A broad review of input data check and code format

Some functions were changed for sake of clarity or better performance.
This commit is contained in:
RonaldoCMP
2020-07-24 22:54:34 +01:00
parent 68459776e2
commit bdba4c0821
7 changed files with 598 additions and 419 deletions

View File

@@ -19,41 +19,26 @@
// Arguments:
// v = The value to test to see if it is a vector.
// length = If given, make sure the vector is `length` items long.
// zero = If false, require that the length of the vector is not approximately zero. If true, require the length of the vector to be approx zero-length. Default: `undef` (don't check vector length.)
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
// Example:
// is_vector(4); // Returns false
// is_vector([4,true,false]); // Returns false
// is_vector([3,4,INF,5]); // Returns false
// is_vector([3,4,5,6]); // Returns true
// is_vector([3,4,undef,5]); // Returns false
// is_vector([3,4,5],3); // Returns true
// is_vector([3,4,5],4); // Returns true
// is_vector([]); // Returns false
// is_vector([0,0,0],zero=true); // Returns true
// is_vector([0,0,0],zero=false); // Returns false
// is_vector([0,1,0],zero=true); // Returns false
// is_vector([0,0,1],zero=false); // Returns true
// is_vector(4); // Returns false
// is_vector([4,true,false]); // Returns false
// is_vector([3,4,INF,5]); // Returns false
// is_vector([3,4,5,6]); // Returns true
// is_vector([3,4,undef,5]); // Returns false
// is_vector([3,4,5],3); // Returns true
// is_vector([3,4,5],4); // Returns true
// is_vector([]); // Returns false
// is_vector([0,4,0],3,zero=false); // Returns true
// is_vector([0,0,0],zero=false); // Returns false
// is_vector([0,0,1e-12],zero=false); // Returns false
// is_vector([],zero=false); // Returns false
function is_vector(v,length,zero,eps=EPSILON) =
is_list(v) && is_num(0*(v*v))
&& (is_undef(length) || len(v)==length)
&& (is_undef(zero) || ((norm(v) >= eps) == !zero));
// Function: add_scalar()
// Usage:
// add_scalar(v,s);
// Description:
// Given a vector and a scalar, returns the vector with the scalar added to each item in it.
// If given a list of vectors, recursively adds the scalar to the each vector.
// Arguments:
// v = The initial list of values.
// s = A scalar value to add to every item in the vector.
// Example:
// add_scalar([1,2,3],3); // Returns: [4,5,6]
// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s];
//***
// add_scalar() is an array operation: moved to array.scad
// Function: vang()
// Usage:
@@ -63,6 +48,7 @@ function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s];
// Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
// Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane.
function vang(v) =
assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
len(v)==2? atan2(v.y,v.x) :
let(res=xyz_to_spherical(v)) [res[1], 90-res[2]];
@@ -76,7 +62,9 @@ function vang(v) =
// v2 = The second vector.
// Example:
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
function vmul(v1, v2) =
// assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
[for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
// Function: vdiv()
@@ -88,7 +76,9 @@ function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
// v2 = The second vector.
// Example:
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
function vdiv(v1, v2) =
assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
[for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
// Function: vabs()
@@ -97,19 +87,25 @@ function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
// v = The vector to get the absolute values of.
// Example:
// vabs([-1,3,-9]); // Returns: [1,3,9]
function vabs(v) = [for (x=v) abs(x)];
function vabs(v) =
assert( is_vector(v), "Invalid vector" )
[for (x=v) abs(x)];
// Function: vfloor()
// Description:
// Returns the given vector after performing a `floor()` on all items.
function vfloor(v) = [for (x=v) floor(x)];
function vfloor(v) =
assert( is_vector(v), "Invalid vector" )
[for (x=v) floor(x)];
// Function: vceil()
// Description:
// Returns the given vector after performing a `ceil()` on all items.
function vceil(v) = [for (x=v) ceil(x)];
function vceil(v) =
assert( is_vector(v), "Invalid vector" )
[for (x=v) ceil(x)];
// Function: unit()
@@ -137,6 +133,7 @@ function unit(v, error=[[["ASSERT"]]]) =
// Function: vector_angle()
// Usage:
// vector_angle(v1,v2);
// vector_angle([v1,v2]);
// vector_angle(PT1,PT2,PT3);
// vector_angle([PT1,PT2,PT3]);
// Description:
@@ -156,34 +153,38 @@ function unit(v, error=[[["ASSERT"]]]) =
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
function vector_angle(v1,v2,v3) =
let(
vecs = !is_undef(v3)? [v1-v2,v3-v2] :
!is_undef(v2)? [v1,v2] :
len(v1) == 3? [v1[0]-v1[1],v1[2]-v1[1]] :
len(v1) == 2? v1 :
assert(false, "Bad arguments to vector_angle()"),
is_valid = is_vector(vecs[0]) && is_vector(vecs[1]) && vecs[0]*0 == vecs[1]*0
assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
|| is_consistent([v1,v2,v3]) ,
"Bad arguments.")
assert( is_vector(v1) || is_consistent(v1), "Bad arguments.")
let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
! is_undef(v2) ? [v1,v2] :
len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]]
: v1
)
assert(is_valid, "Bad arguments to vector_angle()")
assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
let(
norm0 = norm(vecs[0]),
norm1 = norm(vecs[1])
)
assert(norm0>0 && norm1>0,"Zero length vector given to vector_angle()")
assert(norm0>0 && norm1>0, "Zero length vector.")
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
//***
// completing input data check
// Function: vector_axis()
// Usage:
// vector_axis(v1,v2);
// vector_axis([v1,v2]);
// vector_axis(PT1,PT2,PT3);
// vector_axis([PT1,PT2,PT3]);
// Description:
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular the line segments AB and BC.
// If given two vectors, like `vector_axis(V1,V1)`, returns the vector perpendicular the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular the line segments AB and BC.
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
// Arguments:
// v1 = First vector or point.
// v2 = Second vector or point.
@@ -199,28 +200,26 @@ function vector_axis(v1,v2=undef,v3=undef) =
is_vector(v3)
? assert(is_consistent([v3,v2,v1]), "Bad arguments.")
vector_axis(v1-v2, v3-v2)
:
assert( is_undef(v3), "Bad arguments.")
is_undef(v2)
? assert( is_list(v1), "Bad arguments.")
len(v1) == 2
? vector_axis(v1[0],v1[1])
: vector_axis(v1[0],v1[1],v1[2])
:
assert(
is_vector(v1,zero=false) &&
is_vector(v2,zero=false) &&
is_consistent([v1,v2]),
"Bad arguments."
)
let(
eps = 1e-6,
w1 = point3d(v1/norm(v1)),
w2 = point3d(v2/norm(v2)),
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
: (norm(vabs(w2)-UP) > eps) ? UP
: RIGHT
) unit(cross(w1,w3));
: assert( is_undef(v3), "Bad arguments.")
is_undef(v2)
? assert( is_list(v1), "Bad arguments.")
len(v1) == 2
? vector_axis(v1[0],v1[1])
: vector_axis(v1[0],v1[1],v1[2])
: assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
, "Bad arguments.")
let(
eps = 1e-6,
w1 = point3d(v1/norm(v1)),
w2 = point3d(v2/norm(v2)),
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
: (norm(vabs(w2)-UP) > eps)? UP
: RIGHT
) unit(cross(w1,w3));
//***
// completing input data check and refactoring
// Note: vector_angle and vector_axis have the same kind of inputs and two code strategy alternatives
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap