mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
A broad review of input data check and code format
Some functions were changed for sake of clarity or better performance.
This commit is contained in:
parent
68459776e2
commit
bdba4c0821
688
arrays.scad
688
arrays.scad
File diff suppressed because it is too large
Load Diff
31
common.scad
31
common.scad
@ -15,7 +15,8 @@
|
||||
// Usage:
|
||||
// typ = typeof(x);
|
||||
// Description:
|
||||
// Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", or "range"
|
||||
// Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid".
|
||||
// Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid".
|
||||
function typeof(x) =
|
||||
is_undef(x)? "undef" :
|
||||
is_bool(x)? "boolean" :
|
||||
@ -23,8 +24,11 @@ function typeof(x) =
|
||||
is_nan(x)? "nan" :
|
||||
is_string(x)? "string" :
|
||||
is_list(x)? "list" :
|
||||
"range";
|
||||
is_range(x) ? "range" :
|
||||
"invalid";
|
||||
|
||||
//***
|
||||
// included "invalid"
|
||||
|
||||
// Function: is_type()
|
||||
// Usage:
|
||||
@ -70,8 +74,8 @@ function is_str(x) = is_string(x);
|
||||
// is_int(n)
|
||||
// Description:
|
||||
// Returns true if the given value is an integer (it is a number and it rounds to itself).
|
||||
function is_int(n) = is_num(n) && n == round(n);
|
||||
function is_integer(n) = is_num(n) && n == round(n);
|
||||
function is_int(n) = is_finite(n) && n == round(n);
|
||||
function is_integer(n) = is_finite(n) && n == round(n);
|
||||
|
||||
|
||||
// Function: is_nan()
|
||||
@ -93,7 +97,7 @@ function is_finite(v) = is_num(0*v);
|
||||
// Function: is_range()
|
||||
// Description:
|
||||
// Returns true if its argument is a range
|
||||
function is_range(x) = is_num(x[0]) && !is_list(x);
|
||||
function is_range(x) = !is_list(x) && is_finite(x[0]+x[1]+x[2]) ;
|
||||
|
||||
|
||||
// Function: is_list_of()
|
||||
@ -106,13 +110,15 @@ function is_range(x) = is_num(x[0]) && !is_list(x);
|
||||
// is_list_of([3,4,5], 0); // Returns true
|
||||
// is_list_of([3,4,undef], 0); // Returns false
|
||||
// is_list_of([[3,4],[4,5]], [1,1]); // Returns true
|
||||
// is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true
|
||||
// is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false
|
||||
// is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returne true
|
||||
// is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returne false
|
||||
// is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true
|
||||
// is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false
|
||||
// is_list_of([], [1,[2,3]]); // Returns true
|
||||
function is_list_of(list,pattern) =
|
||||
let(pattern = 0*pattern)
|
||||
is_list(list) &&
|
||||
[]==[for(entry=list) if (entry*0 != pattern) entry];
|
||||
[]==[for(entry=0*list) if (entry != pattern) entry];
|
||||
|
||||
|
||||
// Function: is_consistent()
|
||||
@ -311,10 +317,13 @@ function scalar_vec3(v, dflt=undef) =
|
||||
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
|
||||
// Arguments:
|
||||
// r = Radius of circle to get the number of segments for.
|
||||
function segs(r) =
|
||||
function segs(r) =
|
||||
$fn>0? ($fn>3? $fn : 3) :
|
||||
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs)));
|
||||
let( r = is_finite(r)? r: 0 )
|
||||
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs))) ;
|
||||
|
||||
//***
|
||||
// avoids undef
|
||||
|
||||
|
||||
// Section: Testing Helpers
|
||||
@ -322,7 +331,7 @@ function segs(r) =
|
||||
|
||||
function _valstr(x) =
|
||||
is_list(x)? str("[",str_join([for (xx=x) _valstr(xx)],","),"]") :
|
||||
is_num(x)? fmt_float(x,12) : x;
|
||||
is_finite(x)? fmt_float(x,12) : x;
|
||||
|
||||
|
||||
// Module: assert_approx()
|
||||
|
@ -2,10 +2,10 @@ include<../std.scad>
|
||||
include<../polyhedra.scad>
|
||||
|
||||
|
||||
$fn=96;
|
||||
|
||||
if (true) {
|
||||
|
||||
$fn=96;
|
||||
|
||||
// Display of all solids with insphere, midsphere and circumsphere
|
||||
|
||||
for(i=[0:len(_polyhedra_)-1]) {
|
||||
|
@ -1,38 +1,7 @@
|
||||
include <../std.scad>
|
||||
|
||||
// List/Array Ops
|
||||
|
||||
module test_repeat() {
|
||||
assert(repeat(1, 4) == [1,1,1,1]);
|
||||
assert(repeat(8, [2,3]) == [[8,8,8], [8,8,8]]);
|
||||
assert(repeat(0, [2,2,3]) == [[[0,0,0],[0,0,0]], [[0,0,0],[0,0,0]]]);
|
||||
assert(repeat([1,2,3],3) == [[1,2,3], [1,2,3], [1,2,3]]);
|
||||
}
|
||||
test_repeat();
|
||||
|
||||
|
||||
module test_in_list() {
|
||||
assert(in_list("bar", ["foo", "bar", "baz"]));
|
||||
assert(!in_list("bee", ["foo", "bar", "baz"]));
|
||||
assert(in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1));
|
||||
assert(!in_list(undef, [3,4,5]));
|
||||
assert(in_list(undef,[3,4,undef,5]));
|
||||
assert(!in_list(3,[]));
|
||||
assert(!in_list(3,[4,5,[3]]));
|
||||
|
||||
}
|
||||
test_in_list();
|
||||
|
||||
|
||||
module test_slice() {
|
||||
assert(slice([3,4,5,6,7,8,9], 3, 5) == [6,7]);
|
||||
assert(slice([3,4,5,6,7,8,9], 2, -1) == [5,6,7,8,9]);
|
||||
assert(slice([3,4,5,6,7,8,9], 1, 1) == []);
|
||||
assert(slice([3,4,5,6,7,8,9], 6, -1) == [9]);
|
||||
assert(slice([3,4,5,6,7,8,9], 2, -2) == [5,6,7,8]);
|
||||
}
|
||||
test_slice();
|
||||
|
||||
// Section: List Query Operations
|
||||
|
||||
module test_select() {
|
||||
l = [3,4,5,6,7,8,9];
|
||||
@ -49,6 +18,71 @@ module test_select() {
|
||||
test_select();
|
||||
|
||||
|
||||
module test_slice() {
|
||||
assert(slice([3,4,5,6,7,8,9], 3, 5) == [6,7]);
|
||||
assert(slice([3,4,5,6,7,8,9], 2, -1) == [5,6,7,8,9]);
|
||||
assert(slice([3,4,5,6,7,8,9], 1, 1) == []);
|
||||
assert(slice([3,4,5,6,7,8,9], 6, -1) == [9]);
|
||||
assert(slice([3,4,5,6,7,8,9], 2, -2) == [5,6,7,8]);
|
||||
assert(slice([], 2, -2) == []);
|
||||
}
|
||||
test_slice();
|
||||
|
||||
|
||||
module test_in_list() {
|
||||
assert(in_list("bar", ["foo", "bar", "baz"]));
|
||||
assert(!in_list("bee", ["foo", "bar", "baz"]));
|
||||
assert(in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1));
|
||||
|
||||
assert(!in_list("bee", ["foo", "bar", ["bee"]]));
|
||||
assert(in_list(NAN, [NAN])==false);
|
||||
}
|
||||
test_in_list();
|
||||
|
||||
|
||||
module test_min_index() {
|
||||
assert(min_index([5,3,9,6,2,7,8,2,1])==8);
|
||||
assert(min_index([5,3,9,6,2,7,8,2,7],all=true)==[4,7]);
|
||||
// assert(min_index([],all=true)==[]);
|
||||
}
|
||||
test_min_index();
|
||||
|
||||
|
||||
module test_max_index() {
|
||||
assert(max_index([5,3,9,6,2,7,8,9,1])==2);
|
||||
assert(max_index([5,3,9,6,2,7,8,9,7],all=true)==[2,7]);
|
||||
// assert(max_index([],all=true)==[]);
|
||||
}
|
||||
test_max_index();
|
||||
|
||||
|
||||
module test_list_increasing() {
|
||||
assert(list_increasing([1,2,3,4]) == true);
|
||||
assert(list_increasing([1,3,2,4]) == false);
|
||||
assert(list_increasing([4,3,2,1]) == false);
|
||||
}
|
||||
test_list_increasing();
|
||||
|
||||
|
||||
module test_list_decreasing() {
|
||||
assert(list_decreasing([1,2,3,4]) == false);
|
||||
assert(list_decreasing([4,2,3,1]) == false);
|
||||
assert(list_decreasing([4,3,2,1]) == true);
|
||||
}
|
||||
test_list_decreasing();
|
||||
|
||||
// Section: Basic List Generation
|
||||
|
||||
module test_repeat() {
|
||||
assert(repeat(1, 4) == [1,1,1,1]);
|
||||
assert(repeat(8, [2,3]) == [[8,8,8], [8,8,8]]);
|
||||
assert(repeat(0, [2,2,3]) == [[[0,0,0],[0,0,0]], [[0,0,0],[0,0,0]]]);
|
||||
assert(repeat([1,2,3],3) == [[1,2,3], [1,2,3], [1,2,3]]);
|
||||
assert(repeat(4, [2,-1]) == [[], []]);
|
||||
}
|
||||
test_repeat();
|
||||
|
||||
|
||||
module test_list_range() {
|
||||
assert(list_range(4) == [0,1,2,3]);
|
||||
assert(list_range(n=4, step=2) == [0,2,4,6]);
|
||||
@ -66,6 +100,8 @@ test_list_range();
|
||||
|
||||
module test_reverse() {
|
||||
assert(reverse([3,4,5,6]) == [6,5,4,3]);
|
||||
assert(reverse("abcd") == ["d","c","b","a"]);
|
||||
assert(reverse([]) == []);
|
||||
}
|
||||
test_reverse();
|
||||
|
||||
@ -90,6 +126,8 @@ module test_deduplicate() {
|
||||
assert(deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]) == [8,3,4,8,2,3]);
|
||||
assert(deduplicate("Hello") == ["H","e","l","o"]);
|
||||
assert(deduplicate([[3,4],[7,1.99],[7,2],[1,4]],eps=0.1) == [[3,4],[7,2],[1,4]]);
|
||||
assert(deduplicate([], closed=true) == []);
|
||||
assert(deduplicate([[1,[1,[undef]]],[1,[1,[undef]]],[1,[2]],[1,[2,[0]]]])==[[1, [1,[undef]]],[1,[2]],[1,[2,[0]]]]);
|
||||
}
|
||||
test_deduplicate();
|
||||
|
||||
@ -148,22 +186,6 @@ module test_list_bset() {
|
||||
test_list_bset();
|
||||
|
||||
|
||||
module test_list_increasing() {
|
||||
assert(list_increasing([1,2,3,4]) == true);
|
||||
assert(list_increasing([1,3,2,4]) == false);
|
||||
assert(list_increasing([4,3,2,1]) == false);
|
||||
}
|
||||
test_list_increasing();
|
||||
|
||||
|
||||
module test_list_decreasing() {
|
||||
assert(list_decreasing([1,2,3,4]) == false);
|
||||
assert(list_decreasing([4,2,3,1]) == false);
|
||||
assert(list_decreasing([4,3,2,1]) == true);
|
||||
}
|
||||
test_list_decreasing();
|
||||
|
||||
|
||||
module test_list_shortest() {
|
||||
assert(list_shortest(["foobar", "bazquxx", "abcd"]) == 4);
|
||||
}
|
||||
@ -315,6 +337,13 @@ test_set_intersection();
|
||||
// Arrays
|
||||
|
||||
|
||||
module test_add_scalar() {
|
||||
assert(add_scalar([1,2,3],3) == [4,5,6]);
|
||||
assert(add_scalar([[1,2,3],[3,4,5]],3) == [[4,5,6],[6,7,8]]);
|
||||
}
|
||||
test_add_scalar();
|
||||
|
||||
|
||||
module test_subindex() {
|
||||
v = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
|
||||
assert(subindex(v,2) == [3, 7, 11, 15]);
|
||||
|
@ -18,6 +18,10 @@ module test_typeof() {
|
||||
assert(typeof([0:1:5]) == "range");
|
||||
assert(typeof([-3:2:5]) == "range");
|
||||
assert(typeof([10:-2:-10]) == "range");
|
||||
assert(typeof([0:NAN:INF]) == "invalid");
|
||||
assert(typeof([0:"a":INF]) == "undef");
|
||||
assert(typeof([0:[]:INF]) == "undef");
|
||||
assert(typeof([true:1:INF]) == "undef");
|
||||
}
|
||||
test_typeof();
|
||||
|
||||
@ -102,6 +106,8 @@ module test_is_int() {
|
||||
assert(!is_int(-99.1));
|
||||
assert(!is_int(99.1));
|
||||
assert(!is_int(undef));
|
||||
assert(!is_int(INF));
|
||||
assert(!is_int(NAN));
|
||||
assert(!is_int(false));
|
||||
assert(!is_int(true));
|
||||
assert(!is_int("foo"));
|
||||
@ -124,6 +130,8 @@ module test_is_integer() {
|
||||
assert(!is_integer(-99.1));
|
||||
assert(!is_integer(99.1));
|
||||
assert(!is_integer(undef));
|
||||
assert(!is_integer(INF));
|
||||
assert(!is_integer(NAN));
|
||||
assert(!is_integer(false));
|
||||
assert(!is_integer(true));
|
||||
assert(!is_integer("foo"));
|
||||
@ -166,6 +174,9 @@ module test_is_range() {
|
||||
assert(!is_range("foo"));
|
||||
assert(!is_range([]));
|
||||
assert(!is_range([3,4,5]));
|
||||
assert(!is_range([INF:4:5]));
|
||||
assert(!is_range([3:NAN:5]));
|
||||
assert(!is_range([3:4:"a"]));
|
||||
assert(is_range([3:1:5]));
|
||||
}
|
||||
test_is_nan();
|
||||
@ -331,11 +342,25 @@ module test_scalar_vec3() {
|
||||
assert(scalar_vec3([3]) == [3,0,0]);
|
||||
assert(scalar_vec3([3,4]) == [3,4,0]);
|
||||
assert(scalar_vec3([3,4],dflt=1) == [3,4,1]);
|
||||
assert(scalar_vec3([3,"a"],dflt=1) == [3,"a",1]);
|
||||
assert(scalar_vec3([3,[2]],dflt=1) == [3,[2],1]);
|
||||
assert(scalar_vec3([3],dflt=1) == [3,1,1]);
|
||||
assert(scalar_vec3([3,4,5]) == [3,4,5]);
|
||||
assert(scalar_vec3([3,4,5,6]) == [3,4,5]);
|
||||
assert(scalar_vec3([3,4,5,6]) == [3,4,5]);
|
||||
}
|
||||
test_scalar_vec3();
|
||||
|
||||
|
||||
module test_segs() {
|
||||
assert_equal(segs(50,$fn=8), 8);
|
||||
assert_equal(segs(50,$fa=2,$fs=2), 158);
|
||||
assert(segs(1)==5);
|
||||
assert(segs(11)==30);
|
||||
// assert(segs(1/0)==5);
|
||||
// assert(segs(0/0)==5);
|
||||
// assert(segs(undef)==5);
|
||||
}
|
||||
test_segs();
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
@ -17,13 +17,6 @@ module test_is_vector() {
|
||||
test_is_vector();
|
||||
|
||||
|
||||
module test_add_scalar() {
|
||||
assert(add_scalar([1,2,3],3) == [4,5,6]);
|
||||
assert(add_scalar([[1,2,3],[3,4,5]],3) == [[4,5,6],[6,7,8]]);
|
||||
}
|
||||
test_add_scalar();
|
||||
|
||||
|
||||
module test_vfloor() {
|
||||
assert_equal(vfloor([2.0, 3.14, 18.9, 7]), [2,3,18,7]);
|
||||
assert_equal(vfloor([-2.0, -3.14, -18.9, -7]), [-2,-4,-19,-7]);
|
||||
|
137
vectors.scad
137
vectors.scad
@ -19,41 +19,26 @@
|
||||
// Arguments:
|
||||
// v = The value to test to see if it is a vector.
|
||||
// length = If given, make sure the vector is `length` items long.
|
||||
// zero = If false, require that the length of the vector is not approximately zero. If true, require the length of the vector to be approx zero-length. Default: `undef` (don't check vector length.)
|
||||
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
|
||||
// Example:
|
||||
// is_vector(4); // Returns false
|
||||
// is_vector([4,true,false]); // Returns false
|
||||
// is_vector([3,4,INF,5]); // Returns false
|
||||
// is_vector([3,4,5,6]); // Returns true
|
||||
// is_vector([3,4,undef,5]); // Returns false
|
||||
// is_vector([3,4,5],3); // Returns true
|
||||
// is_vector([3,4,5],4); // Returns true
|
||||
// is_vector([]); // Returns false
|
||||
// is_vector([0,0,0],zero=true); // Returns true
|
||||
// is_vector([0,0,0],zero=false); // Returns false
|
||||
// is_vector([0,1,0],zero=true); // Returns false
|
||||
// is_vector([0,0,1],zero=false); // Returns true
|
||||
// is_vector(4); // Returns false
|
||||
// is_vector([4,true,false]); // Returns false
|
||||
// is_vector([3,4,INF,5]); // Returns false
|
||||
// is_vector([3,4,5,6]); // Returns true
|
||||
// is_vector([3,4,undef,5]); // Returns false
|
||||
// is_vector([3,4,5],3); // Returns true
|
||||
// is_vector([3,4,5],4); // Returns true
|
||||
// is_vector([]); // Returns false
|
||||
// is_vector([0,4,0],3,zero=false); // Returns true
|
||||
// is_vector([0,0,0],zero=false); // Returns false
|
||||
// is_vector([0,0,1e-12],zero=false); // Returns false
|
||||
// is_vector([],zero=false); // Returns false
|
||||
function is_vector(v,length,zero,eps=EPSILON) =
|
||||
is_list(v) && is_num(0*(v*v))
|
||||
&& (is_undef(length) || len(v)==length)
|
||||
&& (is_undef(zero) || ((norm(v) >= eps) == !zero));
|
||||
|
||||
|
||||
// Function: add_scalar()
|
||||
// Usage:
|
||||
// add_scalar(v,s);
|
||||
// Description:
|
||||
// Given a vector and a scalar, returns the vector with the scalar added to each item in it.
|
||||
// If given a list of vectors, recursively adds the scalar to the each vector.
|
||||
// Arguments:
|
||||
// v = The initial list of values.
|
||||
// s = A scalar value to add to every item in the vector.
|
||||
// Example:
|
||||
// add_scalar([1,2,3],3); // Returns: [4,5,6]
|
||||
// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
|
||||
function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s];
|
||||
|
||||
//***
|
||||
// add_scalar() is an array operation: moved to array.scad
|
||||
|
||||
// Function: vang()
|
||||
// Usage:
|
||||
@ -63,6 +48,7 @@ function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s];
|
||||
// Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
|
||||
// Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane.
|
||||
function vang(v) =
|
||||
assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
|
||||
len(v)==2? atan2(v.y,v.x) :
|
||||
let(res=xyz_to_spherical(v)) [res[1], 90-res[2]];
|
||||
|
||||
@ -76,7 +62,9 @@ function vang(v) =
|
||||
// v2 = The second vector.
|
||||
// Example:
|
||||
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
|
||||
function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
||||
function vmul(v1, v2) =
|
||||
// assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
|
||||
[for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
||||
|
||||
|
||||
// Function: vdiv()
|
||||
@ -88,7 +76,9 @@ function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
||||
// v2 = The second vector.
|
||||
// Example:
|
||||
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
|
||||
function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
||||
function vdiv(v1, v2) =
|
||||
assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
|
||||
[for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
||||
|
||||
|
||||
// Function: vabs()
|
||||
@ -97,19 +87,25 @@ function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
||||
// v = The vector to get the absolute values of.
|
||||
// Example:
|
||||
// vabs([-1,3,-9]); // Returns: [1,3,9]
|
||||
function vabs(v) = [for (x=v) abs(x)];
|
||||
function vabs(v) =
|
||||
assert( is_vector(v), "Invalid vector" )
|
||||
[for (x=v) abs(x)];
|
||||
|
||||
|
||||
// Function: vfloor()
|
||||
// Description:
|
||||
// Returns the given vector after performing a `floor()` on all items.
|
||||
function vfloor(v) = [for (x=v) floor(x)];
|
||||
function vfloor(v) =
|
||||
assert( is_vector(v), "Invalid vector" )
|
||||
[for (x=v) floor(x)];
|
||||
|
||||
|
||||
// Function: vceil()
|
||||
// Description:
|
||||
// Returns the given vector after performing a `ceil()` on all items.
|
||||
function vceil(v) = [for (x=v) ceil(x)];
|
||||
function vceil(v) =
|
||||
assert( is_vector(v), "Invalid vector" )
|
||||
[for (x=v) ceil(x)];
|
||||
|
||||
|
||||
// Function: unit()
|
||||
@ -137,6 +133,7 @@ function unit(v, error=[[["ASSERT"]]]) =
|
||||
// Function: vector_angle()
|
||||
// Usage:
|
||||
// vector_angle(v1,v2);
|
||||
// vector_angle([v1,v2]);
|
||||
// vector_angle(PT1,PT2,PT3);
|
||||
// vector_angle([PT1,PT2,PT3]);
|
||||
// Description:
|
||||
@ -156,34 +153,38 @@ function unit(v, error=[[["ASSERT"]]]) =
|
||||
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
|
||||
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
|
||||
function vector_angle(v1,v2,v3) =
|
||||
let(
|
||||
vecs = !is_undef(v3)? [v1-v2,v3-v2] :
|
||||
!is_undef(v2)? [v1,v2] :
|
||||
len(v1) == 3? [v1[0]-v1[1],v1[2]-v1[1]] :
|
||||
len(v1) == 2? v1 :
|
||||
assert(false, "Bad arguments to vector_angle()"),
|
||||
is_valid = is_vector(vecs[0]) && is_vector(vecs[1]) && vecs[0]*0 == vecs[1]*0
|
||||
assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
|
||||
|| is_consistent([v1,v2,v3]) ,
|
||||
"Bad arguments.")
|
||||
assert( is_vector(v1) || is_consistent(v1), "Bad arguments.")
|
||||
let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
|
||||
! is_undef(v2) ? [v1,v2] :
|
||||
len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]]
|
||||
: v1
|
||||
)
|
||||
assert(is_valid, "Bad arguments to vector_angle()")
|
||||
assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
|
||||
let(
|
||||
norm0 = norm(vecs[0]),
|
||||
norm1 = norm(vecs[1])
|
||||
)
|
||||
assert(norm0>0 && norm1>0,"Zero length vector given to vector_angle()")
|
||||
assert(norm0>0 && norm1>0, "Zero length vector.")
|
||||
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
||||
acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
|
||||
|
||||
|
||||
//***
|
||||
// completing input data check
|
||||
|
||||
// Function: vector_axis()
|
||||
// Usage:
|
||||
// vector_axis(v1,v2);
|
||||
// vector_axis([v1,v2]);
|
||||
// vector_axis(PT1,PT2,PT3);
|
||||
// vector_axis([PT1,PT2,PT3]);
|
||||
// Description:
|
||||
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
|
||||
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular the line segments AB and BC.
|
||||
// If given two vectors, like `vector_axis(V1,V1)`, returns the vector perpendicular the two vectors V1 and V2.
|
||||
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular the line segments AB and BC.
|
||||
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
|
||||
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
|
||||
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
|
||||
// Arguments:
|
||||
// v1 = First vector or point.
|
||||
// v2 = Second vector or point.
|
||||
@ -199,28 +200,26 @@ function vector_axis(v1,v2=undef,v3=undef) =
|
||||
is_vector(v3)
|
||||
? assert(is_consistent([v3,v2,v1]), "Bad arguments.")
|
||||
vector_axis(v1-v2, v3-v2)
|
||||
:
|
||||
assert( is_undef(v3), "Bad arguments.")
|
||||
is_undef(v2)
|
||||
? assert( is_list(v1), "Bad arguments.")
|
||||
len(v1) == 2
|
||||
? vector_axis(v1[0],v1[1])
|
||||
: vector_axis(v1[0],v1[1],v1[2])
|
||||
:
|
||||
assert(
|
||||
is_vector(v1,zero=false) &&
|
||||
is_vector(v2,zero=false) &&
|
||||
is_consistent([v1,v2]),
|
||||
"Bad arguments."
|
||||
)
|
||||
let(
|
||||
eps = 1e-6,
|
||||
w1 = point3d(v1/norm(v1)),
|
||||
w2 = point3d(v2/norm(v2)),
|
||||
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
|
||||
: (norm(vabs(w2)-UP) > eps) ? UP
|
||||
: RIGHT
|
||||
) unit(cross(w1,w3));
|
||||
: assert( is_undef(v3), "Bad arguments.")
|
||||
is_undef(v2)
|
||||
? assert( is_list(v1), "Bad arguments.")
|
||||
len(v1) == 2
|
||||
? vector_axis(v1[0],v1[1])
|
||||
: vector_axis(v1[0],v1[1],v1[2])
|
||||
: assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
|
||||
, "Bad arguments.")
|
||||
let(
|
||||
eps = 1e-6,
|
||||
w1 = point3d(v1/norm(v1)),
|
||||
w2 = point3d(v2/norm(v2)),
|
||||
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
|
||||
: (norm(vabs(w2)-UP) > eps)? UP
|
||||
: RIGHT
|
||||
) unit(cross(w1,w3));
|
||||
|
||||
|
||||
//***
|
||||
// completing input data check and refactoring
|
||||
// Note: vector_angle and vector_axis have the same kind of inputs and two code strategy alternatives
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
Loading…
x
Reference in New Issue
Block a user