mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-08-19 15:01:42 +02:00
Moved path functions from geometry.scad to paths.scad
This commit is contained in:
154
paths.scad
154
paths.scad
@@ -252,6 +252,71 @@ function path_closest_point(path, pt) =
|
||||
) [min_seg, pts[min_seg]];
|
||||
|
||||
|
||||
// Function: path_tangents()
|
||||
// Usage: path_tangents(path, [closed])
|
||||
// Description:
|
||||
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
|
||||
// The returns vectors will be normalized to length 1.
|
||||
function path_tangents(path, closed=false) =
|
||||
assert(is_path(path))
|
||||
[for(t=deriv(path)) normalize(t)];
|
||||
|
||||
|
||||
// Function: path_normals()
|
||||
// Usage: path_normals(path, [tangents], [closed])
|
||||
// Description:
|
||||
// Compute the normal vector to the input path. This vector is perpendicular to the
|
||||
// path tangent and lies in the plane of the curve. When there are collinear points,
|
||||
// the curve does not define a unique plane and the normal is not uniquely defined.
|
||||
function path_normals(path, tangents, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(is_bool(closed))
|
||||
let( tangents = default(tangents, path_tangents(path,closed)) )
|
||||
assert(is_path(tangents))
|
||||
[
|
||||
for(i=idx(path)) let(
|
||||
pts = i==0? (closed? select(path,-1,1) : select(path,0,2)) :
|
||||
i==len(path)-1? (closed? select(path,i-1,i+1) : select(path,i-2,i)) :
|
||||
select(path,i-1,i+1)
|
||||
) normalize(cross(
|
||||
cross(pts[1]-pts[0], pts[2]-pts[0]),
|
||||
tangents[i]
|
||||
))
|
||||
];
|
||||
|
||||
|
||||
// Function: path_curvature()
|
||||
// Usage: path_curvature(path, [closed])
|
||||
// Description:
|
||||
// Numerically estimate the curvature of the path (in any dimension).
|
||||
function path_curvature(path, closed=false) =
|
||||
let(
|
||||
d1 = deriv(path, closed=closed),
|
||||
d2 = deriv2(path, closed=closed)
|
||||
) [
|
||||
for(i=idx(path))
|
||||
sqrt(
|
||||
sqr(norm(d1[i])*norm(d2[i])) -
|
||||
sqr(d1[i]*d2[i])
|
||||
) / pow(norm(d1[i]),3)
|
||||
];
|
||||
|
||||
|
||||
// Function: path_torsion()
|
||||
// Usage: path_torsion(path, [closed])
|
||||
// Description:
|
||||
// Numerically estimate the torsion of a 3d path.
|
||||
function path_torsion(path, closed=false) =
|
||||
let(
|
||||
d1 = deriv(path,closed=closed),
|
||||
d2 = deriv2(path,closed=closed),
|
||||
d3 = deriv3(path,closed=closed)
|
||||
) [
|
||||
for (i=idx(path)) let(
|
||||
crossterm = cross(d1[i],d2[i])
|
||||
) crossterm * d3[i] / sqr(norm(crossterm))
|
||||
];
|
||||
|
||||
|
||||
// Function: path3d_spiral()
|
||||
// Description:
|
||||
@@ -1091,12 +1156,14 @@ function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
||||
// and passing the rounding error forward to the next entry.
|
||||
// This will generally distribute the error in a uniform manner.
|
||||
function _sum_preserving_round(data, index=0) =
|
||||
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
||||
let(
|
||||
newval = round(data[index]),
|
||||
error = newval - data[index]
|
||||
)
|
||||
_sum_preserving_round(list_set(data, [index,index+1], [newval, data[index+1]-error]), index+1);
|
||||
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
||||
let(
|
||||
newval = round(data[index]),
|
||||
error = newval - data[index]
|
||||
) _sum_preserving_round(
|
||||
list_set(data, [index,index+1], [newval, data[index+1]-error]),
|
||||
index+1
|
||||
);
|
||||
|
||||
|
||||
// Function: subdivide_path()
|
||||
@@ -1155,31 +1222,37 @@ function _sum_preserving_round(data, index=0) =
|
||||
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
||||
// place_copies(mypath)sphere(r=.1,$fn=32);
|
||||
function subdivide_path(path, N, closed=true, exact=true, method="length") =
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
||||
let(
|
||||
count = len(path) - (closed?0:1),
|
||||
add_guess =
|
||||
method=="segment" ?
|
||||
(is_list(N) ? assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
||||
add_scalar(N,-1)
|
||||
: replist((N-len(path)) / count, count))
|
||||
: // method=="length"
|
||||
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
||||
let(
|
||||
path_lens = concat([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])],
|
||||
closed?[norm(path[len(path)-1]-path[0])]:[]),
|
||||
add_density = (N - len(path)) / sum(path_lens)
|
||||
)
|
||||
path_lens * add_density,
|
||||
add = exact ? _sum_preserving_round(add_guess) : [for (val=add_guess) round(val)]
|
||||
)
|
||||
concat(
|
||||
[for (i=[0:1:count])
|
||||
each [for(j=[0:1:add[i]]) lerp(path[i],select(path,i+1), j/(add[i]+1))]],
|
||||
closed ? [] : [select(path,-1)]
|
||||
);
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
||||
let(
|
||||
count = len(path) - (closed?0:1),
|
||||
add_guess = method=="segment"? (
|
||||
is_list(N)? (
|
||||
assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
||||
add_scalar(N,-1)
|
||||
) : replist((N-len(path)) / count, count)
|
||||
) : // method=="length"
|
||||
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
||||
let(
|
||||
path_lens = concat(
|
||||
[ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ],
|
||||
closed? [norm(path[len(path)-1]-path[0])] : []
|
||||
),
|
||||
add_density = (N - len(path)) / sum(path_lens)
|
||||
)
|
||||
path_lens * add_density,
|
||||
add = exact? _sum_preserving_round(add_guess) :
|
||||
[for (val=add_guess) round(val)]
|
||||
) concat(
|
||||
[
|
||||
for (i=[0:1:count]) each [
|
||||
for(j=[0:1:add[i]])
|
||||
lerp(path[i],select(path,i+1), j/(add[i]+1))
|
||||
]
|
||||
],
|
||||
closed? [] : [select(path,-1)]
|
||||
);
|
||||
|
||||
|
||||
// Function: path_length_fractions()
|
||||
@@ -1190,14 +1263,17 @@ function subdivide_path(path, N, closed=true, exact=true, method="length") =
|
||||
// will have one extra point because of the final connecting segment that connects the last
|
||||
// point of the path to the first point.
|
||||
function path_length_fractions(path, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
lengths = [0, for(i=[0:1:len(path)-(closed?1:2)]) norm(select(path,i+1)-path[i])],
|
||||
partial_len = cumsum(lengths),
|
||||
total_len = select(partial_len,-1)
|
||||
)
|
||||
partial_len / total_len;
|
||||
assert(is_path(path))
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
lengths = [
|
||||
0,
|
||||
for (i=[0:1:len(path)-(closed?1:2)])
|
||||
norm(select(path,i+1)-path[i])
|
||||
],
|
||||
partial_len = cumsum(lengths),
|
||||
total_len = select(partial_len,-1)
|
||||
) partial_len / total_len;
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user