mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Extend convolve and deltas; do minor doc corrections
This commit is contained in:
parent
b924eaa303
commit
d18f558c1a
@ -237,7 +237,7 @@ function project_plane(plane,p) =
|
|||||||
let(plane = plane_from_points(plane))
|
let(plane = plane_from_points(plane))
|
||||||
assert(is_def(plane), "Point list is not coplanar")
|
assert(is_def(plane), "Point list is not coplanar")
|
||||||
project_plane(plane)
|
project_plane(plane)
|
||||||
: assert(is_def(p), str("Invalid plane specification",plane))
|
: assert(is_def(p), str("Invalid plane specification: ",plane))
|
||||||
is_vnf(p) ? [project_plane(plane,p[0]), p[1]]
|
is_vnf(p) ? [project_plane(plane,p[0]), p[1]]
|
||||||
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
|
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
|
||||||
[for(plist=p) project_plane(plane,plist)]
|
[for(plist=p) project_plane(plane,plist)]
|
||||||
|
@ -34,7 +34,7 @@ module move_copies(a=[[0,0,0]])
|
|||||||
assert(is_list(a));
|
assert(is_list(a));
|
||||||
for ($idx = idx(a)) {
|
for ($idx = idx(a)) {
|
||||||
$pos = a[$idx];
|
$pos = a[$idx];
|
||||||
assert(is_vector($pos));
|
assert(is_vector($pos),"move_copies offsets should be a 2d or 3d vector.");
|
||||||
translate($pos) children();
|
translate($pos) children();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
38
math.scad
38
math.scad
@ -640,17 +640,19 @@ function sum_of_sines(a, sines) =
|
|||||||
// Usage:
|
// Usage:
|
||||||
// delts = deltas(v);
|
// delts = deltas(v);
|
||||||
// Description:
|
// Description:
|
||||||
// Returns a list with the deltas of adjacent entries in the given list.
|
// Returns a list with the deltas of adjacent entries in the given list, optionally wrapping back to the front.
|
||||||
// The list should be a consistent list of numeric components (numbers, vectors, matrix, etc).
|
// The list should be a consistent list of numeric components (numbers, vectors, matrix, etc).
|
||||||
// Given [a,b,c,d], returns [b-a,c-b,d-c].
|
// Given [a,b,c,d], returns [b-a,c-b,d-c].
|
||||||
|
//
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// v = The list to get the deltas of.
|
// v = The list to get the deltas of.
|
||||||
|
// wrap = If true, wrap back to the start from the end. ie: return the difference between the last and first items as the last delta. Default: false
|
||||||
// Example:
|
// Example:
|
||||||
// deltas([2,5,9,17]); // returns [3,4,8].
|
// deltas([2,5,9,17]); // returns [3,4,8].
|
||||||
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
|
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
|
||||||
function deltas(v) =
|
function deltas(v, wrap=false) =
|
||||||
assert( is_consistent(v) && len(v)>1 , "Inconsistent list or with length<=1.")
|
assert( is_consistent(v) && len(v)>1 , "Inconsistent list or with length<=1.")
|
||||||
[for (p=pair(v)) p[1]-p[0]] ;
|
[for (p=pair(v,wrap)) p[1]-p[0]] ;
|
||||||
|
|
||||||
|
|
||||||
// Function: product()
|
// Function: product()
|
||||||
@ -771,21 +773,31 @@ function _med3(a,b,c) =
|
|||||||
// Usage:
|
// Usage:
|
||||||
// x = convolve(p,q);
|
// x = convolve(p,q);
|
||||||
// Description:
|
// Description:
|
||||||
// Given two vectors, finds the convolution of them.
|
// Given two vectors, or one vector and a path or
|
||||||
// The length of the returned vector is len(p)+len(q)-1 .
|
// two paths of the same dimension, finds the convolution of them.
|
||||||
|
// If both parameter are vectors, returns the vector convolution.
|
||||||
|
// If one parameter is a vector and the other a path,
|
||||||
|
// convolves using products by scalars and returns a path.
|
||||||
|
// If both parameters are paths, convolve using scalar products
|
||||||
|
// and returns a vector.
|
||||||
|
// The returned vector or path has length len(p)+len(q)-1.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// p = The first vector.
|
// p = The first vector or path.
|
||||||
// q = The second vector.
|
// q = The second vector or path.
|
||||||
// Example:
|
// Example:
|
||||||
// a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1]
|
// a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1]
|
||||||
// b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3]
|
// b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3]
|
||||||
|
// c = convolve([[1,1],[2,2],[3,1]],[1,2,1])); // Returns: [[1,1],[4,4],[8,6],[8,4],[3,1]]
|
||||||
|
// d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns: [3,9,11,7]
|
||||||
function convolve(p,q) =
|
function convolve(p,q) =
|
||||||
p==[] || q==[] ? [] :
|
p==[] || q==[] ? [] :
|
||||||
assert( is_vector(p) && is_vector(q), "The inputs should be vectors.")
|
assert( (is_vector(p) || is_matrix(p))
|
||||||
|
&& ( is_vector(q) || (is_matrix(q) && ( !is_vector(p[0]) || (len(p[0])==len(q[0])) ) ) ) ,
|
||||||
|
"The inputs should be vectors or paths all of the same dimension.")
|
||||||
let( n = len(p),
|
let( n = len(p),
|
||||||
m = len(q))
|
m = len(q))
|
||||||
[for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
|
[for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
|
||||||
[for(j=[k1:k2]) p[i-j] ] * [for(j=[k1:k2]) q[j] ]
|
sum([for(j=[k1:k2]) p[i-j]*q[j] ])
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
@ -1694,7 +1706,7 @@ function polynomial(p,z,k,total) =
|
|||||||
// x = polymult(p,q)
|
// x = polymult(p,q)
|
||||||
// x = polymult([p1,p2,p3,...])
|
// x = polymult([p1,p2,p3,...])
|
||||||
// Description:
|
// Description:
|
||||||
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
// Given a list of polynomials represented as real algebraic coefficient lists, with the highest degree coefficient first,
|
||||||
// computes the coefficient list of the product polynomial.
|
// computes the coefficient list of the product polynomial.
|
||||||
function poly_mult(p,q) =
|
function poly_mult(p,q) =
|
||||||
is_undef(q) ?
|
is_undef(q) ?
|
||||||
@ -1714,8 +1726,8 @@ function poly_mult(p,q) =
|
|||||||
// Description:
|
// Description:
|
||||||
// Computes division of the numerator polynomial by the denominator polynomial and returns
|
// Computes division of the numerator polynomial by the denominator polynomial and returns
|
||||||
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
|
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
|
||||||
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
|
// the zero polynomial [0] is returned for the remainder. Similarly if the quotient is zero
|
||||||
// the returned quotient will be [].
|
// the returned quotient will be [0].
|
||||||
function poly_div(n,d) =
|
function poly_div(n,d) =
|
||||||
assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
|
assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
|
||||||
let( d = _poly_trim(d),
|
let( d = _poly_trim(d),
|
||||||
@ -1740,7 +1752,7 @@ function _poly_div(n,d,q) =
|
|||||||
/// _poly_trim(p,[eps])
|
/// _poly_trim(p,[eps])
|
||||||
/// Description:
|
/// Description:
|
||||||
/// Removes leading zero terms of a polynomial. By default zeros must be exact,
|
/// Removes leading zero terms of a polynomial. By default zeros must be exact,
|
||||||
/// or give epsilon for approximate zeros.
|
/// or give epsilon for approximate zeros. Returns [0] for a zero polynomial.
|
||||||
function _poly_trim(p,eps=0) =
|
function _poly_trim(p,eps=0) =
|
||||||
let( nz = [for(i=[0:1:len(p)-1]) if ( !approx(p[i],0,eps)) i])
|
let( nz = [for(i=[0:1:len(p)-1]) if ( !approx(p[i],0,eps)) i])
|
||||||
len(nz)==0 ? [0] : list_tail(p,nz[0]);
|
len(nz)==0 ? [0] : list_tail(p,nz[0]);
|
||||||
|
@ -997,7 +997,7 @@ module jittered_poly(path, dist=1/512) {
|
|||||||
|
|
||||||
// Module: extrude_from_to()
|
// Module: extrude_from_to()
|
||||||
// Description:
|
// Description:
|
||||||
// Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
|
// Extrudes a 2D shape between the 3d points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// pt1 = starting point of extrusion.
|
// pt1 = starting point of extrusion.
|
||||||
// pt2 = ending point of extrusion.
|
// pt2 = ending point of extrusion.
|
||||||
@ -1010,6 +1010,7 @@ module jittered_poly(path, dist=1/512) {
|
|||||||
// xcopies(3) circle(3, $fn=32);
|
// xcopies(3) circle(3, $fn=32);
|
||||||
// }
|
// }
|
||||||
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
|
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
|
||||||
|
assert( is_path([pt1,pt2],3), "The points should be 3d points");
|
||||||
rtp = xyz_to_spherical(pt2-pt1);
|
rtp = xyz_to_spherical(pt2-pt1);
|
||||||
translate(pt1) {
|
translate(pt1) {
|
||||||
rotate([0, rtp[2], rtp[1]]) {
|
rotate([0, rtp[2], rtp[1]]) {
|
||||||
|
Loading…
x
Reference in New Issue
Block a user