Quadrupled bezier patch speed.

This commit is contained in:
Revar Desmera 2019-03-30 15:44:36 -07:00
parent b8239d2dde
commit d0595fb132
2 changed files with 177 additions and 39 deletions

View File

@ -241,9 +241,9 @@ function bezier_triangle_point(patch, u, v) =
len(patch) == 1 ? patch[0][0] :
let(
n = len(patch)-1,
Pu = [for(i=[0:n-1]) select(patch[i],1,-1)],
Pv = [for(i=[0:n-1]) select(patch[i],0,-2)],
Pw = select(patch,1,-1)
Pu = [for(i=[0:n-1]) [for (j=[1:len(patch[i])-1]) patch[i][j]]],
Pv = [for(i=[0:n-1]) [for (j=[0:len(patch[i])-2]) patch[i][j]]],
Pw = [for(i=[1:len(patch)-1]) patch[i]]
)
bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v);
@ -254,9 +254,9 @@ function _vertex_list_merge(v1, v2) = concat(v1, [for (v=v2) if (!in_list(v,v1))
function _vertex_list_face(v, face) = [for (pt = face) search([pt], v, num_returns_per_match=1)[0]];
// Function: bezier_patch_vertices_and_faces()
// Function: bezier_patch()
// Usage:
// bezier_patch_vertices_and_faces(patch, [splinesteps], [vertices], [faces]);
// bezier_patch(patch, [splinesteps], [vertices], [faces]);
// Description:
// Calculate vertices and faces for forming a partial polyhedron
// from the given bezier rectangular patch. Returns a list containing
@ -270,30 +270,33 @@ function _vertex_list_face(v, face) = [for (pt = face) search([pt], v, num_retur
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list to add new points to. Default: []
// faces = Face list to add new faces to. Default: []
function bezier_patch_vertices_and_faces(patch, splinesteps=16, vertices=[], faces=[]) =
function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
let(
base = len(vertices),
pts = [for (v=[0:splinesteps], u=[0:splinesteps]) bezier_patch_point(patch, u/splinesteps, v/splinesteps)],
new_vertices = _vertex_list_merge(vertices, pts),
new_vertices = concat(vertices, pts),
new_faces = [
for (
v=[0:splinesteps-1],
u=[0:splinesteps-1],
i=[0,1]
) let (
v1 = u+v*(splinesteps+1),
v1 = u+v*(splinesteps+1) + base,
v2 = v1 + 1,
v3 = v1 + splinesteps + 1,
v4 = v3 + 1,
face = i? [v1,v3,v2] : [v2,v3,v4],
facepts = [for (idx = face) pts[idx]]
) _vertex_list_face(new_vertices, facepts)
face = i? [v1,v3,v2] : [v2,v3,v4]
) face
]
) [new_vertices, concat(faces, new_faces)];
// Function: bezier_triangle_vertices_and_faces()
function _tri_count(n) = (n*(1+n))/2;
// Function: bezier_triangle()
// Usage:
// bezier_triangle_vertices_and_faces(patch, [splinesteps], [vertices], [faces]);
// bezier_triangle(patch, [splinesteps], [vertices], [faces]);
// Description:
// Calculate vertices and faces for forming a partial polyhedron
// from the given bezier triangular patch. Returns a list containing
@ -307,24 +310,40 @@ function bezier_patch_vertices_and_faces(patch, splinesteps=16, vertices=[], fac
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list to add new points to. Default: []
// faces = Face list to add new faces to. Default: []
function bezier_triangle_vertices_and_faces(patch, splinesteps=16, vertices=[], faces=[]) =
// Example(3D):
// tri = [
// [[-50,-33,0], [-25,16,-50], [0,66,0]],
// [[0,-33,-50], [25,16,-50]],
// [[50,-33,0]]
// ];
// vnf = bezier_triangle(tri, splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
function bezier_triangle(patch, splinesteps=16, vertices=[], faces=[]) =
let(
pts = [for (u=[0:splinesteps], v=[0:splinesteps-u]) bezier_triangle_point(patch, u/splinesteps, v/splinesteps)],
new_vertices = _vertex_list_merge(vertices, pts),
base = len(vertices),
pts = [
for (
u=[0:splinesteps],
v=[0:splinesteps-u]
) bezier_triangle_point(patch, u/splinesteps, v/splinesteps)
],
new_vertices = concat(vertices, pts),
patchlen = len(patch),
tricnt = _tri_count(splinesteps+1),
new_faces = [
for (
u=[0:splinesteps-1],
v=[0:splinesteps-u-1]
) let (
v1 = bezier_triangle_point(patch, u/splinesteps, v/splinesteps),
v2 = bezier_triangle_point(patch, (u+1)/splinesteps, v/splinesteps),
v3 = bezier_triangle_point(patch, u/splinesteps, (v+1)/splinesteps),
v4 = bezier_triangle_point(patch, (u+1)/splinesteps, (v+1)/splinesteps),
v1 = v + (tricnt - _tri_count(splinesteps+1-u)) + base,
v2 = v1 + 1,
v3 = v + (tricnt - _tri_count(splinesteps-u)) + base,
v4 = v3 + 1,
allfaces = concat(
[[v1,v2,v3]],
((u<splinesteps-1 && v<splinesteps-u-1)? [[v2,v4,v3]] : [])
)
) for (facepts=allfaces) _vertex_list_face(new_vertices, facepts)
) for (face=allfaces) face
]
) [new_vertices, concat(faces, new_faces)];
@ -436,7 +455,7 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
// polyhedron.
// Arguments:
// patches = A list of rectangular bezier patches.
// tripatches = A list of triangular bezier patches.
// tris = A list of triangular bezier patches.
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list to add new points to. Default: []
// faces = Face list to add new faces to. Default: []
@ -455,14 +474,14 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
// ];
// vnf = bezier_surface_vertices_and_faces(patches=[patch1, patch2], splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
function bezier_surface_vertices_and_faces(patches=[], tripatches=[], splinesteps=16, i=0, vertices=[], faces=[]) =
function bezier_surface_vertices_and_faces(patches=[], tris=[], splinesteps=16, i=0, vertices=[], faces=[]) =
let(
vnf = (i >= len(patches))? [vertices, faces] :
bezier_patch_vertices_and_faces(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces),
vnf2 = (i >= len(tripatches))? vnf :
bezier_triangle_vertices_and_faces(tripatches[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1])
) (i >= len(patches) && i >= len(tripatches))? vnf2 :
bezier_surface_vertices_and_faces(patches=patches, tripatches=tripatches, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]);
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces),
vnf2 = (i >= len(tris))? vnf :
bezier_triangle(tris[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1])
) (i >= len(patches) && i >= len(tris))? vnf2 :
bezier_surface_vertices_and_faces(patches=patches, tris=tris, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]);
@ -926,7 +945,7 @@ module trace_bezier(bez, N=3, size=1) {
// Takes a list of two or more bezier patches and attempts to make a complete polyhedron from them.
// Arguments:
// patches = A list of rectangular bezier patches.
// tripatches = A list of triangular bezier patches.
// tris = A list of triangular bezier patches.
// vertices = Vertex list for additional non-bezier faces. Default: []
// faces = Additional non-bezier faces. Default: []
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
@ -944,9 +963,9 @@ module trace_bezier(bez, N=3, size=1) {
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// ];
// bezier_polyhedron([patch1, patch2], splinesteps=8);
module bezier_polyhedron(patches=[], tripatches=[], splinesteps=16, vertices=[], faces=[])
module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces=[])
{
sfc = bezier_surface_vertices_and_faces(patches=patches, tripatches=tripatches, splinesteps=splinesteps, vertices=vertices, faces=faces);
sfc = bezier_surface_vertices_and_faces(patches=patches, tris=tris, splinesteps=splinesteps, vertices=vertices, faces=faces);
polyhedron(points=sfc[0], faces=sfc[1]);
}
@ -955,13 +974,13 @@ module bezier_polyhedron(patches=[], tripatches=[], splinesteps=16, vertices=[],
// Module: trace_bezier_patches()
// Usage:
// trace_bezier_patches(patches, [size], [showcps], [splinesteps]);
// trace_bezier_patches(tripatches, [size], [showcps], [splinesteps]);
// trace_bezier_patches(patches, tripatches, [size], [showcps], [splinesteps]);
// trace_bezier_patches(tris, [size], [showcps], [splinesteps]);
// trace_bezier_patches(patches, tris, [size], [showcps], [splinesteps]);
// Description:
// Shows the surface, and optionally, control points of a list of bezier patches.
// Arguments:
// patches = A list of rectangular bezier patches.
// tripatches = A list of triangular bezier patches.
// tris = A list of triangular bezier patches.
// splinesteps = Number of steps to divide each bezier segment into. default=16
// showcps = If true, show the controlpoints as well as the surface.
// size = Size to show control points and lines.
@ -979,7 +998,7 @@ module bezier_polyhedron(patches=[], tripatches=[], splinesteps=16, vertices=[],
// [[15,85,0], [33,100, 0], [ 67,100, 0], [ 85, 85,0]],
// ];
// trace_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true);
module trace_bezier_patches(patches=[], tripatches=[], size=1, showcps=false, splinesteps=16)
module trace_bezier_patches(patches=[], tris=[], size=1, showcps=false, splinesteps=16)
{
if (showcps) {
for (patch = patches) {
@ -989,9 +1008,10 @@ module trace_bezier_patches(patches=[], tripatches=[], size=1, showcps=false, sp
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
}
vnf = bezier_patch_vertices_and_faces(patch, splinesteps=splinesteps);
vnf = bezier_patch(patch, splinesteps=splinesteps);
color("blue") place_copies(vnf[0]) sphere(d=size);
}
for (patch = tripatches) {
for (patch = tris) {
place_copies(flatten(patch)) color("red") sphere(d=size*2);
color("cyan")
for (i=[0:len(patch)-2], j=[0:len(patch[i])-2]) {
@ -999,10 +1019,11 @@ module trace_bezier_patches(patches=[], tripatches=[], size=1, showcps=false, sp
extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
extrude_from_to(patch[i+1][j], patch[i][j+1]) circle(d=size);
}
vnf = bezier_triangle_vertices_and_faces(patch, splinesteps=splinesteps);
vnf = bezier_triangle(patch, splinesteps=splinesteps);
color("blue") place_copies(vnf[0]) sphere(d=size);
}
}
bezier_polyhedron(patches=patches, tripatches=tripatches, splinesteps=splinesteps);
bezier_polyhedron(patches=patches, tris=tris, splinesteps=splinesteps);
}

View File

@ -0,0 +1,117 @@
include <BOSL/constants.scad>
use <BOSL/transforms.scad>
use <BOSL/beziers.scad>
use <BOSL/math.scad>
function CR_corner(size, orient=[0,0,0], trans=[0,0,0]) =
let (
r = 0.4,
k = r/2,
// I know this patch is not yet correct for continuous
// rounding, but it's a first approximation proof of concept.
// Currently this is a degree 4 triangular patch.
patch = [
[[1,1,0], [1,r,0], [1,0,0], [1,0,r], [1,0,1]],
[[r,1,0], [k,k,0], [k,0,k], [r,0,1]],
[[0,1,0], [0,k,k], [0,0,1]],
[[0,1,r], [0,r,1]],
[[0,1,1]]
]
) [for (row=patch)
translate_points(v=trans,
rotate_points3d(v=orient,
scale_points(v=size, row)
)
)
];
function CR_edge(size, orient=[0,0,0], trans=[0,0,0]) =
let (
r = 0.4,
a = -1/2,
b = -1/4,
c = 1/4,
d = 1/2,
// I know this patch is not yet correct for continuous
// rounding, but it's a first approximation proof of concept.
// Currently this is a degree 4 rectangular patch.
patch = [
[[1,0,a], [1,0,b], [1,0,0], [1,0,c], [1,0,d]],
[[r,0,a], [r,0,b], [r,0,0], [r,0,c], [r,0,d]],
[[0,0,a], [0,0,b], [0,0,0], [0,0,c], [0,0,d]],
[[0,r,a], [0,r,b], [0,r,0], [0,r,c], [0,r,d]],
[[0,1,a], [0,1,b], [0,1,0], [0,1,c], [0,1,d]]
]
) [for (row=patch)
translate_points(v=trans,
rotate_points3d(v=orient,
scale_points(v=size, row)
)
)
];
module CR_cube(size=[100,100,100], r=10, splinesteps=8, cheat=false)
{
s = size-2*[r,r,r];
h = size/2;
corners = [
CR_corner([r,r,r], orient=ORIENT_Z, trans=[-size.x/2, -size.y/2, -size.z/2]),
CR_corner([r,r,r], orient=ORIENT_Z_90, trans=[ size.x/2, -size.y/2, -size.z/2]),
CR_corner([r,r,r], orient=ORIENT_Z_180, trans=[ size.x/2, size.y/2, -size.z/2]),
CR_corner([r,r,r], orient=ORIENT_Z_270, trans=[-size.x/2, size.y/2, -size.z/2]),
CR_corner([r,r,r], orient=ORIENT_ZNEG, trans=[ size.x/2, -size.y/2, size.z/2]),
CR_corner([r,r,r], orient=ORIENT_ZNEG_90, trans=[-size.x/2, -size.y/2, size.z/2]),
CR_corner([r,r,r], orient=ORIENT_ZNEG_180, trans=[-size.x/2, size.y/2, size.z/2]),
CR_corner([r,r,r], orient=ORIENT_ZNEG_270, trans=[ size.x/2, size.y/2, size.z/2])
];
edges = [
CR_edge([r, r, s.x], orient=ORIENT_X, trans=[ 0, -h.y, -h.z]),
CR_edge([r, r, s.x], orient=ORIENT_X_90, trans=[ 0, h.y, -h.z]),
CR_edge([r, r, s.x], orient=ORIENT_X_180, trans=[ 0, h.y, h.z]),
CR_edge([r, r, s.x], orient=ORIENT_X_270, trans=[ 0, -h.y, h.z]),
CR_edge([r, r, s.y], orient=ORIENT_Y, trans=[ h.x, 0, -h.z]),
CR_edge([r, r, s.y], orient=ORIENT_Y_90, trans=[-h.x, 0, -h.z]),
CR_edge([r, r, s.y], orient=ORIENT_Y_180, trans=[-h.x, 0, h.z]),
CR_edge([r, r, s.y], orient=ORIENT_Y_270, trans=[ h.x, 0, h.z]),
CR_edge([r, r, s.z], orient=ORIENT_Z, trans=[-h.x, -h.y, 0]),
CR_edge([r, r, s.z], orient=ORIENT_Z_90, trans=[ h.x, -h.y, 0]),
CR_edge([r, r, s.z], orient=ORIENT_Z_180, trans=[ h.x, h.y, 0]),
CR_edge([r, r, s.z], orient=ORIENT_Z_270, trans=[-h.x, h.y, 0])
];
faces = [
// Yes, these are degree 1 bezier patches. That means just the four corner points.
// Since these are flat, it doesn't matter what degree they are, and this will reduce calculation overhead.
bezier_patch_flat([s.y, s.z], N=1, orient=ORIENT_X, trans=[ h.x, 0, 0]),
bezier_patch_flat([s.y, s.z], N=1, orient=ORIENT_XNEG, trans=[-h.x, 0, 0]),
bezier_patch_flat([s.x, s.z], N=1, orient=ORIENT_Y, trans=[ 0, h.y, 0]),
bezier_patch_flat([s.x, s.z], N=1, orient=ORIENT_YNEG, trans=[ 0, -h.y, 0]),
bezier_patch_flat([s.x, s.y], N=1, orient=ORIENT_Z, trans=[ 0, 0, h.z]),
bezier_patch_flat([s.x, s.y], N=1, orient=ORIENT_ZNEG, trans=[ 0, 0, -h.z])
];
// Generating all the patches above took about 0.05 secs.
if (cheat) {
// Generating the points for the corners takes 5 seconds on my weak-sauce laptop.
// Hulling it takes less than a second.
hull() bezier_polyhedron(tris=corners, splinesteps=splinesteps);
} else {
// Generating the polyhedron fully from bezier patches takes 12 seconds on my laptop.
bezier_polyhedron(patches=concat(edges, faces), tris=corners, splinesteps=splinesteps);
}
}
CR_cube(size=[100,100,100], r=20, splinesteps=16, cheat=false);
cube(1);
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap