diff --git a/beziers.scad b/beziers.scad index 41cb007..cb6a89d 100644 --- a/beziers.scad +++ b/beziers.scad @@ -224,6 +224,31 @@ function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let( function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_point(bez, u)], v); +// Function: bezier_triangle_point() +// Usage: +// bezier_triangle_point(patch, u, v) +// Description: +// Given a triangular 2-dimensional array of N+1 by (for the first row) N+1 points, +// that represents a Bezier triangular patch of degree N, returns a point on +// that surface, at positions `u`, and `v`. A cubic bezier triangular patch +// will have a list of 4 points in the first row, 3 in the second, 2 in the +// third, and 1 in the last row. +// Arguments: +// patch = Triangular bezier patch to get point on. +// u = The proportion of the way along the first dimension of the triangular patch to find the point of. 0<=`u`<=1 +// v = The proportion of the way along the second dimension of the triangular patch to find the point of. 0<=`v`<=(1-`u`) +function bezier_triangle_point(patch, u, v) = + len(patch) == 1 ? patch[0][0] : + let( + n = len(patch)-1, + Pu = [for(i=[0:n-1]) select(patch[i],1,-1)], + Pv = [for(i=[0:n-1]) select(patch[i],0,-2)], + Pw = select(patch,1,-1) + ) + bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v); + + + // Internal, not exposed. function _vertex_list_merge(v1, v2) = concat(v1, [for (v=v2) if (!in_list(v,v1)) v]); function _vertex_list_face(v, face) = [for (pt = face) search([pt], v, num_returns_per_match=1)[0]]; @@ -233,13 +258,15 @@ function _vertex_list_face(v, face) = [for (pt = face) search([pt], v, num_retur // Usage: // bezier_patch_vertices_and_faces(patch, [splinesteps], [vertices], [faces]); // Description: -// Calculate vertices and faces for forming a partial polyhedron from the given bezier patch. -// Returns a list containing two elements. The first is the list of unique vertices. -// The second is the list of faces, where each face is a list of indices into the -// list of vertices. You can chain calls to this, to add more vertices and faces -// for multiple bezier patches, to stitch them together into a complete polyhedron. +// Calculate vertices and faces for forming a partial polyhedron +// from the given bezier rectangular patch. Returns a list containing +// two elements. The first is the list of unique vertices. The +// second is the list of faces, where each face is a list of indices +// into the list of vertices. You can chain calls to this, to add +// more vertices and faces for multiple bezier patches, to stitch +// them together into a complete polyhedron. // Arguments: -// patch = The 2D array of endpoints and control points for this bezier patch. +// patch = The rectangular array of endpoints and control points for this bezier patch. // splinesteps = Number of steps to divide each bezier segment into. Default: 16 // vertices = Vertex list to add new points to. Default: [] // faces = Face list to add new faces to. Default: [] @@ -264,18 +291,152 @@ function bezier_patch_vertices_and_faces(patch, splinesteps=16, vertices=[], fac ) [new_vertices, concat(faces, new_faces)]; +// Function: bezier_triangle_vertices_and_faces() +// Usage: +// bezier_triangle_vertices_and_faces(patch, [splinesteps], [vertices], [faces]); +// Description: +// Calculate vertices and faces for forming a partial polyhedron +// from the given bezier triangular patch. Returns a list containing +// two elements. The first is the list of unique vertices. The +// second is the list of faces, where each face is a list of indices +// into the list of vertices. You can chain calls to this, to add +// more vertices and faces for multiple bezier patches, to stitch +// them together into a complete polyhedron. +// Arguments: +// patch = The triangular array of endpoints and control points for this bezier patch. +// splinesteps = Number of steps to divide each bezier segment into. Default: 16 +// vertices = Vertex list to add new points to. Default: [] +// faces = Face list to add new faces to. Default: [] +function bezier_triangle_vertices_and_faces(patch, splinesteps=16, vertices=[], faces=[]) = + let( + pts = [for (u=[0:splinesteps], v=[0:splinesteps-u]) bezier_triangle_point(patch, u/splinesteps, v/splinesteps)], + new_vertices = _vertex_list_merge(vertices, pts), + new_faces = [ + for ( + u=[0:splinesteps-1], + v=[0:splinesteps-u-1] + ) let ( + v1 = bezier_triangle_point(patch, u/splinesteps, v/splinesteps), + v2 = bezier_triangle_point(patch, (u+1)/splinesteps, v/splinesteps), + v3 = bezier_triangle_point(patch, u/splinesteps, (v+1)/splinesteps), + v4 = bezier_triangle_point(patch, (u+1)/splinesteps, (v+1)/splinesteps), + allfaces = concat( + [[v1,v2,v3]], + ((u= len(patches)? vnf : - bezier_surface_vertices_and_faces(patches, splinesteps=splinesteps, i=i+1, vertices=vnf[0], faces=vnf[1]); + vnf = (i >= len(patches))? [vertices, faces] : + bezier_patch_vertices_and_faces(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces), + vnf2 = (i >= len(tripatches))? vnf : + bezier_triangle_vertices_and_faces(tripatches[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1]) + ) (i >= len(patches) && i >= len(tripatches))? vnf2 : + bezier_surface_vertices_and_faces(patches=patches, tripatches=tripatches, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]); @@ -334,7 +498,6 @@ function bezier_path_point(path, seg, u, N=3) = bez_point(select(path,seg*N,(seg // bez = [[0,0], [20,40], [60,-25], [80,0], [100,25], [140,25], [160,0]]; // pos = bezier_path_closest_point(bez, pt); // xy = bezier_path_point(bez,pos[0],pos[1]); -// echo(pos=pos); // trace_bezier(bez, N=3); // color("red") translate(pt) sphere(r=1); // color("blue") translate(xy) sphere(r=1); @@ -762,7 +925,10 @@ module trace_bezier(bez, N=3, size=1) { // Description: // Takes a list of two or more bezier patches and attempts to make a complete polyhedron from them. // Arguments: -// patches = A list of bezier patches. +// patches = A list of rectangular bezier patches. +// tripatches = A list of triangular bezier patches. +// vertices = Vertex list for additional non-bezier faces. Default: [] +// faces = Additional non-bezier faces. Default: [] // splinesteps = Number of steps to divide each bezier segment into. Default: 16 // Example: // patch1 = [ @@ -778,9 +944,9 @@ module trace_bezier(bez, N=3, size=1) { // [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]], // ]; // bezier_polyhedron([patch1, patch2], splinesteps=8); -module bezier_polyhedron(patches, splinesteps=16) +module bezier_polyhedron(patches=[], tripatches=[], splinesteps=16, vertices=[], faces=[]) { - sfc = bezier_surface_vertices_and_faces(patches, splinesteps=splinesteps); + sfc = bezier_surface_vertices_and_faces(patches=patches, tripatches=tripatches, splinesteps=splinesteps, vertices=vertices, faces=faces); polyhedron(points=sfc[0], faces=sfc[1]); } @@ -789,10 +955,13 @@ module bezier_polyhedron(patches, splinesteps=16) // Module: trace_bezier_patches() // Usage: // trace_bezier_patches(patches, [size], [showcps], [splinesteps]); +// trace_bezier_patches(tripatches, [size], [showcps], [splinesteps]); +// trace_bezier_patches(patches, tripatches, [size], [showcps], [splinesteps]); // Description: // Shows the surface, and optionally, control points of a list of bezier patches. // Arguments: -// patches = A list of bezier patches. +// patches = A list of rectangular bezier patches. +// tripatches = A list of triangular bezier patches. // splinesteps = Number of steps to divide each bezier segment into. default=16 // showcps = If true, show the controlpoints as well as the surface. // size = Size to show control points and lines. @@ -809,21 +978,31 @@ module bezier_polyhedron(patches, splinesteps=16) // [[ 0,67,0], [33, 67,-50], [ 67, 67,-50], [100, 67,0]], // [[15,85,0], [33,100, 0], [ 67,100, 0], [ 85, 85,0]], // ]; -// trace_bezier_patches([patch1, patch2], splinesteps=8, showcps=true); -module trace_bezier_patches(patches, size=1, showcps=false, splinesteps=16) +// trace_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true); +module trace_bezier_patches(patches=[], tripatches=[], size=1, showcps=false, splinesteps=16) { - for (patch = patches) { - if (showcps) { + if (showcps) { + for (patch = patches) { place_copies(flatten(patch)) color("red") sphere(d=size*2); + color("cyan") for (i=[0:len(patch)-1], j=[0:len(patch[i])-1]) { if (i