diff --git a/rounding.scad b/rounding.scad index 03e4b39..c3d7d25 100644 --- a/rounding.scad +++ b/rounding.scad @@ -592,7 +592,7 @@ function _rounding_offsets(edgespec,z_dir=1) = // Function: smooth_path() // Usage: -// smoothed = smooth_path(path, [tangents], , [splinesteps=], [closed=], [uniform=]); +// smoothed = smooth_path(path, [tangents], [size=|relsize=], [splinesteps=], [closed=], [uniform=]); // Description: // Smooths the input path using a cubic spline. Every segment of the path will be replaced by a cubic curve // with `splinesteps` points. The cubic interpolation will pass through every input point on the path @@ -1240,9 +1240,9 @@ module offset_stroke(path, width=1, rounded=true, start, end, check_valid=true, // Function&Module: offset_sweep() // Usage: most common module arguments. See Arguments list below for more. -// offset_sweep(path, , [bottom], [top], [offset=], [convexity=],...) [attachments] +// offset_sweep(path, [height|length|h|l|], [bottom], [top], [offset=], [convexity=],...) {attachments}; // Usage: most common function arguments. See Arguments list below for more. -// vnf = offset_sweep(path, , [bottom], [top], [offset=], ...) +// vnf = offset_sweep(path, [height|h|l|length], [bottom], [top], [offset=], ...); // Description: // Takes a 2d path as input and extrudes it upwards and/or downward. Each layer in the extrusion is produced using `offset()` to expand or shrink the previous layer. When invoked as a function returns a VNF; when invoked as a module produces geometry. // Using the `top` and/or `bottom` arguments you can specify a sequence of offsets values, or you can use several built-in offset profiles that @@ -1507,7 +1507,7 @@ function _struct_valid(spec, func, name) = function offset_sweep( path, height, bottom=[], top=[], - h, l, + h, l, length, offset="round", r=0, steps=16, quality=1, check_valid=true, extra=0, @@ -1560,7 +1560,7 @@ function offset_sweep( bottom_height = len(offsets_bot)==0 ? 0 : abs(last(offsets_bot)[1]) - struct_val(bottom,"extra"), top_height = len(offsets_top)==0 ? 0 : abs(last(offsets_top)[1]) - struct_val(top,"extra"), - height = one_defined([l,h,height], "l,h,height", dflt=u_add(bottom_height,top_height)), + height = one_defined([l,h,height,length], "l,h,height,length", dflt=u_add(bottom_height,top_height)), middle = height-bottom_height-top_height ) assert(height>0, "Height must be positive") @@ -1705,7 +1705,8 @@ function os_mask(mask, out=false, extra,check_valid, quality, offset) = // Module: convex_offset_extrude() -// +// Usage: Basic usage. See below for full options +// convex_offset_extrude(height, [bottom], [top], ...) {2D children}; // Description: // Extrudes 2d children with layers formed from the convex hull of the offset of each child according to a sequence of offset values. // Like `offset_sweep` this module can use built-in offset profiles to provide treatments such as roundovers or chamfers but unlike `offset_sweep()` it @@ -1762,9 +1763,10 @@ function os_mask(mask, out=false, extra,check_valid, quality, offset) = // number of vertices or lead to any special complications. // // Arguments: -// height / l / h = total height (including rounded portions, but not extra sections) of the output. Default: combined height of top and bottom end treatments. -// top = rounding spec for the top end. +// height / length / l / h = total height (including rounded portions, but not extra sections) of the output. Default: combined height of top and bottom end treatments. // bottom = rounding spec for the bottom end +// top = rounding spec for the top end. +// --- // offset = default offset, `"round"`, `"delta"`, or `"chamfer"`. Default: `"round"` // steps = default step count. Default: 16 // extra = default extra height. Default: 0 @@ -1789,8 +1791,9 @@ function os_mask(mask, out=false, extra,check_valid, quality, offset) = // top=os_chamfer(height=1), height=7, $fn=32) // star(5,r=22,ir=13); function convex_offset_extrude( - height, h, l, - top=[], bottom=[], + height, + bottom=[], top=[], + h, l, length, offset="round", r=0, steps=16, extra=0, cut=undef, chamfer_width=undef, chamfer_height=undef, @@ -1798,8 +1801,10 @@ function convex_offset_extrude( convexity=10, thickness = 1/1024 ) = no_function("convex_offset_extrude"); module convex_offset_extrude( - height, h, l, - top=[], bottom=[], + height, + bottom=[], + top=[], + h, l, length, offset="round", r=0, steps=16, extra=0, cut=undef, chamfer_width=undef, chamfer_height=undef, @@ -1831,7 +1836,7 @@ module convex_offset_extrude( bottom_height = len(offsets_bot)==0 ? 0 : abs(last(offsets_bot)[1]) - struct_val(bottom,"extra"); top_height = len(offsets_top)==0 ? 0 : abs(last(offsets_top)[1]) - struct_val(top,"extra"); - height = one_defined([l,h,height], "l,h,height", dflt=u_add(bottom_height,top_height)); + height = one_defined([l,h,height,length], "l,h,height,length", dflt=u_add(bottom_height,top_height)); assert(height>=0, "Height must be nonnegative"); middle = height-bottom_height-top_height; @@ -1932,9 +1937,9 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) = // Function&Module: rounded_prism() // Usage: as a module -// rounded_prism(bottom, [top], , [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=], [convexity=],...) [attachments]; +// rounded_prism(bottom, [top], [height=|h=|length=|l=], [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=], [convexity=],...) {attachments}; // Usage: as a function -// vnf = rounded_prism(bottom, [top], , [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=]); +// vnf = rounded_prism(bottom, [top], [height=|h=|length=|l=], [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=]); // Description: // Construct a generalized prism with continuous curvature rounding. You supply the polygons for the top and bottom of the prism. The only // limitation is that joining the edges must produce a valid polyhedron with coplanar side faces. You specify the rounding by giving @@ -2469,8 +2474,8 @@ Access to the derivative smoothing parameter? // Function&Module: join_prism() // Usage: The two main forms with most common options -// join_prism(polygon, base, length|height|l|h, fillet, [base_T], [scale], [prism_end_T], [short], ...) { ... } -// join_prism(polygon, base, aux, fillet, [base_T], [aux_T], [scale], [prism_end_T], [short], ...) { ... } +// join_prism(polygon, base, length=|height=|l=|h=, fillet=, [base_T=], [scale=], [prism_end_T=], [short=], ...) {attachments}; +// join_prism(polygon, base, aux=, fillet=, [base_T=], [aux_T=], [scale=], [prism_end_T=], [short=], ...) {attachments}; // Usage: As function // vnf = join_prism( ... ); // Description: diff --git a/skin.scad b/skin.scad index 6dd9a69..b3a4aee 100644 --- a/skin.scad +++ b/skin.scad @@ -504,7 +504,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close // Function&Module: linear_sweep() // Usage: -// linear_sweep(region, height, [center], [slices], [twist], [scale], [style], [convexity]) {attachments}; +// linear_sweep(region, [height], [center=], [slices=], [twist=], [scale=], [style=], [convexity=]) {attachments}; // Description: // If called as a module, creates a polyhedron that is the linear extrusion of the given 2D region or polygon. // If called as a function, returns a VNF that can be used to generate a polyhedron of the linear extrusion @@ -518,6 +518,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close // Arguments: // region = The 2D [Region](regions.scad) or polygon that is to be extruded. // height = The height to extrude the region. Default: 1 +// --- // center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the XY plane. Default: `false` // slices = The number of slices to divide the shape into along the Z axis, to allow refinement of detail, especially when working with a twist. Default: `twist/5` // maxseg = If given, then any long segments of the region will be subdivided to be shorter than this length. This can refine twisting flat faces a lot. Default: `undef` (no subsampling) @@ -622,7 +623,7 @@ function linear_sweep(region, height=1, center, twist=0, scale=1, slices, // Function&Module: spiral_sweep() // Usage: -// spiral_sweep(poly, h, r, turns, [higbee], [center], [r1], [r2], [d], [d1], [d2], [higbee1], [higbee2], [internal], [anchor], [spin], [orient]); +// spiral_sweep(poly, h, r, turns, [higbee=], [center=], [r1=], [r2=], [d=], [d1=], [d2=], [higbee1=], [higbee2=], [internal=], [anchor=], [spin=], [orient=]){attachments}; // vnf = spiral_sweep(poly, h, r, turns, ...); // Description: // Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path @@ -1574,7 +1575,7 @@ function _smooth(data,len,closed=false,angle=false) = // Function: rot_resample() // Usage: -// rlist = rot_resample(rotlist, n, [method], [twist], [scale], [smoothlen], [long], [turns], [closed]) +// rlist = rot_resample(rotlist, n, [method=], [twist=], [scale=], [smoothlen=], [long=], [turns=], [closed=]) // Description: // Takes as input a list of rotation matrices in 3d. Produces as output a resampled // list of rotation operators (4x4 matrixes) suitable for use with sweep(). You can optionally apply twist to