Work on intro, changed parameters for gear_dist, etc, fixed examples,

fixed rack to behave like gears
This commit is contained in:
Adrian Mariano 2023-07-29 14:18:12 -04:00
parent cfcf72258a
commit bf038ae032

View File

@ -66,22 +66,35 @@ function _inherit_gear_thickness(thickness) =
_inherit_gear_param("thickness", thickness, $parent_gear_thickness, dflt=10); _inherit_gear_param("thickness", thickness, $parent_gear_thickness, dflt=10);
// Section: Terminology //// Section: Terminology
// The outline of a gear is a smooth circle (the "pitch circle") which has //// The outline of a gear is a smooth circle (the "pitch circle") which has
// mountains and valleys added so it is toothed. There is an inner //// mountains and valleys added so it is toothed. There is an inner
// circle (the "root circle") that touches the base of all the teeth, an //// circle (the "root circle") that touches the base of all the teeth, an
// outer circle that touches the tips of all the teeth, and the invisible //// outer circle that touches the tips of all the teeth, and the invisible
// pitch circle in between them. There is also a "base circle", which can //// pitch circle in between them. There is also a "base circle", which can
// be smaller than all three of the others, which controls the shape of //// be smaller than all three of the others, which controls the shape of
// the teeth. The side of each tooth lies on the path that the end of a //// the teeth. The side of each tooth lies on the path that the end of a
// string would follow if it were wrapped tightly around the base circle, //// string would follow if it were wrapped tightly around the base circle,
// then slowly unwound. That shape is an "involute", which gives this //// then slowly unwound. That shape is an "involute", which gives this
// type of gear its name. //// type of gear its name.
// Section: Involute Spur Gears // Section: Quick Introduction to Gears
// This section gives a quick overview of gears with a focus on the information you need
// to know to understand the gear parameters and create some gears. The topic of gears is very complex and highly technical and
// this section provides the minimal information needed for gear making. If you want more information about the
// details of gears, consult the references below, which are the ones that we consulted when writing the library code.
// - Tec Science
// * [Gear engagement](https://www.tec-science.com/mechanical-power-transmission/involute-gear/meshing-line-action-contact-pitch-circle-law/)
// * [Gears meshing with racks](https://www.tec-science.com/mechanical-power-transmission/involute-gear/rack-meshing/)
// * [Gear undercutting](https://www.tec-science.com/mechanical-power-transmission/involute-gear/undercut/)
// * [Profile shifting](https://www.tec-science.com/mechanical-power-transmission/involute-gear/profile-shift/)
// * [Detailed gear calculations](https://www.tec-science.com/mechanical-power-transmission/involute-gear/calculation-of-involute-gears/)
// - SDPSI
// * [Elements of Gear Technology](https://www.sdp-si.com/resources/elements-of-metric-gear-technology/index.php)
// Subsection: Involute Spur Gears
// The simplest gear form is the involute spur gear, which is an extrusion of a two dimensional form. // The simplest gear form is the involute spur gear, which is an extrusion of a two dimensional form.
// Figure(3D,Med,NoAxes): Involute Spur Gear // Figure(3D,Med,NoAxes,VPT=[-8.01632,15.2012,0],VPR=[0,0,0],VPD=237): Involute Spur Gear
// spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,shaft_diam=15); // spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,shaft_diam=15);
// Continues: // Continues:
// The term "involute" refers to the shape of the teeth: the curves of the teeth involutes of circles, // The term "involute" refers to the shape of the teeth: the curves of the teeth involutes of circles,
@ -174,11 +187,13 @@ function _inherit_gear_thickness(thickness) =
// A solution to the problem of undercutting is to use profile shifting. Profile shifting uses a different portion of the // A solution to the problem of undercutting is to use profile shifting. Profile shifting uses a different portion of the
// involute curve to form the gear teeth, and this adjustment to the tooth form can eliminate undercutting, while // involute curve to form the gear teeth, and this adjustment to the tooth form can eliminate undercutting, while
// still allowing the gear to mesh with unmodified gears. Profile shifting // still allowing the gear to mesh with unmodified gears. Profile shifting
// changes the diameter at which the gear meshes so it no longer meshes at the pitch circle. A profile shift of `x` // changes the diameter at which the gear meshes so it no longer meshes at the pitch circle.
// will increase the mesh distance by approximately `x*m` where `m` is the gear module. The exact adjustment is // A profile shift of `x`
// a complex calculation that depends on the profile shifts of both meshing gears. This means that profile shifting // will increase the mesh distance by approximately `x*m` where `m` is the gear module. The exact adjustment
// which you compute with {{gear_dist()}} is a complex calculation that depends on the profile shifts of both meshing gears. This means that profile shifting
// can also be used to fine tune the spacing between gears. When the gear has many teeth a negative profile shift may // can also be used to fine tune the spacing between gears. When the gear has many teeth a negative profile shift may
// be able to bring the gears slightly closer together, while still avoiding undercutting. // be able to bring the gears slightly closer together, while still avoiding undercutting.
// Profile shifting also changes the effective pressure angle of the gear engagement.
// . // .
// The minimum number of teeth to avoid undercutting is 17 for a pressure angle of 20, but it is 32 for a pressure // The minimum number of teeth to avoid undercutting is 17 for a pressure angle of 20, but it is 32 for a pressure
// angle of 14.5 degrees. It can be computed as `2/(sin(alpha))^2` where `alpha` is the pressure angle. // angle of 14.5 degrees. It can be computed as `2/(sin(alpha))^2` where `alpha` is the pressure angle.
@ -202,23 +217,25 @@ function _inherit_gear_thickness(thickness) =
// zrot(ang2) // zrot(ang2)
// spur_gear2d(mod=5, teeth=5, pressure_angle=14.5, shaft_diam=2); // spur_gear2d(mod=5, teeth=5, pressure_angle=14.5, shaft_diam=2);
// rack2d(teeth=4, height=15, mod=5, pressure_angle=14.5); // rack2d(teeth=4, height=15, mod=5, pressure_angle=14.5);
// Section: Helical Gears // Subsection: Helical Gears
// Helicals gears are a modification of spur gears. They can replace spur gears in any application. The teeth are cut // Helicals gears are a modification of spur gears. They can replace spur gears in any application. The teeth are cut
// following a slanted, helical path. The angled teeth engage more gradually than spur gear teeth, so they run more smoothly // following a slanted, helical path. The angled teeth engage more gradually than spur gear teeth, so they run more smoothly
// and quietly. A disadvantage of helical gears is that they have thrust along the axis of the gear that must be // and quietly. A disadvantage of helical gears is that they have thrust along the axis of the gear that must be
// accomodated. Helical gears also have more sliding friction between the meshing teeth compared to spur gears. // accomodated. Helical gears also have more sliding friction between the meshing teeth compared to spur gears.
// Figure(3D,Med,NoAxes): A Helical Gear // Figure(3D,Med,NoAxes,VPT=[3.5641,-7.03148,4.86523],VPR=[62.7,0,29.2],VPD=263.285): A Helical Gear
// spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,helical=-29,shaft_diam=15); // spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=35,helical=-29,shaft_diam=15);
// Continues: // Continues:
// Helical gears have the same compatibility requirements as spur gears, with the additional requirement that // Helical gears have the same compatibility requirements as spur gears, with the additional requirement that
// the helical angles must be opposite each other, so a gear with a helical angle of 25 must mesh with one // the helical angles must be opposite each other, so a gear with a helical angle of 25 must mesh with one
// that has an angle of -25. The separation between gears also has an additional correction that depends on the cosine of // that has an angle of 25. The pitch circle of a helical gear differs is larger compared to a spur gear
// the helical angle, so it will be different from a spur gear with the same parameters. This can allow you to // by the cosine of the helical angle, so you cannot simply drop helical gears in to replace spur gears without
// making other adjustments. This dependence does allow you to make
// make much bigger spacing adjustments than are possible with profile shifting---without changing the tooth count. // make much bigger spacing adjustments than are possible with profile shifting---without changing the tooth count.
// The {{gear_dist()}} function will also compute the appropriate gear spacing for these gears.
// The effective pressure angle of helical gears is larger than the nominal pressure angle. This can make it possible // The effective pressure angle of helical gears is larger than the nominal pressure angle. This can make it possible
// to avoid undercutting without having to use profile shifting, so smaller tooth count gears can be more effective // to avoid undercutting without having to use profile shifting, so smaller tooth count gears can be more effective
// using the helical form. // using the helical form.
// Figure(Anim,Frames=10,VPT=[43.8006,15.9214,3.52727],VPR=[62.3,0,20.3],VPD=446.129): Meshing compatible helical gears // Figure(Anim,Med,Frames=10,NoAxes,VPT=[43.8006,15.9214,3.52727],VPR=[62.3,0,20.3],VPD=446.129): Meshing compatible helical gears
// zrot($t*360/18) // zrot($t*360/18)
// spur_gear(mod=5, teeth=18, pressure_angle=20, thickness=25, helical=-29, shaft_diam=15); // spur_gear(mod=5, teeth=18, pressure_angle=20, thickness=25, helical=-29, shaft_diam=15);
// right(gear_dist(mod=5, teeth1=18, teeth2=18, helical=29)) // right(gear_dist(mod=5, teeth1=18, teeth2=18, helical=29))
@ -227,25 +244,28 @@ function _inherit_gear_thickness(thickness) =
// spur_gear(mod=5, teeth=18, pressure_angle=20, thickness=25, helical=29, shaft_diam=15); // spur_gear(mod=5, teeth=18, pressure_angle=20, thickness=25, helical=29, shaft_diam=15);
// Continues: // Continues:
// Helical gears can mesh in a second manner that is different from spur gears at skew, or crossed axis. These are also // Helical gears can mesh in a second manner that is different from spur gears at skew, or crossed axis. These are also
// sometimes called "screw gears". In fact, the general requirement for two helical gears to mesh is that the angle // sometimes called "screw gears". The general requirement for two non-profile-shifted helical gears to mesh is that the angle
// between the gears' axes must equal the sum of the helical angles of the two gears, thus for parallel axes, the helical // between the gears' axes must equal the sum of the helical angles of the two gears, thus for parallel axes, the helical
// angles must sum to zero. // angles must sum to zero. If helical gears are profile shifted, then in addition to adjusting the distance between the
// Figure(Anim,Frames=10,VPT=[46,0,0],VPR=[55,0,25],VPD=713): // gears, a small adjustment in the angle is needed, so profile shifted gears won't mesh exactly at the sum of their angles.
// dist = gear_dist(mod=5, teeth1=18, teeth2=18, helical=22.5); // The calculation for gear spacing is different for skew axis gears than for parallel gears, so you do this using {{gear_dist_skew()}},
// color("lightblue") // and if you use profile shifting, then you can compute the angle using {{gear_skew_angle()}}.
// Figure(Anim,Med,NoAxes,Frames=10,VPT=[44.765,6.09492,-3.01199],VPR=[55.7,0,33.2],VPD=401.289): Two helical gears meshing with axes at a 45 degree angle
// dist = gear_dist_skew(mod=5, teeth1=18, teeth2=18, helical1=22.5,helical2=22.5);
// axiscolor="darkgray";
// down(10)color(axiscolor) cyl(d=15, l=145);
// zrot($t*360/18) // zrot($t*360/18)
// spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,helical=22.5,shaft_diam=15); // color("lightblue")spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,helical=22.5,shaft_diam=15);
// right(dist) // right(dist)
// xrot(45) // xrot(45) {color(axiscolor)cyl(d=15,l=85);
// zrot(360/18/2) // zrot(360/18/2)
// zrot(-$t*360/18) // zrot(-$t*360/18)
// spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,helical=22.5,shaft_diam=15); // spur_gear(mod=5,teeth=18,pressure_angle=20,thickness=25,helical=22.5,shaft_diam=15);}
// Subsection: Herringbone Gears
// The herringbone gear is made from two stacked helical gears with opposite angles. This design addresses the problem
// Section: Herringbone Gears // of axial forces that afflict helical gears by having one section that slopes to the
// The herringbone gear addresses the problem of axial forces that afflict helical gears by having one section that slopes to the
// right and another that slopes to the left. Herringbone gears also have the advantage of being self-aligning. // right and another that slopes to the left. Herringbone gears also have the advantage of being self-aligning.
// Figure(3D,Med,NoAxes): A herringbone gear // Figure(3D,Med,NoAxes,VPT=[3.5641,-7.03148,4.86523],VPR=[62.7,0,29.2],VPD=263.285): A herringbone gear
// spur_gear(mod=5, teeth=16, pressure_angle=20, thickness=35, helical=-20, herringbone=true, shaft_diam=15); // spur_gear(mod=5, teeth=16, pressure_angle=20, thickness=35, helical=-20, herringbone=true, shaft_diam=15);
@ -338,9 +358,9 @@ function _inherit_gear_thickness(thickness) =
// pr = pitch_radius(circ_pitch, teeth); // pr = pitch_radius(circ_pitch, teeth);
// left(10) { // left(10) {
// profile_shift = 0; // profile_shift = 0;
// d = gear_dist(circ_pitch,teeth,0,profile_shift1=profile_shift); // d = gear_dist(circ_pitch=circ_pitch,teeth,0,profile_shift1=profile_shift);
// back(d) spur_gear(circ_pitch, teeth, thick, shaft, profile_shift=profile_shift); // back(d) spur_gear(circ_pitch, teeth, thick, shaft, profile_shift=profile_shift);
// rack(circ_pitch, teeth=3, thickness=thick, height=5, orient=BACK); // rack(circ_pitch, teeth=3, thickness=thick, height=5);
// color("black") up(thick/2) linear_extrude(height=0.1) { // color("black") up(thick/2) linear_extrude(height=0.1) {
// back(d) dashed_stroke(circle(r=pr), width=strokewidth, closed=true); // back(d) dashed_stroke(circle(r=pr), width=strokewidth, closed=true);
// dashed_stroke([[-7.5,0],[7.5,0]], width=strokewidth); // dashed_stroke([[-7.5,0],[7.5,0]], width=strokewidth);
@ -348,9 +368,9 @@ function _inherit_gear_thickness(thickness) =
// } // }
// right(10) { // right(10) {
// profile_shift = 0.59; // profile_shift = 0.59;
// d = gear_dist(circ_pitch,teeth,0,profile_shift1=profile_shift); // d = gear_dist(circ_pitch=circ_pitch,teeth,0,profile_shift1=profile_shift);
// back(d) spur_gear(circ_pitch, teeth, thick, shaft, profile_shift=profile_shift); // back(d) spur_gear(circ_pitch, teeth, thick, shaft, profile_shift=profile_shift);
// rack(circ_pitch, teeth=3, thickness=thick, height=5, orient=BACK); // rack(circ_pitch, teeth=3, thickness=thick, height=5);
// color("black") up(thick/2) linear_extrude(height=0.1) { // color("black") up(thick/2) linear_extrude(height=0.1) {
// back(d) // back(d)
// dashed_stroke(circle(r=pr), width=strokewidth, closed=true); // dashed_stroke(circle(r=pr), width=strokewidth, closed=true);
@ -368,10 +388,10 @@ function _inherit_gear_thickness(thickness) =
// thickness = 6; // thickness = 6;
// hole = 3; // hole = 3;
// rack_base = 12; // rack_base = 12;
// d12 = gear_dist(circ_pitch,teeth1=n1,teeth2=n2); // d12 = gear_dist(circ_pitch=circ_pitch,teeth1=n1,teeth2=n2);
// d13 = gear_dist(circ_pitch,teeth1=n1,teeth2=n3); // d13 = gear_dist(circ_pitch=circ_pitch,teeth1=n1,teeth2=n3);
// d14 = gear_dist(circ_pitch,teeth1=n1,teeth2=n4); // d14 = gear_dist(circ_pitch=circ_pitch,teeth1=n1,teeth2=n4);
// d1r = gear_dist(circ_pitch,teeth1=n1,teeth2=0); // d1r = gear_dist(circ_pitch=circ_pitch,teeth1=n1,teeth2=0);
// a1 = $t * 360 / n1; // a1 = $t * 360 / n1;
// a2 = -$t * 360 / n2 + 180/n2; // a2 = -$t * 360 / n2 + 180/n2;
// a3 = -$t * 360 / n3 - 3*90/n3; // a3 = -$t * 360 / n3 - 3*90/n3;
@ -381,7 +401,7 @@ function _inherit_gear_thickness(thickness) =
// color("#77f") right(d13) zrot(a3) spur_gear(circ_pitch,n3,thickness,hole); // color("#77f") right(d13) zrot(a3) spur_gear(circ_pitch,n3,thickness,hole);
// color("#fc7") left(d14) zrot(a4) spur_gear(circ_pitch,n4,thickness,hole,hide=n4-3); // color("#fc7") left(d14) zrot(a4) spur_gear(circ_pitch,n4,thickness,hole,hide=n4-3);
// color("#ccc") fwd(d1r) right(circ_pitch*$t) // color("#ccc") fwd(d1r) right(circ_pitch*$t)
// rack(pitch=circ_pitch,teeth=n5,thickness=thickness,height=rack_base,anchor=CENTER,orient=BACK); // rack(pitch=circ_pitch,teeth=n5,thickness=thickness,height=rack_base,anchor=CENTER);
// Example: Helical gears meshing with non-parallel shafts BROKEN // Example: Helical gears meshing with non-parallel shafts BROKEN
// ang1 = 30; // ang1 = 30;
// ang2 = 10; // ang2 = 10;
@ -406,7 +426,7 @@ function _inherit_gear_thickness(thickness) =
// Example(Anim,Frames=36,VPT=[0,0,0],VPR=[55,0,25],VPD=375): Planetary Gear Assembly // Example(Anim,Frames=36,VPT=[0,0,0],VPR=[55,0,25],VPD=375): Planetary Gear Assembly
// rteeth=56; pteeth=16; cteeth=24; // rteeth=56; pteeth=16; cteeth=24;
// circ_pitch=5; thick=10; pa=20; // circ_pitch=5; thick=10; pa=20;
// gd = gear_dist(circ_pitch, cteeth, pteeth); // gd = gear_dist(circ_pitch=circ_pitch, cteeth, pteeth);
// ring_gear( // ring_gear(
// circ_pitch=circ_pitch, // circ_pitch=circ_pitch,
// teeth=rteeth, // teeth=rteeth,
@ -662,7 +682,7 @@ module spur_gear(
// module the_gear(profile_shift=0) { // module the_gear(profile_shift=0) {
// $fn=72; // $fn=72;
// pr = pitch_radius(circ_pitch,teeth); // pr = pitch_radius(circ_pitch,teeth);
// mr = gear_dist(circ_pitch,teeth,profile_shift1=profile_shift,teeth2=0); // mr = gear_dist(circ_pitch=circ_pitch,teeth,profile_shift1=profile_shift,teeth2=0);
// back(mr) { // back(mr) {
// spur_gear2d(circ_pitch, teeth, shaft_diam=shaft, profile_shift=profile_shift); // spur_gear2d(circ_pitch, teeth, shaft_diam=shaft, profile_shift=profile_shift);
// up(0.1) color("black") // up(0.1) color("black")
@ -680,7 +700,7 @@ module spur_gear(
// Example(2D): Planetary Gear Assembly // Example(2D): Planetary Gear Assembly
// rteeth=56; pteeth=16; cteeth=24; // rteeth=56; pteeth=16; cteeth=24;
// circ_pitch=5; pa=20; // circ_pitch=5; pa=20;
// gd = gear_dist(circ_pitch, cteeth,pteeth); // gd = gear_dist(circ_pitch=circ_pitch, cteeth,pteeth);
// ring_gear2d( // ring_gear2d(
// circ_pitch=circ_pitch, // circ_pitch=circ_pitch,
// teeth=rteeth, // teeth=rteeth,
@ -1144,21 +1164,21 @@ module rack(
d = _dedendum(pitch, clearance, profile_shift); d = _dedendum(pitch, clearance, profile_shift);
l = teeth * trans_pitch; l = teeth * trans_pitch;
anchors = [ anchors = [
named_anchor("adendum", [0,0,a], BACK), named_anchor("adendum", [0,a,0], UP),
named_anchor("adendum-left", [-l/2,0,a], LEFT), named_anchor("adendum-left", [-l/2,a,0], LEFT),
named_anchor("adendum-right", [ l/2,0,a], RIGHT), named_anchor("adendum-right", [ l/2,a,0], RIGHT),
named_anchor("adendum-front", [0,-thickness/2,a], DOWN), named_anchor("adendum-front", [0,a,-thickness/2], BACK),
named_anchor("adendum-back", [0, thickness/2,a], UP), named_anchor("adendum-back", [0, a, thickness/2], FRONT),
named_anchor("dedendum", [0,0,-d], BACK), named_anchor("dedendum", [0,-d,0], UP),
named_anchor("dedendum-left", [-l/2,0,-d], LEFT), named_anchor("dedendum-left", [-l/2,-d,0], LEFT),
named_anchor("dedendum-right", [ l/2,0,-d], RIGHT), named_anchor("dedendum-right", [ l/2,-d,0], RIGHT),
named_anchor("dedendum-front", [0,-thickness/2,-d], DOWN), named_anchor("dedendum-front", [0,-d,-thickness/2], BACK),
named_anchor("dedendum-back", [0, thickness/2,-d], UP), named_anchor("dedendum-back", [0,-d, thickness/2,], FRONT),
]; ];
size = [l, thickness, 2*height]; size = [l, 2*height, thickness];
attachable(anchor,spin,orient, size=size, anchors=anchors) { attachable(anchor,spin,orient, size=size, anchors=anchors) {
right(gear_travel) right(gear_travel)
skew(sxy=tan(helical)) xrot(90) { skew(sxz=tan(helical)) {
linear_extrude(height=thickness, center=true, convexity=teeth*2) { linear_extrude(height=thickness, center=true, convexity=teeth*2) {
rack2d( rack2d(
pitch = pitch, pitch = pitch,
@ -1229,21 +1249,21 @@ function rack(
vnf = linear_sweep(path, height=thickness, anchor="origin", orient=FWD), vnf = linear_sweep(path, height=thickness, anchor="origin", orient=FWD),
m = product([ m = product([
right(gear_travel), right(gear_travel),
if (helical) skew(sxy=tan(helical)), if (helical) skew(sxz=tan(helical)),
]), ]),
out = apply(m, vnf), out = apply(m, vnf),
size = [l, thickness, 2*height], size = [l, 2*height, thickness],
anchors = [ anchors = [
named_anchor("adendum", [0,0,a], BACK), named_anchor("adendum", [0,a,0], UP),
named_anchor("adendum-left", [-l/2,0,a], LEFT), named_anchor("adendum-left", [-l/2,a,0], LEFT),
named_anchor("adendum-right", [ l/2,0,a], RIGHT), named_anchor("adendum-right", [ l/2,a,0], RIGHT),
named_anchor("adendum-front", [0,-thickness/2,a], DOWN), named_anchor("adendum-front", [0,a,-thickness/2], BACK),
named_anchor("adendum-back", [0, thickness/2,a], UP), named_anchor("adendum-back", [0, a, thickness/2], FRONT),
named_anchor("dedendum", [0,0,-d], BACK), named_anchor("dedendum", [0,-d,0], UP),
named_anchor("dedendum-left", [-l/2,0,-d], LEFT), named_anchor("dedendum-left", [-l/2,-d,0], LEFT),
named_anchor("dedendum-right", [ l/2,0,-d], RIGHT), named_anchor("dedendum-right", [ l/2,-d,0], RIGHT),
named_anchor("dedendum-front", [0,-thickness/2,-d], DOWN), named_anchor("dedendum-front", [0,-d,-thickness/2], BACK),
named_anchor("dedendum-back", [0, thickness/2,-d], UP), named_anchor("dedendum-back", [0,-d, thickness/2,], FRONT),
] ]
) reorient(anchor,spin,orient, size=size, anchors=anchors, p=out); ) reorient(anchor,spin,orient, size=size, anchors=anchors, p=out);
@ -2778,50 +2798,57 @@ function worm_gear_thickness(circ_pitch, teeth, worm_diam, worm_arc=60, crowning
// Function: gear_dist() // Function: gear_dist()
// Synopsis: Returns the distance between two gear centers. // Synopsis: Returns the distance between two gear centers for spur gears or parallel axis helical gears.
// Topics: Gears, Parts // Topics: Gears, Parts
// See Also: worm(), worm_gear(), pitch_radius(), outer_radius() // See Also: worm(), worm_gear(), pitch_radius(), outer_radius()
// Usage: // Usage:
// dist = gear_dist(pitch, teeth1, teeth2, [helical=], [profile_shift=], [pressure_angle=]); // dist = gear_dist([mod=|diam_pitch=|circ_pitch=], teeth1, teeth2, [helical], [profile_shift1], [profile_shift2], [pressure_angle=]);
// dist = gear_dist(mod=, teeth=, [helical=], [profile_shift=], [pressure_angle=]);
// Description: // Description:
// Calculate the distance between the centers of two gears with parallel axes, taking into account // Calculate the distance between the centers of two spur gears gears or helical gears with parallel axes,
// profile shifting and helical angles. // taking into account profile shifting and helical angle. You can give the helical angle as either positive or negative.
// Set the tooth count to zero to use a rack.
// Arguments: // Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth1 = Total number of teeth in the first gear. If given 0, we assume this is a rack or worm. // teeth1 = Total number of teeth in the first gear. If given 0, we assume this is a rack or worm.
// teeth2 = Total number of teeth in the second gear. If given 0, we assume this is a rack or worm. // teeth2 = Total number of teeth in the second gear. If given 0, we assume this is a rack or worm.
// --- // helical = The value of the helical angle (from vertical) of the teeth on the two gears (either sign). Default: 0
// helical = The absolute value of the helical angle (from vertical) of the teeth on the gears. Default: 0
// profile_shift1 = Profile shift factor x for the first gear. Default: 0 // profile_shift1 = Profile shift factor x for the first gear. Default: 0
// profile_shift2 = Profile shift factor x for the second gear. Default: 0 // profile_shift2 = Profile shift factor x for the second gear. Default: 0
// pressure_angle = The pressure angle of the gear. // --
// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter.
// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth.
// Example(2D): // circ_pitch = distance between teeth around the pitch circle.
// pitch=5; teeth1=7; teeth2=24; // pressure_angle = The pressure angle of the gear.
// d = gear_dist(pitch, teeth1, teeth2); // Example(2D): Spur gears (with automatic profile shifting on both)
// spur_gear2d(pitch, teeth1, gear_spin=-90); // circ_pitch=5; teeth1=7; teeth2=24;
// right(d) spur_gear2d(pitch, teeth2, gear_spin=90-180/teeth2); // d = gear_dist(circ_pitch=circ_pitch, teeth1, teeth2);
// Example: Non-parallel Helical Gears BROKEN // spur_gear2d(circ_pitch, teeth1, gear_spin=-90);
// //pitch=5; teeth1=15; teeth2=24; ha1=45; ha2=30; thick=10; // right(d) spur_gear2d(circ_pitch, teeth2, gear_spin=90-180/teeth2);
// //d = mesh_radius(pitch, teeth1, teeth2, helical=ha1); // Example: Helical gears (with auto profile shifting on one of the gears)
// //mr2 = mesh_radius(pitch, teeth2, helical=ha2); // circ_pitch=5; teeth1=7; teeth2=24; helical=37;
// //left(mr1) spur_gear(pitch, teeth1, helical=ha1, thickness=thick, gear_spin=-90); // d = gear_dist(circ_pitch=circ_pitch, teeth1, teeth2, helical);
// //right(mr2) xrot(ha1+ha2) spur_gear(pitch, teeth2, helical=ha2, thickness=thick, gear_spin=90-180/teeth2); // spur_gear(circ_pitch, teeth1, helical=helical, gear_spin=-90);
// Example(2D): Disable Auto Profile Shifting on the Small Gear // right(d) spur_gear(circ_pitch, teeth2, helical=-helical, gear_spin=-90-180/teeth2);
// pitch=5; teeth1=7; teeth2=24; // Example(2D): Disable Auto Profile Shifting on the smaller gear
// d = gear_dist(pitch, teeth1, teeth2, profile_shift1=0); // circ_pitch=5; teeth1=7; teeth2=24;
// spur_gear2d(pitch, teeth1, profile_shift=0, gear_spin=-90); // d = gear_dist(circ_pitch=circ_pitch, teeth1, teeth2, profile_shift1=0);
// right(d) spur_gear2d(pitch, teeth2, gear_spin=90-180/teeth2); // spur_gear2d(circ_pitch, teeth1, profile_shift=0, gear_spin=-90);
// right(d) spur_gear2d(circ_pitch, teeth2, gear_spin=90-180/teeth2);
// Example(2D): Manual Profile Shifting // Example(2D): Manual Profile Shifting
// pitch=5; teeth1=7; teeth2=24; ps1 = 0.5; ps2 = -0.2; // circ_pitch=5; teeth1=7; teeth2=24; ps1 = 0.5; ps2 = -0.2;
// d = gear_dist(pitch, teeth1, teeth2, profile_shift1=ps1, profile_shift2=ps2); // d = gear_dist(circ_pitch=circ_pitch, teeth1, teeth2, profile_shift1=ps1, profile_shift2=ps2);
// spur_gear2d(pitch, teeth1, profile_shift=ps1, gear_spin=-90); // spur_gear2d(circ_pitch, teeth1, profile_shift=ps1, gear_spin=-90);
// right(d) spur_gear2d(pitch, teeth2, profile_shift=ps2, gear_spin=90-180/teeth2); // right(d) spur_gear2d(circ_pitch, teeth2, profile_shift=ps2, gear_spin=90-180/teeth2);
// Example(2D): Profile shifted gear and a rack
// mod=3; teeth=8;
// d = gear_dist(mod=mod, teeth, 0);
// rack2d(mod=mod, teeth=5, height=9);
// back(d) spur_gear2d(mod=mod, teeth=teeth, gear_spin=180/teeth);
// Example(VPT=[-3.47556,6.39564,2.5111],VPR=[64.8,0,214.7],VPD=113.336): Profile shifted helical gear and rack
// mod=3; teeth=8; helical=29;
// d = gear_dist(mod=mod, teeth, 0, helical);
// rack(mod=mod, teeth=5, height=9, helical=helical);
// back(d) spur_gear(mod=mod, teeth=teeth, helical=-helical, gear_spin=180/teeth);
function gear_dist( function gear_dist(
circ_pitch,
teeth1, teeth1,
teeth2, teeth2,
helical=0, helical=0,
@ -2829,12 +2856,13 @@ function gear_dist(
profile_shift2, profile_shift2,
pressure_angle=20, pressure_angle=20,
diam_pitch, diam_pitch,
mod, circ_pitch,
pitch mod
) = ) =
assert(all_nonnegative([teeth1,teeth2]),"Must give nonnegative values for teeth")
assert(teeth1>0 || teeth2>0, "One of the teeth counts must be nonzero")
let( let(
mod = circular_pitch(pitch, mod, circ_pitch, diam_pitch)/PI, mod = module_value(mod=mod,circ_pitch= circ_pitch, diam_pitch=diam_pitch),
profile_shift1 = default(profile_shift1, teeth1>0? auto_profile_shift(teeth1,pressure_angle,helical) : 0), profile_shift1 = default(profile_shift1, teeth1>0? auto_profile_shift(teeth1,pressure_angle,helical) : 0),
profile_shift2 = default(profile_shift2, teeth2>0? auto_profile_shift(teeth2,pressure_angle,helical) : 0) profile_shift2 = default(profile_shift2, teeth2>0? auto_profile_shift(teeth2,pressure_angle,helical) : 0)
) )
@ -2842,8 +2870,7 @@ function gear_dist(
: :
let( let(
pa_eff = _working_pressure_angle(teeth1,profile_shift1,teeth2,profile_shift2,pressure_angle,helical), pa_eff = _working_pressure_angle(teeth1,profile_shift1,teeth2,profile_shift2,pressure_angle,helical),
pa_transv = atan(tan(pressure_angle)/cos(helical)), pa_transv = atan(tan(pressure_angle)/cos(helical))
fda= echo(pa_eff=pa_eff,pa_transv=pa_transv,mod*(teeth1+teeth2)*cos(pa_transv)/cos(pa_eff)/cos(helical)/2)
) )
mod*(teeth1+teeth2)*cos(pa_transv)/cos(pa_eff)/cos(helical)/2; mod*(teeth1+teeth2)*cos(pa_transv)/cos(pa_eff)/cos(helical)/2;
@ -2863,46 +2890,111 @@ function _working_pressure_angle(teeth1,profile_shift1, teeth2, profile_shift2,
// Function: gear_dist_skew() // Function: gear_dist_skew()
// Synopsis: Returns the distance between two helical gear centers. // Usage:
// Synopsis: Returns the distance between two helical gear centers with skew axes.
// Topics: Gears, Parts // Topics: Gears, Parts
// See Also: gear_dist(), worm(), worm_gear(), pitch_radius(), outer_radius() // See Also: gear_dist(), worm(), worm_gear(), pitch_radius(), outer_radius()
// Usage: // Usage:
// dist = gear_dist_skew(mod, teeth1, profile_shift1, helical1, teeth2, profile_shift2, helical2, [pressure_angle=]); // dist = gear_dist_skew(mod=|diam_pitch=|circ_pitch=, teeth1, teeth2, helical1, helical2, [profile_shift1], [profile_shift2], [pressure_angle=]
// dist = gear_dist_skew(diam_pitch=, teeth1=, [profile_shift1=], [helical1=], teeth2=, [profile_shift2=], [helical2=], [pressure_angle=]);
// dist = gear_dist_skew(circ_pitch=, teeth1=, [profile_shift1=], [helical1=], teeth2=, [profile_shift2=], [helical2=], [pressure_angle=]);
// Description: // Description:
// Calculate the distance between two helical gears that mesh with non-parallel axes, taking into account // Calculate the distance between two helical gears that mesh with non-parallel axes, taking into account
// profile shift and the helical angles. // profile shift and the helical angles.
function gear_dist_skew(mod,teeth1,profile_shift1=0, helical1, teeth2, profile_shift2=0, helical2, pressure_angle=20, circ_pitch, diam_pitch) = // Arguments:
// teeth1 = Total number of teeth in the first gear. If given 0, we assume this is a rack or worm.
// teeth2 = Total number of teeth in the second gear. If given 0, we assume this is a rack or worm.
// helical1 = The helical angle (from vertical) of the teeth on the first gear.
// helical1 = The helical angle (from vertical) of the teeth on the second gear.
// profile_shift1 = Profile shift factor x for the first gear. Default: 0
// profile_shift2 = Profile shift factor x for the second gear. Default: 0
// --
// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter.
// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth.
// circ_pitch = distance between teeth around the pitch circle.
// pressure_angle = The pressure angle of the gear.
// Example: Non-parallel Helical Gears (without any profile shifting)
// circ_pitch=5; teeth1=15; teeth2=24; ha1=45; ha2=30; thick=10;
// d = gear_dist_skew(circ_pitch=circ_pitch, teeth1, teeth2, helical1=ha1, helical2=ha2);
// left(d/2) spur_gear(circ_pitch, teeth1, helical=ha1, thickness=thick, gear_spin=-90);
// right(d/2) xrot(ha1+ha2) spur_gear(circ_pitch, teeth2, helical=ha2, thickness=thick, gear_spin=90-180/teeth2);
function gear_dist_skew(teeth1,teeth2,helical1,helical2,profile_shift1,profile_shift2,pressure_angle=20, mod, circ_pitch, diam_pitch) =
assert(all_nonnegative([teeth1,teeth2]),"Must give nonnegative values for teeth")
assert(teeth1>0 || teeth2>0, "One of the teeth counts must be nonzero")
let( let(
profile_shift1 = default(profile_shift1, auto_profile_shift(teeth1,pressure_angle,helical1)),
profile_shift2 = default(profile_shift2, auto_profile_shift(teeth2,pressure_angle,helical2)),
mod = module_value(circ_pitch=circ_pitch, diam_pitch=diam_pitch, mod=mod), mod = module_value(circ_pitch=circ_pitch, diam_pitch=diam_pitch, mod=mod),
pa_normal_eff = _working_normal_pressure_angle_skew(teeth1,profile_shift1,helical1,teeth2,profile_shift2,helical2,pressure_angle), pa_normal_eff = _working_normal_pressure_angle_skew(teeth1,profile_shift1,helical1,teeth2,profile_shift2,helical2,pressure_angle),
dist_adj = 0.5*(teeth1/cos(helical1)^3+teeth2/cos(helical2)^3)*(cos(pressure_angle)/cos(pa_normal_eff)-1), dist_adj = 0.5*(teeth1/cos(helical1)^3+teeth2/cos(helical2)^3)*(cos(pressure_angle)/cos(pa_normal_eff)-1)
ff=echo(y=dist_adj,pa_normal_eff)
) )
mod*(teeth1/2/cos(helical1)+teeth2/2/cos(helical2)+dist_adj); mod*(teeth1/2/cos(helical1)+teeth2/2/cos(helical2)+dist_adj);
function _working_normal_pressure_angle_skew(teeth1,profile_shift1,helical1, teeth2, profile_shift2, helical2, pressure_angle) = function _working_normal_pressure_angle_skew(teeth1,profile_shift1,helical1, teeth2, profile_shift2, helical2, pressure_angle) =
let( let(
inv = function(a) tan(a) + a*PI/180, inv = function(a) tan(a) + a*PI/180,
rhs = 2*(profile_shift1+profile_shift2)/(teeth1/cos(helical1)^3+teeth2/cos(helical2)^3)*tan(pressure_angle) + inv(pressure_angle), rhs = 2*(profile_shift1+profile_shift2)/(teeth1/cos(helical1)^3+teeth2/cos(helical2)^3)*tan(pressure_angle) + _invol(pressure_angle),
pa_eff_normal = root_find(function (x) inv(x)-rhs, 5, 75) pa_eff_normal = root_find(function (x) _invol(x)-rhs, 5, 75)
) )
pa_eff_normal; pa_eff_normal;
// Function: gear_skew_angle() // Function: gear_skew_angle()
// Usage: // Usage:
// ang = gear_skew_angle(.... // ang = gear_skew_angle(mod=|diam_pitch=|circ_pitch=, teeth1, teeth2, helical1, helical2, [profile_shift1], [profile_shift2], [pressure_angle=]
// Description: // Description:
// Compute the correct skew angle between the axes of two helical gears. // Compute the correct skew angle between the axes of two profile shifted helical gears. When profile shifting is zero
function gear_skew_angle(mod,teeth1,profile_shift1,helical1,teeth2, profile_shift2,helical2,pressure_angle=20)= // this angle is simply the sum of the helical angles of the two gears.
profile_shift1==0 && profile_shift2==0 ? helical1+helical2
: // Example:
// circ_pitch=5; teeth1=5; teeth2=7; ha1=45; ha2=30; thick=10;
circ_pitch=5; teeth1=10; teeth2=14; ha1=45; ha2=30; thick=10;
d = .4+gear_dist_skew(circ_pitch=circ_pitch, teeth1, teeth2, helical1=ha1, helical2=ha2);//,profile_shift1=0,profile_shift2=0)+2;
d0 = gear_dist_skew(circ_pitch=circ_pitch, teeth1, teeth2, helical1=ha1, helical2=ha2,profile_shift1=0,profile_shift2=0);
echo(d=d,d0);
ang = gear_skew_angle(circ_pitch=circ_pitch, teeth1, teeth2, helical1=ha1, helical2=ha2);
echo(ang=ang);
color_overlaps()
{
// left(d/2) spur_gear(circ_pitch, teeth1, helical=ha1, thickness=thick, gear_spin=-90);
// right(d/2) xrot(ang) spur_gear(circ_pitch, teeth2, helical=ha2, thickness=thick, gear_spin=90-180/teeth2);
left(d/2) spur_gear(circ_pitch, teeth1, helical=ha1, thickness=thick);
right(d/2) xrot(ang) spur_gear(circ_pitch, teeth2, helical=ha2, thickness=thick,gear_spin=180/teeth2);
}
/*
mod=3; teeth1=15; ha1=20; ps1=0.4;
teeth2=24; ha2=30; ps2=0.2;
thick=20;
d = gear_dist_skew(mod=mod, teeth1, teeth2, ha1, ha2, ps1,ps2);
echo(d=d);
ang = gear_skew_angle(mod=mod, teeth1, teeth2, ha1, ha2, ps1, ps2);
echo(ang=ang);
color_overlaps(){
left(d/2) spur_gear(mod=mod, teeth=teeth1, helical=ha1, thickness=thick, gear_spin=-90,profile_shift=ps1);
right(d/2) xrot(ang) spur_gear(mod=mod, teeth=teeth2, helical=ha2, thickness=thick, gear_spin=90-180/teeth2,profile_shift=ps2);
}
*/
function gear_skew_angle(teeth1,teeth2,helical1,helical2,profile_shift1,profile_shift2,pressure_angle=20, mod, circ_pitch, diam_pitch) =
assert(all_nonnegative([teeth1,teeth2]),"Must give nonnegative values for teeth")
assert(teeth1>0 || teeth2>0, "One of the teeth counts must be nonzero")
let( let(
//mod = circular_pitch(pitch, mod, circ_pitch, diam_pitch)/PI, profile_shift1 = default(profile_shift1, auto_profile_shift(teeth1,pressure_angle,helical1)),
a = gear_dist_skew(mod,teeth1,profile_shift1,helical1,teeth2, profile_shift2,helical2,pressure_angle), profile_shift2 = default(profile_shift2, auto_profile_shift(teeth2,pressure_angle,helical2))
,fe=echo(ingsaps=profile_shift1,profile_shift2)
)
// profile_shift1==0 && profile_shift2==0 ? helical1+helical2
// :
let(
mod = module_value(mod=mod, circ_pitch=circ_pitch, diam_pitch=diam_pitch),
a = gear_dist_skew(mod=mod,teeth1,teeth2,helical1,helical2,profile_shift1,profile_shift2,pressure_angle=pressure_angle),
b = gear_dist_skew(mod=mod,teeth1,teeth2,helical1,helical2,0,0,pressure_angle=pressure_angle),
fdase= echo(a=a,b=b),
d1 = 2*pitch_radius(mod=mod,teeth=teeth1,helical=helical1), d1 = 2*pitch_radius(mod=mod,teeth=teeth1,helical=helical1),
d2 = 2*pitch_radius(mod=mod,teeth=teeth2,helical=helical2), d2 = 2*pitch_radius(mod=mod,teeth=teeth2,helical=helical2),
dw1 = 2*a*d1/(d1+d2), dw1 = 2*a*d1/(d1+d2),
@ -2913,8 +3005,6 @@ function gear_skew_angle(mod,teeth1,profile_shift1,helical1,teeth2, profile_shif
beta1+beta2; beta1+beta2;
// Function: get_profile_shift() // Function: get_profile_shift()
// Usage: // Usage:
// total_shift = get_profile_shift(desired,....) // total_shift = get_profile_shift(desired,....)