ -821,86 +924,40 @@ function vnf_bend(vnf,r,d,axis="Z") =
|
||||
]
|
||||
]
|
||||
) vnf_add_faces(faces=bent_faces);
|
||||
|
||||
|
||||
function _split_polygon_at_x(poly, x) =
|
||||
function vnf_bend(vnf,r,d,axis="Z") =
|
||||
let(
|
||||
xs = subindex(poly,0)
|
||||
) (min(xs) >= x || max(xs) <= x)? [poly] :
|
||||
let(
|
||||
poly2 = [
|
||||
for (p = pair(poly,true)) each [
|
||||
p[0],
|
||||
if(
|
||||
(p[0].x < x && p[1].x > x) ||
|
||||
(p[1].x < x && p[0].x > x)
|
||||
) let(
|
||||
u = (x - p[0].x) / (p[1].x - p[0].x)
|
||||
) [
|
||||
x, // Important for later exact match tests
|
||||
u*(p[1].y-p[0].y)+p[0].y
|
||||
]
|
||||
]
|
||||
],
|
||||
out1 = [for (p = poly2) if(p.x <= x) p],
|
||||
out2 = [for (p = poly2) if(p.x >= x) p],
|
||||
out3 = [
|
||||
if (len(out1)>=3) each split_path_at_self_crossings(out1),
|
||||
if (len(out2)>=3) each split_path_at_self_crossings(out2),
|
||||
],
|
||||
out = [for (p=out3) if (len(p) > 2) cleanup_path(p)]
|
||||
) out;
|
||||
|
||||
|
||||
function _split_2dpolygons_at_each_x(polys, xs, _i=0) =
|
||||
_i>=len(xs)? polys :
|
||||
_split_2dpolygons_at_each_x(
|
||||
[
|
||||
for (poly = polys)
|
||||
each _split_polygon_at_x(poly, xs[_i])
|
||||
], xs, _i=_i+1
|
||||
);
|
||||
|
||||
/// Function: _slice_3dpolygons()
|
||||
/// Usage:
|
||||
/// splitpolys = _slice_3dpolygons(polys, dir, cuts);
|
||||
/// Topics: Geometry, Polygons, Intersections
|
||||
/// Description:
|
||||
/// Given a list of 3D polygons, a choice of X, Y, or Z, and a cut list, `cuts`, splits all of the polygons where they cross
|
||||
/// X/Y/Z at any value given in cuts.
|
||||
/// Arguments:
|
||||
/// polys = A list of 3D polygons to split.
|
||||
/// dir_ind = slice direction, 0=X, 1=Y, or 2=Z
|
||||
/// cuts = A list of scalar values for locating the cuts
|
||||
function _slice_3dpolygons(polys, dir, cuts) =
|
||||
assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.")
|
||||
assert( is_vector(cuts), "The split list must be a vector.")
|
||||
assert( in_list(dir, ["X", "Y", "Z"]))
|
||||
let(
|
||||
I = ident(3),
|
||||
dir_ind = ord(dir)-ord("X")
|
||||
chk_axis = assert(in_list(axis,["X","Y","Z"])),
|
||||
//vnf = vnf_triangulate(vnf),
|
||||
verts = vnf[0],
|
||||
bounds = pointlist_bounds(verts),
|
||||
bmin = bounds[0],
|
||||
bmax = bounds[1],
|
||||
dflt = axis=="Z"?
|
||||
max(abs(bmax.y), abs(bmin.y)) :
|
||||
max(abs(bmax.z), abs(bmin.z)),
|
||||
r = get_radius(r=r,d=d,dflt=dflt),
|
||||
extent = axis=="X" ? [bmin.y, bmax.y] : [bmin.x, bmax.x]
|
||||
)
|
||||
flatten([for (poly = polys)
|
||||
let(
|
||||
plane = plane_from_polygon(poly),
|
||||
normal = point3d(plane),
|
||||
pnormal = normal - (normal*I[dir_ind])*I[dir_ind]
|
||||
)
|
||||
approx(pnormal,[0,0,0]) ? [poly] :
|
||||
let (
|
||||
pind = max_index(v_abs(pnormal)), // project along this direction
|
||||
otherind = 3-pind-dir_ind, // keep dir_ind and this direction
|
||||
keep = [I[dir_ind], I[otherind]], // dir ind becomes the x dir
|
||||
poly2d = poly*transpose(keep), // project to 2d, putting selected direction in the X position
|
||||
poly_list = [for(p=_split_2dpolygons_at_each_x([poly2d], cuts))
|
||||
let(
|
||||
a = p*keep, // unproject, but pind dimension data is missing
|
||||
ofs = outer_product((repeat(plane[3], len(a))-a*normal)/plane[pind],I[pind])
|
||||
)
|
||||
a+ofs] // ofs computes the missing pind dimension data and adds it back in
|
||||
)
|
||||
poly_list
|
||||
]);
|
||||
let(
|
||||
span_chk = axis=="Z"?
|
||||
assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") :
|
||||
assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."),
|
||||
steps = ceil(segs(r) * (extent[1]-extent[0])/(2*PI*r)),
|
||||
step = (extent[1]-extent[0]) / steps,
|
||||
bend_at = [for(i = [1:1:steps-1]) i*step+extent[0]],
|
||||
slicedir = axis=="X"? "Y" : "X", // slice in y dir for X axis case, and x dir otherwise
|
||||
sliced = vnf_slice(vnf, slicedir, bend_at),
|
||||
coord = axis=="X" ? [0,sign(bmax.z),0] : axis=="Y" ? [sign(bmax.z),0,0] : [sign(bmax.y),0,0],
|
||||
new_vert = [for(p=sliced[0])
|
||||
let(a=coord*p*180/(PI*r))
|
||||
axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] :
|
||||
axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] :
|
||||
[p.y*sin(a), p.y*cos(a), p.z]]
|
||||
|
||||
// ) vnf_triangulate([new_vert,sliced[1]]);
|
||||
) [new_vert,sliced[1]];
|
||||
|
||||
|
||||
|
||||
|
||||
// Section: Debugging Polyhedrons
|
||||
|
Loading…
x
Reference in New Issue
Block a user