Merge pull request #696 from adrianVmariano/master

vnf cleanup
This commit is contained in:
Revar Desmera 2021-10-15 20:52:30 -07:00 committed by GitHub
commit d8760681a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 551 additions and 503 deletions

View File

@ -53,6 +53,150 @@ function _same_type(a,b, depth) =
&& []==[for(i=idx(a)) if( ! _same_type(a[i],b[i],depth-1) ) 0] );
// Function: list_shortest()
// Usage:
// llen = list_shortest(array);
// Topics: List Handling
// See Also: list_longest()
// Description:
// Returns the length of the shortest sublist in a list of lists.
// Arguments:
// array = A list of lists.
// Example:
// slen = list_shortest([[3,4,5],[6,7,8,9]]); // Returns: 3
function list_shortest(array) =
assert(is_list(array), "Invalid input." )
min([for (v = array) len(v)]);
// Function: list_longest()
// Usage:
// llen = list_longest(array);
// Topics: List Handling
// See Also: list_shortest()
// Description:
// Returns the length of the longest sublist in a list of lists.
// Arguments:
// array = A list of lists.
// Example:
// llen = list_longest([[3,4,5],[6,7,8,9]]); // Returns: 4
function list_longest(array) =
assert(is_list(array), "Invalid input." )
max([for (v = array) len(v)]);
// Function: in_list()
// Usage:
// bool = in_list(val, list, [idx]);
// Topics: List Handling
// Description:
// Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
// Arguments:
// val = The simple value to search for.
// list = The list to search.
// idx = If given, searches the given columns for matches for `val`.
// Example:
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
function in_list(val,list,idx) =
assert( is_list(list) && (is_undef(idx) || is_finite(idx)),
"Invalid input." )
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
s==[] || s==[[]] ? false
: is_undef(idx) ? val==list[s]
: val==list[s][idx];
// Function: find_first_match()
// Topics: List Handling
// See Also: in_list()
// Usage:
// idx = find_first_match(val, list, [start=], [eps=]);
// indices = find_first_match(val, list, all=true, [start=], [eps=]);
// Description:
// Finds the first item in `list` that matches `val`, returning the index.
// Arguments:
// val = The value to search for. If given a function literal of signature `function (x)`, uses that function to check list items. Returns true for a match.
// list = The list to search through.
// ---
// start = The index to start searching from.
// all = If true, returns a list of all matching item indices.
// eps = The maximum allowed floating point rounding error for numeric comparisons.
function find_first_match(val, list, start=0, all=false, eps=EPSILON) =
all? [
for (i=[start:1:len(list)-1])
if (
(!is_func(val) && approx(val, list[i], eps=eps)) ||
(is_func(val) && val(list[i]))
) i
] :
__find_first_match(val, list, eps=eps, i=start);
function __find_first_match(val, list, eps, i=0) =
i >= len(list)? undef :
(
(!is_func(val) && approx(val, list[i], eps=eps)) ||
(is_func(val) && val(list[i]))
)? i : __find_first_match(val, list, eps=eps, i=i+1);
// Function: list_increasing()
// Usage:
// bool = list_increasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), list_decreasing()
// Description:
// Returns true if the list is (non-strictly) increasing
// Example:
// a = list_increasing([1,2,3,4]); // Returns: true
// b = list_increasing([1,3,2,4]); // Returns: false
// c = list_increasing([4,3,2,1]); // Returns: false
function list_increasing(list) =
assert(is_list(list)||is_string(list))
len([for (p=pair(list)) if(p.x>p.y) true])==0;
// Function: list_decreasing()
// Usage:
// bool = list_decreasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), list_increasing()
// Description:
// Returns true if the list is (non-strictly) decreasing
// Example:
// a = list_decreasing([1,2,3,4]); // Returns: false
// b = list_decreasing([4,2,3,1]); // Returns: false
// c = list_decreasing([4,3,2,1]); // Returns: true
function list_decreasing(list) =
assert(is_list(list)||is_string(list))
len([for (p=pair(list)) if(p.x<p.y) true])==0;
// Function: add_scalar()
// Usage:
// v = add_scalar(v, s);
// Topics: List Handling
// Description:
// Given a list and a scalar, returns the list with the scalar added to each item in it.
// If given a list of arrays, recursively adds the scalar to the each array.
// Arguments:
// v = The initial array.
// s = A scalar value to add to every item in the array.
// Example:
// a = add_scalar([1,2,3],3); // Returns: [4,5,6]
// b = add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar(v,s) =
is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v;
// Section: List Indexing
// Function: select()
// Topics: List Handling
// Description:
@ -70,7 +214,7 @@ function _same_type(a,b, depth) =
// list = The list to get the portion of.
// start = Either the index of the first item or an index range or a list of indices.
// end = The index of the last item when `start` is a number. When `start` is a list or a range, `end` should not be given.
// See Also: slice(), subindex(), last()
// See Also: slice(), columns(), last()
// Example:
// l = [3,4,5,6,7,8,9];
// a = select(l, 5, 6); // Returns [8,9]
@ -111,7 +255,7 @@ function select(list, start, end) =
// list = The list to get the slice of.
// s = The index of the first item to return.
// e = The index of the last item to return.
// See Also: select(), subindex(), last()
// See Also: select(), columns(), last()
// Example:
// a = slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7,8]
// b = slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9]
@ -136,7 +280,7 @@ function slice(list,s=0,e=-1) =
// Usage:
// item = last(list);
// Topics: List Handling
// See Also: select(), slice(), subindex()
// See Also: select(), slice(), columns()
// Description:
// Returns the last element of a list, or undef if empty.
// Arguments:
@ -203,6 +347,32 @@ function list_tail(list, from=1) =
list;
// Function: bselect()
// Usage:
// array = bselect(array, index);
// Topics: List Handling
// See Also: list_bset()
// Description:
// Returns the items in `array` whose matching element in `index` is true.
// Arguments:
// array = Initial list to extract items from.
// index = List of booleans.
// Example:
// a = bselect([3,4,5,6,7], [false,true,true,false,true]); // Returns: [4,5,7]
function bselect(array,index) =
assert(is_list(array)||is_string(array), "Improper array." )
assert(is_list(index) && len(index)>=len(array) , "Improper index list." )
is_string(array)? str_join(bselect( [for (x=array) x], index)) :
[for(i=[0:len(array)-1]) if (index[i]) array[i]];
// Section: List Construction
// Function: list()
// Topics: List Handling, Type Conversion
// Usage:
@ -246,155 +416,6 @@ function force_list(value, n=1, fill) =
is_undef(fill)? [for (i=[1:1:n]) value] : [value, for (i=[2:1:n]) fill];
// Function: add_scalar()
// Usage:
// v = add_scalar(v, s);
// Topics: List Handling
// Description:
// Given a list and a scalar, returns the list with the scalar added to each item in it.
// If given a list of arrays, recursively adds the scalar to the each array.
// Arguments:
// v = The initial array.
// s = A scalar value to add to every item in the array.
// Example:
// a = add_scalar([1,2,3],3); // Returns: [4,5,6]
// b = add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar(v,s) =
is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v;
// Function: in_list()
// Usage:
// bool = in_list(val, list, [idx]);
// Topics: List Handling
// Description:
// Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
// Arguments:
// val = The simple value to search for.
// list = The list to search.
// idx = If given, searches the given subindex for matches for `val`.
// Example:
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
function in_list(val,list,idx) =
assert( is_list(list) && (is_undef(idx) || is_finite(idx)),
"Invalid input." )
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
s==[] || s==[[]] ? false
: is_undef(idx) ? val==list[s]
: val==list[s][idx];
// Function: find_first_match()
// Topics: List Handling
// See Also: in_list()
// Usage:
// idx = find_first_match(val, list, [start=], [eps=]);
// indices = find_first_match(val, list, all=true, [start=], [eps=]);
// Description:
// Finds the first item in `list` that matches `val`, returning the index.
// Arguments:
// val = The value to search for. If given a function literal of signature `function (x)`, uses that function to check list items. Returns true for a match.
// list = The list to search through.
// ---
// start = The index to start searching from.
// all = If true, returns a list of all matching item indices.
// eps = The maximum allowed floating point rounding error for numeric comparisons.
function find_first_match(val, list, start=0, all=false, eps=EPSILON) =
all? [
for (i=[start:1:len(list)-1])
if (
(!is_func(val) && approx(val, list[i], eps=eps)) ||
(is_func(val) && val(list[i]))
) i
] :
__find_first_match(val, list, eps=eps, i=start);
function __find_first_match(val, list, eps, i=0) =
i >= len(list)? undef :
(
(!is_func(val) && approx(val, list[i], eps=eps)) ||
(is_func(val) && val(list[i]))
)? i : __find_first_match(val, list, eps=eps, i=i+1);
// Function: min_index()
// Usage:
// idx = min_index(vals);
// idxlist = min_index(vals, all=true);
// Topics: List Handling
// See Also: max_index(), list_increasing(), list_decreasing()
// Description:
// Returns the index of the first occurrence of the minimum value in the given list.
// If `all` is true then returns a list of all indices where the minimum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the minimum. Default: false
// Example:
// a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8
// b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7]
function min_index(vals, all=false) =
assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.")
all ? search(min(vals),vals,0) : search(min(vals), vals)[0];
// Function: max_index()
// Usage:
// idx = max_index(vals);
// idxlist = max_index(vals, all=true);
// Topics: List Handling
// See Also: min_index(), list_increasing(), list_decreasing()
// Description:
// Returns the index of the first occurrence of the maximum value in the given list.
// If `all` is true then returns a list of all indices where the maximum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the maximum. Default: false
// Example:
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
function max_index(vals, all=false) =
assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.")
all ? search(max(vals),vals,0) : search(max(vals), vals)[0];
// Function: list_increasing()
// Usage:
// bool = list_increasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), list_decreasing()
// Description:
// Returns true if the list is (non-strictly) increasing
// Example:
// a = list_increasing([1,2,3,4]); // Returns: true
// b = list_increasing([1,3,2,4]); // Returns: false
// c = list_increasing([4,3,2,1]); // Returns: false
function list_increasing(list) =
assert(is_list(list)||is_string(list))
len([for (p=pair(list)) if(p.x>p.y) true])==0;
// Function: list_decreasing()
// Usage:
// bool = list_decreasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), list_increasing()
// Description:
// Returns true if the list is (non-strictly) decreasing
// Example:
// a = list_decreasing([1,2,3,4]); // Returns: false
// b = list_decreasing([4,2,3,1]); // Returns: false
// c = list_decreasing([4,3,2,1]); // Returns: true
function list_decreasing(list) =
assert(is_list(list)||is_string(list))
len([for (p=pair(list)) if(p.x<p.y) true])==0;
// Section: Basic List Generation
// Function: repeat()
// Usage:
// list = repeat(val, n);
@ -442,7 +463,38 @@ function count(n,s=0,step=1,reverse=false) = let(n=is_list(n) ? len(n) : n)
// Section: List Manipulation
// Function: list_bset()
// Usage:
// arr = list_bset(indexset, valuelist, [dflt]);
// Topics: List Handling
// See Also: bselect()
// Description:
// Opposite of `bselect()`. Returns a list the same length as `indexlist`, where each item will
// either be 0 if the corresponding item in `indexset` is false, or the next sequential value
// from `valuelist` if the item is true. The number of `true` values in `indexset` must be equal
// to the length of `valuelist`.
// Arguments:
// indexset = A list of boolean values.
// valuelist = The list of values to set into the returned list.
// dflt = Default value to store when the indexset item is false.
// Example:
// a = list_bset([false,true,false,true,false], [3,4]); // Returns: [0,3,0,4,0]
// b = list_bset([false,true,false,true,false], [3,4], dflt=1); // Returns: [1,3,1,4,1]
function list_bset(indexset, valuelist, dflt=0) =
assert(is_list(indexset), "The index set is not a list." )
assert(is_list(valuelist), "The `valuelist` is not a list." )
let( trueind = search([true], indexset,0)[0] )
assert( !(len(trueind)>len(valuelist)), str("List `valuelist` too short; its length should be ",len(trueind)) )
assert( !(len(trueind)<len(valuelist)), str("List `valuelist` too long; its length should be ",len(trueind)) )
concat(
list_set([],trueind, valuelist, dflt=dflt), // Fill in all of the values
repeat(dflt,len(indexset)-max(trueind)-1) // Add trailing values so length matches indexset
);
// Section: List Modification
// Function: reverse()
// Usage:
@ -756,87 +808,9 @@ function list_remove_values(list,values=[],all=false) =
) list_remove(list,uidxs);
// Function: bselect()
// Usage:
// array = bselect(array, index);
// Topics: List Handling
// See Also: list_bset()
// Description:
// Returns the items in `array` whose matching element in `index` is true.
// Arguments:
// array = Initial list to extract items from.
// index = List of booleans.
// Example:
// a = bselect([3,4,5,6,7], [false,true,true,false,true]); // Returns: [4,5,7]
function bselect(array,index) =
assert(is_list(array)||is_string(array), "Improper array." )
assert(is_list(index) && len(index)>=len(array) , "Improper index list." )
is_string(array)? str_join(bselect( [for (x=array) x], index)) :
[for(i=[0:len(array)-1]) if (index[i]) array[i]];
// Function: list_bset()
// Usage:
// arr = list_bset(indexset, valuelist, [dflt]);
// Topics: List Handling
// See Also: bselect()
// Description:
// Opposite of `bselect()`. Returns a list the same length as `indexlist`, where each item will
// either be 0 if the corresponding item in `indexset` is false, or the next sequential value
// from `valuelist` if the item is true. The number of `true` values in `indexset` must be equal
// to the length of `valuelist`.
// Arguments:
// indexset = A list of boolean values.
// valuelist = The list of values to set into the returned list.
// dflt = Default value to store when the indexset item is false.
// Example:
// a = list_bset([false,true,false,true,false], [3,4]); // Returns: [0,3,0,4,0]
// b = list_bset([false,true,false,true,false], [3,4], dflt=1); // Returns: [1,3,1,4,1]
function list_bset(indexset, valuelist, dflt=0) =
assert(is_list(indexset), "The index set is not a list." )
assert(is_list(valuelist), "The `valuelist` is not a list." )
let( trueind = search([true], indexset,0)[0] )
assert( !(len(trueind)>len(valuelist)), str("List `valuelist` too short; its length should be ",len(trueind)) )
assert( !(len(trueind)<len(valuelist)), str("List `valuelist` too long; its length should be ",len(trueind)) )
concat(
list_set([],trueind, valuelist, dflt=dflt), // Fill in all of the values
repeat(dflt,len(indexset)-max(trueind)-1) // Add trailing values so length matches indexset
);
// Section: List Length Manipulation
// Function: list_shortest()
// Usage:
// llen = list_shortest(array);
// Topics: List Handling
// See Also: list_longest()
// Description:
// Returns the length of the shortest sublist in a list of lists.
// Arguments:
// array = A list of lists.
// Example:
// slen = list_shortest([[3,4,5],[6,7,8,9]]); // Returns: 3
function list_shortest(array) =
assert(is_list(array), "Invalid input." )
min([for (v = array) len(v)]);
// Function: list_longest()
// Usage:
// llen = list_longest(array);
// Topics: List Handling
// See Also: list_shortest()
// Description:
// Returns the length of the longest sublist in a list of lists.
// Arguments:
// array = A list of lists.
// Example:
// llen = list_longest([[3,4,5],[6,7,8,9]]); // Returns: 4
function list_longest(array) =
assert(is_list(array), "Invalid input." )
max([for (v = array) len(v)]);
// Function: list_pad()
// Usage:
@ -1253,8 +1227,49 @@ function unique_count(list) =
)
[ select(list,ind), deltas( concat(ind,[len(list)]) ) ];
// Section: List Iteration Helpers
// Function: group_data()
// Usage:
// groupings = group_data(groups, values);
// Topics: Array Handling
// See Also: zip(), zip_long(), array_group()
// Description:
// Given a list of integer group numbers, and an equal-length list of values,
// returns a list of groups with the values sorted into the corresponding groups.
// Ie: if you have a groups index list of [2,3,2] and values of ["A","B","C"], then
// the values "A" and "C" will be put in group 2, and "B" will be in group 3.
// Groups that have no values grouped into them will be an empty list. So the
// above would return [[], [], ["A","C"], ["B"]]
// Arguments:
// groups = A list of integer group index numbers.
// values = A list of values to sort into groups.
// Example:
// groups = group_data([1,2,0], ["A","B","C"]); // Returns [["B"],["C"],["A"]]
// Example:
// groups = group_data([1,3,1], ["A","B","C"]); // Returns [[],["A","C"],[],["B"]]
function group_data(groups, values) =
assert(all_integer(groups) && all_nonnegative(groups))
assert(is_list(values))
assert(len(groups)==len(values),
"The groups and values arguments should be lists of matching length.")
let( sorted = _group_sort_by_index(zip(groups,values),0) )
// retrieve values and insert []
[
for (i = idx(sorted))
let(
a = i==0? 0 : sorted[i-1][0][0]+1,
g0 = sorted[i]
)
each [
for (j = [a:1:g0[0][0]-1]) [],
[for (g1 = g0) g1[1]]
]
];
// Section: Iteration Helpers
// Function: idx()
// Usage:
@ -1293,7 +1308,7 @@ function idx(list, s=0, e=-1, step=1) =
// Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]`
// Arguments:
// l = List to enumerate.
// idx = If given, enumerates just the given subindex items of `l`.
// idx = If given, enumerates just the given columns items of `l`.
// Example:
// enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
// enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
@ -1562,9 +1577,9 @@ function set_intersection(a, b) =
// Section: Array Manipulation
// Function: subindex()
// Function: columns()
// Usage:
// list = subindex(M, idx);
// list = columns(M, idx);
// Topics: Array Handling, List Handling
// See Also: select(), slice()
// Description:
@ -1577,13 +1592,13 @@ function set_intersection(a, b) =
// idx = The index, list of indices, or range of indices to fetch.
// Example:
// M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
// a = subindex(M,2); // Returns [3, 7, 11, 15]
// b = subindex(M,[2]); // Returns [[3], [7], [11], [15]]
// c = subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
// d = subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
// a = columns(M,2); // Returns [3, 7, 11, 15]
// b = columns(M,[2]); // Returns [[3], [7], [11], [15]]
// c = columns(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
// d = columns(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
// N = [ [1,2], [3], [4,5], [6,7,8] ];
// e = subindex(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
function subindex(M, idx) =
// e = columns(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
function columns(M, idx) =
assert( is_list(M), "The input is not a list." )
assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." )
is_finite(idx)
@ -1595,7 +1610,7 @@ function subindex(M, idx) =
// Usage:
// mat = submatrix(M, idx1, idx2);
// Topics: Matrices, Array Handling
// See Also: subindex(), block_matrix(), submatrix_set()
// See Also: columns(), block_matrix(), submatrix_set()
// Description:
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
// Arguments:
@ -1628,10 +1643,10 @@ function submatrix(M,idx1,idx2) =
// A = hstack(M1, M2, M3)
// A = hstack([M1, M2, M3, ...])
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix(), block_matrix()
// See Also: columns(), submatrix(), block_matrix()
// Description:
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
// This command is the inverse of subindex. Note: strings given in vectors are broken apart into lists of characters. Strings given
// This command is the inverse of `columns`. Note: strings given in vectors are broken apart into lists of characters. Strings given
// in matrices are preserved as strings. If you need to combine vectors of strings use array_group as shown below to convert the
// vector into a column matrix. Also note that vertical stacking can be done directly with concat.
// Arguments:
@ -1650,7 +1665,7 @@ function submatrix(M,idx1,idx2) =
// c = hstack([M,v1,M]); // Returns [[1, 0, 0, 2, 1, 0, 0],
// // [0, 1, 0, 3, 0, 1, 0],
// // [0, 0, 1, 4, 0, 0, 1]]
// d = hstack(subindex(M,0), subindex(M,[1 2])); // Returns M
// d = hstack(columns(M,0), columns(M,[1 2])); // Returns M
// strvec = ["one","two"];
// strmat = [["three","four"], ["five","six"]];
// e = hstack(strvec,strvec); // Returns [["o", "n", "e", "o", "n", "e"],
@ -1680,7 +1695,7 @@ function hstack(M1, M2, M3) =
// Usage:
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix()
// See Also: columns(), submatrix()
// Description:
// Create a block matrix by supplying a matrix of matrices, which will
// be combined into one unified matrix. Every matrix in one row
@ -1724,7 +1739,7 @@ function block_matrix(M) =
// Usage:
// mat = diagonal_matrix(diag, [offdiag]);
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix()
// See Also: columns(), submatrix()
// Description:
// Creates a square matrix with the items in the list `diag` on
// its diagonal. The off diagonal entries are set to offdiag,
@ -1741,7 +1756,7 @@ function diagonal_matrix(diag, offdiag=0) =
// Usage:
// mat = submatrix_set(M, A, [m], [n]);
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix()
// See Also: columns(), submatrix()
// Description:
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
@ -1772,7 +1787,7 @@ function submatrix_set(M,A,m=0,n=0) =
// Takes a flat array of values, and groups items in sets of `cnt` length.
// The opposite of this is `flatten()`.
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix(), hstack(), flatten(), full_flatten()
// See Also: columns(), submatrix(), hstack(), flatten(), full_flatten()
// Arguments:
// v = The list of items to group.
// cnt = The number of items to put in each grouping. Default:2
@ -1786,50 +1801,12 @@ function array_group(v, cnt=2, dflt=0) =
[for (i = [0:cnt:len(v)-1]) [for (j = [0:1:cnt-1]) default(v[i+j], dflt)]];
// Function: group_data()
// Usage:
// groupings = group_data(groups, values);
// Topics: Array Handling
// See Also: zip(), zip_long(), array_group()
// Description:
// Given a list of integer group numbers, and an equal-length list of values,
// returns a list of groups with the values sorted into the corresponding groups.
// Ie: if you have a groups index list of [2,3,2] and values of ["A","B","C"], then
// the values "A" and "C" will be put in group 2, and "B" will be in group 3.
// Groups that have no values grouped into them will be an empty list. So the
// above would return [[], [], ["A","C"], ["B"]]
// Arguments:
// groups = A list of integer group index numbers.
// values = A list of values to sort into groups.
// Example:
// groups = group_data([1,2,0], ["A","B","C"]); // Returns [["B"],["C"],["A"]]
// Example:
// groups = group_data([1,3,1], ["A","B","C"]); // Returns [[],["A","C"],[],["B"]]
function group_data(groups, values) =
assert(all_integer(groups) && all_nonnegative(groups))
assert(is_list(values))
assert(len(groups)==len(values),
"The groups and values arguments should be lists of matching length.")
let( sorted = _group_sort_by_index(zip(groups,values),0) )
// retrieve values and insert []
[
for (i = idx(sorted))
let(
a = i==0? 0 : sorted[i-1][0][0]+1,
g0 = sorted[i]
)
each [
for (j = [a:1:g0[0][0]-1]) [],
[for (g1 = g0) g1[1]]
]
];
// Function: flatten()
// Usage:
// list = flatten(l);
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix(), hstack(), full_flatten()
// See Also: columns(), submatrix(), hstack(), full_flatten()
// Description:
// Takes a list of lists and flattens it by one level.
// Arguments:
@ -1845,7 +1822,7 @@ function flatten(l) =
// Usage:
// list = full_flatten(l);
// Topics: Matrices, Array Handling
// See Also: subindex(), submatrix(), hstack(), flatten()
// See Also: columns(), submatrix(), hstack(), flatten()
// Description:
// Collects in a list all elements recursively found in any level of the given list.
// The output list is ordered in depth first order.
@ -1974,6 +1951,8 @@ function transpose(arr, reverse=false) =
arr;
// Section: Matrices
// Function: is_matrix_symmetric()
// Usage:
// b = is_matrix_symmetric(A, [eps])
@ -1987,7 +1966,6 @@ function is_matrix_symmetric(A,eps=1e-12) =
approx(A,transpose(A), eps);
// Function&Module: echo_matrix()
// Usage:
// echo_matrix(M, [description=], [sig=], [eps=]);

View File

@ -1594,9 +1594,9 @@ function _find_anchor(anchor, geom) =
hits = [
for (face = faces) let(
verts = select(rpts, face),
xs = subindex(verts,0),
ys = subindex(verts,1),
zs = subindex(verts,2)
xs = columns(verts,0),
ys = columns(verts,1),
zs = columns(verts,2)
) if (
max(xs) >= -eps &&
max(ys) >= -eps &&
@ -1615,7 +1615,7 @@ function _find_anchor(anchor, geom) =
)
assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.")
let(
furthest = max_index(subindex(hits,0)),
furthest = max_index(columns(hits,0)),
dist = hits[furthest][0],
pos = hits[furthest][2],
hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]],
@ -1640,7 +1640,7 @@ function _find_anchor(anchor, geom) =
) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] :
let(
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]),
maxx = max(subindex(rpts,0)),
maxx = max(columns(rpts,0)),
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
mm = pointlist_bounds(select(rpts,idxs)),
avgy = (mm[0].y+mm[1].y)/2,
@ -1681,7 +1681,7 @@ function _find_anchor(anchor, geom) =
)
if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2]
],
maxidx = max_index(subindex(isects,0)),
maxidx = max_index(columns(isects,0)),
isect = isects[maxidx],
pos = point2d(cp) + isect[1],
vec = unit(isect[2],[0,1])
@ -1691,7 +1691,7 @@ function _find_anchor(anchor, geom) =
path = geom[1],
anchor = point2d(anchor),
rpath = rot(from=anchor, to=RIGHT, p=move(point2d(-cp), p=path)),
maxx = max(subindex(rpath,0)),
maxx = max(columns(rpath,0)),
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
miny = min([for (i=idxs) rpath[i].y]),
maxy = max([for (i=idxs) rpath[i].y]),
@ -1717,7 +1717,7 @@ function _find_anchor(anchor, geom) =
if(!is_undef(isect) && !approx(isect,t[0]))
[norm(isect), isect, n2]
],
maxidx = max_index(subindex(isects,0)),
maxidx = max_index(columns(isects,0)),
isect = isects[maxidx],
pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2,
xyvec = unit(isect[2],[0,1]),
@ -1730,7 +1730,7 @@ function _find_anchor(anchor, geom) =
anchor = point3d(anchor),
xyanch = point2d(anchor),
rpath = rot(from=xyanch, to=RIGHT, p=move(point2d(-cp), p=path)),
maxx = max(subindex(rpath,0)),
maxx = max(columns(rpath,0)),
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
ys = [for (i=idxs) rpath[i].y],
avgy = (min(ys)+max(ys))/2,

View File

@ -1043,9 +1043,9 @@ function bezier_patch_points(patch, u, v) =
assert(is_num(u) || !is_undef(u[0]))
assert(is_num(v) || !is_undef(v[0]))
let(
vbezes = [for (i = idx(patch[0])) bezier_points(subindex(patch,i), is_num(u)? [u] : u)]
vbezes = [for (i = idx(patch[0])) bezier_points(columns(patch,i), is_num(u)? [u] : u)]
)
[for (i = idx(vbezes[0])) bezier_points(subindex(vbezes,i), is_num(v)? [v] : v)];
[for (i = idx(vbezes[0])) bezier_points(columns(vbezes,i), is_num(v)? [v] : v)];
// Function: bezier_triangle_point()
@ -1357,7 +1357,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
all(row_degen) && all(col_degen) ? // fully degenerate case
[EMPTY_VNF, repeat([patch[0][0]],4)] :
all(row_degen) ? // degenerate to a line (top to bottom)
let(pts = bezier_points(subindex(patch,0), samplepts))
let(pts = bezier_points(columns(patch,0), samplepts))
[EMPTY_VNF, [pts,pts,[pts[0]],[last(pts)]]] :
all(col_degen) ? // degenerate to a line (left to right)
let(pts = bezier_points(patch[0], samplepts))
@ -1366,7 +1366,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
let(pts = bezier_patch_points(patch, samplepts, samplepts))
[
vnf_vertex_array(pts, reverse=!reverse),
[subindex(pts,0), subindex(pts,len(pts)-1), pts[0], last(pts)]
[columns(pts,0), columns(pts,len(pts)-1), pts[0], last(pts)]
] :
top_degen && bot_degen ?
let(
@ -1375,17 +1375,17 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
if (splinesteps%2==0) splinesteps+1,
each reverse(list([3:2:splinesteps]))
],
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(subindex(patch,i), samplepts)],
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(columns(patch,i), samplepts)],
pts = [
[bpatch[0][0]],
for(j=[0:splinesteps-2]) bezier_points(subindex(bpatch,j+1), lerpn(0,1,rowcount[j])),
for(j=[0:splinesteps-2]) bezier_points(columns(bpatch,j+1), lerpn(0,1,rowcount[j])),
[last(bpatch[0])]
],
vnf = vnf_tri_array(pts, reverse=!reverse)
) [
vnf,
[
subindex(pts,0),
columns(pts,0),
[for(row=pts) last(row)],
pts[0],
last(pts),
@ -1404,16 +1404,16 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
full_degen = len(patch)>=4 && all(select(row_degen,1,ceil(len(patch)/2-1))),
rowmax = full_degen ? count(splinesteps+1) :
[for(j=[0:splinesteps]) j<=splinesteps/2 ? 2*j : splinesteps],
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(subindex(patch,i), samplepts)],
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(columns(patch,i), samplepts)],
pts = [
[bpatch[0][0]],
for(j=[1:splinesteps]) bezier_points(subindex(bpatch,j), lerpn(0,1,rowmax[j]+1))
for(j=[1:splinesteps]) bezier_points(columns(bpatch,j), lerpn(0,1,rowmax[j]+1))
],
vnf = vnf_tri_array(pts, reverse=!reverse)
) [
vnf,
[
subindex(pts,0),
columns(pts,0),
[for(row=pts) last(row)],
pts[0],
last(pts),

View File

@ -1121,7 +1121,7 @@ module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient)
isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y];
extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0;
extra_bot = type==400 && bead ? -min(columns(beadpts,1))+max(isect400) : 0;
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L
attachable(anchor,spin,orient,r=bead ? beadmax : T/2, l=H+extra_bot){

View File

@ -1878,26 +1878,7 @@ function polygon_shift(poly, i) =
// move_copies(concat(circ,pent)) circle(r=.1,$fn=32);
// color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
function old_reindex_polygon(reference, poly, return_error=false) =
assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
"Invalid polygon(s) or incompatible dimensions. " )
assert(len(reference)==len(poly), "The polygons must have the same length.")
let(
dim = len(reference[0]),
N = len(reference),
fixpoly = dim != 2? poly :
is_polygon_clockwise(reference)
? clockwise_polygon(poly)
: ccw_polygon(poly),
I = [for(i=reference) 1],
val = [ for(k=[0:N-1])
[for(i=[0:N-1])
(reference[i]*poly[(i+k)%N]) ] ]*I,
optimal_poly = polygon_shift(fixpoly, max_index(val))
)
return_error? [optimal_poly, min(poly*(I*poly)-2*val)] :
optimal_poly;
function reindex_polygon(reference, poly, return_error=false) =
function reindex_polygon(reference, poly, return_error=false) =
assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
"Invalid polygon(s) or incompatible dimensions. " )
assert(len(reference)==len(poly), "The polygons must have the same length.")
@ -1919,68 +1900,70 @@ function reindex_polygon(reference, poly, return_error=false) =
optimal_poly;
// Function: align_polygon()
// Usage:
// newpoly = align_polygon(reference, poly, angles, [cp]);
// newpoly = align_polygon(reference, poly, [angles], [cp], [tran], [return_ind]);
// Topics: Geometry, Polygons
// Description:
// Tries the list or range of angles to find a rotation of the specified 2D polygon that best aligns
// with the reference 2D polygon. For each angle, the polygon is reindexed, which is a costly operation
// so if run time is a problem, use a smaller sampling of angles. Returns the rotated and reindexed
// polygon.
// Find the best alignment of a specified 2D polygon with a reference 2D polygon over a set of
// transformations. You can specify a list or range of angles and a centerpoint or you can
// give a list of arbitrary 2d transformation matrices. For each transformation or angle, the polygon is
// reindexed, which is a costly operation so if run time is a problem, use a smaller sampling of angles or
// transformations. By default returns the rotated and reindexed polygon. You can also request that
// the best angle or the index into the transformation list be returned. When you specify an angle
// Arguments:
// reference = reference polygon
// poly = polygon to rotate into alignment with the reference
// angles = list or range of angles to test
// cp = centerpoint for rotations
// Example(2D): The original hexagon in yellow is not well aligned with the pentagon. Turning it so the faces line up gives an optimal alignment, shown in red.
// $fn=32;
// pentagon = subdivide_path(pentagon(side=2),60);
// hexagon = subdivide_path(hexagon(side=2.7),60);
// color("red") move_copies(scale(1.4,p=align_polygon(pentagon,hexagon,[0:10:359]))) circle(r=.1);
// move_copies(concat(pentagon,hexagon))circle(r=.1);
function old_align_polygon(reference, poly, angles, cp) =
// ---
// tran = list of 2D transformation matrices to optimize over
// return_ind = if true, return the best angle (if you specified angles) or the index into tran otherwise of best alignment
// Example(2D): Rotating the poorly aligned light gray triangle by 105 degrees produces the best alignment, shown in blue:
// ellipse = yscale(3,circle(r=10, $fn=32));
// tri = move([-50/3,-9],
// subdivide_path([[0,0], [50,0], [0,27]], 32));
// aligned = align_polygon(ellipse,tri, [0:5:180]);
// color("white")stroke(tri,width=.5,closed=true);
// stroke(ellipse, width=.5, closed=true);
// color("blue")stroke(aligned,width=.5,closed=true);
// Example(2D,NoAxes): Translating a triangle (light gray) to the best alignment (blue)
// ellipse = yscale(2,circle(r=10, $fn=32));
// tri = subdivide_path([[0,0], [27,0], [-7,50]], 32);
// T = [for(x=[-10:0], y=[-30:-15]) move([x,y])];
// aligned = align_polygon(ellipse,tri, trans=T);
// color("white")stroke(tri,width=.5,closed=true);
// stroke(ellipse, width=.5, closed=true);
// color("blue")stroke(aligned,width=.5,closed=true);
function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
assert(is_undef(trans) || (is_undef(angles) && is_undef(cp)), "Cannot give both angles/cp and trans as input")
let(
trans = is_def(trans) ? trans :
assert( (is_vector(angles) && len(angles)>0) || valid_range(angles),
"The `angle` parameter must be a range or a non void list of numbers.")
[for(angle=angles) zrot(angle,cp=cp)]
)
assert(is_path(reference,dim=2) && is_path(poly,dim=2),
"Invalid polygon(s). " )
assert(len(reference)==len(poly), "The polygons must have the same length.")
assert( (is_vector(angles) && len(angles)>0) || valid_range(angles),
"The `angle` parameter must be a range or a non void list of numbers.")
let( // alignments is a vector of entries of the form: [polygon, error]
alignments = [
for(angle=angles)
reindex_polygon(
reference,
zrot(angle,p=poly,cp=cp),
return_error=true
)
for(T=trans)
reindex_polygon(
reference,
apply(T,poly),
return_error=true
)
],
best = min_index(subindex(alignments,1))
) alignments[best][0];
function align_polygon(reference, poly, angles, cp) =
assert(is_path(reference,dim=2) && is_path(poly,dim=2),
"Invalid polygon(s). " )
assert(len(reference)==len(poly), "The polygons must have the same length.")
assert( (is_vector(angles) && len(angles)>0) || valid_range(angles),
"The `angle` parameter must be a range or a non void list of numbers.")
let( // alignments is a vector of entries of the form: [polygon, error]
alignments = [
for(angle=angles)
reindex_polygon(
reference,
zrot(angle,p=poly,cp=cp),
return_error=true
)
],
scores = subindex(alignments,1),
scores = columns(alignments,1),
minscore = min(scores),
minind = [for(i=idx(scores)) if (scores[i]<minscore+EPSILON) i],
f=echo(best_angles = select(list(angles), minind)),
dummy = is_def(angles) ? echo(best_angles = select(list(angles), minind)):0,
best = minind[0]
) alignments[best][0];
)
return_ind ? (is_def(angles) ? list(angles)[best] : best)
: alignments[best][0];
// Function: are_polygons_equal()
// Usage:

View File

@ -994,7 +994,7 @@ function null_space(A,eps=1e-12) =
zrow = [for(i=idx(R)) if (all_zero(R[i],eps)) i]
)
len(zrow)==0 ? [] :
transpose(subindex(Q_R[0],zrow));
transpose(columns(Q_R[0],zrow));
// Function: qr_factor()

View File

@ -427,7 +427,7 @@ function resample_path(path, N, spacing, closed=false) =
distlist = lerpn(0,length,N,false),
cuts = _path_cut_points(path, distlist, closed=closed)
)
[ each subindex(cuts,0),
[ each columns(cuts,0),
if (!closed) last(path) // Then add last point here
];
@ -1174,7 +1174,7 @@ function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
len(fragments)==0? _finished :
let(
minxidx = min_index([
for (frag=fragments) min(subindex(frag,0))
for (frag=fragments) min(columns(frag,0))
]),
result_l = _assemble_a_path_from_fragments(
fragments=fragments,

View File

@ -267,7 +267,7 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
cornerpts = [for(i=[0:1])
[for(k=vector_search(points[i],eps,points[i]))
each if (len(k)>1) select(ptind[i],k)]],
risect = [for(i=[0:1]) concat(subindex(intersections,i), cornerpts[i])],
risect = [for(i=[0:1]) concat(columns(intersections,i), cornerpts[i])],
counts = [count(len(region1)), count(len(region2))],
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
)
@ -381,82 +381,6 @@ function region_parts(region) =
// Section: Region Extrusion and VNFs
function _path_path_closest_vertices(path1,path2) =
let(
dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]],
i1 = min_index(subindex(dists,1)),
i2 = dists[i1][0]
) [dists[i1][1], i1, i2];
function _join_paths_at_vertices(path1,path2,v1,v2) =
let(
repeat_start = !approx(path1[v1],path2[v2]),
path1 = clockwise_polygon(polygon_shift(path1,v1)),
path2 = ccw_polygon(polygon_shift(path2,v2))
)
[
each path1,
if (repeat_start) path1[0],
each path2,
if (repeat_start) path2[0],
];
// Given a region that is connected and has its outer border in region[0],
// produces a polygon with the same points that has overlapping connected paths
// to join internal holes to the outer border. Output is a single path.
function _cleave_connected_region(region) =
len(region)==0? [] :
len(region)<=1? clockwise_polygon(region[0]) :
let(
dists = [
for (i=[1:1:len(region)-1])
_path_path_closest_vertices(region[0],region[i])
],
idxi = min_index(subindex(dists,0)),
newoline = _join_paths_at_vertices(
region[0], region[idxi+1],
dists[idxi][1], dists[idxi][2]
)
) len(region)==2? clockwise_polygon(newoline) :
let(
orgn = [
newoline,
for (i=idx(region))
if (i>0 && i!=idxi+1)
region[i]
]
)
assert(len(orgn)<len(region))
_cleave_connected_region(orgn);
// Function: region_faces()
// Usage:
// vnf = region_faces(region, [transform], [reverse], [vnf]);
// Description:
// Given a region, applies the given transformation matrix to it and makes a VNF of
// faces for that region, reversed if necessary.
// Arguments:
// region = The region to make faces for.
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false
// vnf = If given, the faces are added to this VNF. Default: `EMPTY_VNF`
function region_faces(region, transform, reverse=false, vnf=EMPTY_VNF) =
let (
regions = region_parts(force_region(region)),
vnfs = [
if (vnf != EMPTY_VNF) vnf,
for (rgn = regions) let(
cleaved = path3d(_cleave_connected_region(rgn)),
face = is_undef(transform)? cleaved : apply(transform,cleaved),
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
) [face, [faceidxs]]
],
outvnf = vnf_merge(vnfs)
) outvnf;
// Function&Module: linear_sweep()
@ -564,8 +488,8 @@ function linear_sweep(region, height=1, center, twist=0, scale=1, slices,
) scale([sc,sc,1], p=rot(ang, p=path3d(path,h)))
]
) vnf_vertex_array(verts, caps=false, col_wrap=true, style=style),
for (rgn = regions) region_faces(rgn, move([0,0,-height/2]), reverse=true),
for (rgn = trgns) region_faces(rgn, move([0,0, height/2]), reverse=false)
for (rgn = regions) vnf_from_region(rgn, down(height/2), reverse=true),
for (rgn = trgns) vnf_from_region(rgn, up(height/2), reverse=false)
])
) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, p=vnf);

View File

@ -1270,7 +1270,7 @@ module convex_offset_extrude(
// The entry r[i] is [radius,z] for a given layer
r = move([0,bottom_height],p=concat(
reverse(offsets_bot), [[0,0], [0,middle]], move([0,middle], p=offsets_top)));
delta = [for(val=deltas(subindex(r,0))) sign(val)];
delta = [for(val=deltas(columns(r,0))) sign(val)];
below=[-thickness,0];
above=[0,thickness];
// layers is a list of pairs of the relative positions for each layer, e.g. [0,thickness]
@ -1937,8 +1937,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
verify_vert =
[for(i=[0:N-1],j=[0:4])
let(
vline = concat(select(subindex(top_patch[i],j),2,4),
select(subindex(bot_patch[i],j),2,4))
vline = concat(select(columns(top_patch[i],j),2,4),
select(columns(bot_patch[i],j),2,4))
)
if (!is_collinear(vline)) [i,j]],
//verify horiz edges
@ -1955,8 +1955,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
"Roundovers interfere with each other on bottom face: either input is self intersecting or top joint length is too large")
assert(debug || (verify_vert==[] && verify_horiz==[]), "Curvature continuity failed")
let(
vnf = vnf_merge([ each subindex(top_samples,0),
each subindex(bot_samples,0),
vnf = vnf_merge([ each columns(top_samples,0),
each columns(bot_samples,0),
for(pts=edge_points) vnf_vertex_array(pts),
debug ? vnf_from_polygons(faces)
: vnf_triangulate(vnf_from_polygons(faces))
@ -2114,7 +2114,7 @@ function _circle_mask(r) =
// ]),
// radius = [0,0,each repeat(slotradius,4),0,0], closed=false
// )
// ) apply(left(max(subindex(slot,0))/2)*fwd(min(subindex(slot,1))), slot);
// ) apply(left(max(columns(slot,0))/2)*fwd(min(columns(slot,1))), slot);
// stroke(slot(15,29,7));
// Example: A cylindrical container with rounded edges and a rounded finger slot.
// function slot(slotwidth, slotheight, slotradius) = let(
@ -2138,7 +2138,7 @@ function _circle_mask(r) =
// ]),
// radius = [0,0,each repeat(slotradius,4),0,0], closed=false
// )
// ) apply(left(max(subindex(slot,0))/2)*fwd(min(subindex(slot,1))), slot);
// ) apply(left(max(columns(slot,0))/2)*fwd(min(columns(slot,1))), slot);
// diam = 80;
// wall = 4;
// height = 40;
@ -2162,12 +2162,12 @@ module bent_cutout_mask(r, thickness, path, radius, convexity=10)
path = clockwise_polygon(path);
curvepoints = arc(d=thickness, angle = [-180,0]);
profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(path,delta=thickness/2+pt.y,check_valid=false,closed=true)))];
pathx = subindex(path,0);
pathx = columns(path,0);
minangle = (min(pathx)-thickness/2)*360/(2*PI*r);
maxangle = (max(pathx)+thickness/2)*360/(2*PI*r);
mindist = (r+thickness/2)/cos((maxangle-minangle)/2);
assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180.");
zmean = mean(subindex(path,1));
zmean = mean(columns(path,1));
innerzero = repeat([0,0,zmean], len(path));
outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(path));
vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity);

View File

@ -363,7 +363,7 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
)
each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n)
],
maxx_idx = max_index(subindex(path2,0)),
maxx_idx = max_index(columns(path2,0)),
path3 = polygon_shift(path2,maxx_idx)
) path3
),
@ -961,7 +961,7 @@ function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) =
[-cap_w,cap_h]
], closed=true
),
maxx_idx = max_index(subindex(path,0)),
maxx_idx = max_index(columns(path,0)),
path2 = polygon_shift(path,maxx_idx)
) reorient(anchor,spin, two_d=true, path=path2, p=path2);
@ -1016,7 +1016,7 @@ function glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) =
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1],
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2]
),
maxx_idx = max_index(subindex(path,0)),
maxx_idx = max_index(columns(path,0)),
path2 = reverse_polygon(polygon_shift(path,maxx_idx))
) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2);

View File

@ -2211,7 +2211,7 @@ module path_text(path, text, font, size, thickness, lettersize, offset=0, revers
usernorm = is_def(normal);
usetop = is_def(top);
normpts = is_undef(normal) ? (reverse?1:-1)*subindex(pts,3) : _cut_interp(pts,path, normal);
normpts = is_undef(normal) ? (reverse?1:-1)*columns(pts,3) : _cut_interp(pts,path, normal);
toppts = is_undef(top) ? undef : _cut_interp(pts,path,top);
for(i=idx(text))
let( tangent = pts[i][2] )

View File

@ -255,14 +255,16 @@
// skin([regular_ngon(n=4, r=4), regular_ngon(n=5,r=5)], z=[0,4], refine=10, slices=10);
// Example(FlatSpin,VPD=35): Connecting square to shifted pentagon using "direct" method.
// skin([regular_ngon(n=4, r=4), right(4,p=regular_ngon(n=5,r=5))], z=[0,4], refine=10, slices=10);
// Example(FlatSpin,VPD=35): To improve the look, you can actually rotate the polygons for a more symmetric pattern of lines. You have to resample yourself before calling `align_polygon` and you should choose a length that is a multiple of both polygon lengths.
// sq = subdivide_path(regular_ngon(n=4, r=4),40);
// pent = subdivide_path(regular_ngon(n=5,r=5),40);
// skin([sq, align_polygon(sq,pent,[0:1:360/5])], z=[0,4], slices=10);
// Example(FlatSpin,VPD=35): For the shifted pentagon we can also align, making sure to pass an appropriate centerpoint to `align_polygon`.
// sq = subdivide_path(regular_ngon(n=4, r=4),40);
// pent = right(4,p=subdivide_path(regular_ngon(n=5,r=5),40));
// skin([sq, align_polygon(sq,pent,[0:1:360/5],cp=[4,0])], z=[0,4], refine=10, slices=10);
// Example(FlatSpin,VPD=185): In this example reindexing does not fix the orientation of the triangle because it happens in 3d within skin(), so we have to reverse the triangle manually
// ellipse = yscale(3,circle(r=10, $fn=32));
// tri = move([-50/3,-9],[[0,0], [50,0], [0,27]]);
// skin([ellipse, reverse(tri)], z=[0,20], slices=20, method="reindex");
// Example(FlatSpin,VPD=185): You can get a nicer transition by rotating the polygons for better alignment. You have to resample yourself before calling `align_polygon`. The orientation is fixed so we do not need to reverse.
// ellipse = yscale(3,circle(r=10, $fn=32));
// tri = move([-50/3,-9],
// subdivide_path([[0,0], [50,0], [0,27]], 32));
// aligned = align_polygon(ellipse,tri, [0:5:180]);
// skin([ellipse, aligned], z=[0,20], slices=20);
// Example(FlatSpin,VPD=35): The "distance" method is a completely different approach.
// skin([regular_ngon(n=4, r=4), regular_ngon(n=5,r=5)], z=[0,4], refine=10, slices=10, method="distance");
// Example(FlatSpin,VPD=35,VPT=[0,0,4]): Connecting pentagon to heptagon inserts two triangular faces on each side
@ -983,7 +985,7 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edg
[for(pt = profile)
let(
ofs = offset(path, delta=-flip*pt.x, return_faces=true,closed=closed, quality=quality),
map = subindex(_ofs_vmap(ofs,closed=closed),1)
map = columns(_ofs_vmap(ofs,closed=closed),1)
)
select(path3d(ofs[0],pt.y),map)
]
@ -1111,8 +1113,8 @@ function sweep(shape, transforms, closed=false, caps, style="min_edge") =
for (rgn=regions) each [
for (path=rgn)
sweep(path, transforms, closed=closed, caps=false),
if (fullcaps[0]) region_faces(rgn, transform=transforms[0], reverse=true),
if (fullcaps[1]) region_faces(rgn, transform=last(transforms)),
if (fullcaps[0]) vnf_from_region(rgn, transform=transforms[0], reverse=true),
if (fullcaps[1]) vnf_from_region(rgn, transform=last(transforms)),
],
],
vnf = vnf_merge(vnfs)

View File

@ -433,14 +433,14 @@ module test_add_scalar() {
test_add_scalar();
module test_subindex() {
module test_columns() {
v = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
assert(subindex(v,2) == [3, 7, 11, 15]);
assert(subindex(v,[2]) == [[3], [7], [11], [15]]);
assert(subindex(v,[2,1]) == [[3, 2], [7, 6], [11, 10], [15, 14]]);
assert(subindex(v,[1:3]) == [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]);
assert(columns(v,2) == [3, 7, 11, 15]);
assert(columns(v,[2]) == [[3], [7], [11], [15]]);
assert(columns(v,[2,1]) == [[3, 2], [7, 6], [11, 10], [15, 14]]);
assert(columns(v,[1:3]) == [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]);
}
test_subindex();
test_columns();
// Need decision about behavior for out of bounds ranges, empty ranges
@ -532,7 +532,7 @@ module test_hstack() {
a = hstack(v1,v2);
b = hstack(v1,v2,v3);
c = hstack([M,v1,M]);
d = hstack(subindex(M,0), subindex(M,[1, 2]));
d = hstack(columns(M,0), columns(M,[1, 2]));
assert_equal(a,[[2, 5], [3, 6], [4, 7]]);
assert_equal(b,[[2, 5, 8], [3, 6, 9], [4, 7, 10]]);
assert_equal(c,[[1, 0, 0, 2, 1, 0, 0], [0, 1, 0, 3, 0, 1, 0], [0, 0, 1, 4, 0, 0, 1]]);

View File

@ -994,7 +994,7 @@ module test_linear_solve(){
-8.378819388897780e-01,
2.330507118860985e-01,
8.511278195488737e-01]);
assert_approx(linear_solve(subindex(M,[0:2]), [2,4,4,4]),
assert_approx(linear_solve(columns(M,[0:2]), [2,4,4,4]),
[-2.457142857142859e-01,
5.200000000000000e-01,
7.428571428571396e-02]);

View File

@ -926,8 +926,8 @@ module generic_threaded_rod(
assert(higang1 < twist/2);
assert(higang2 < twist/2);
prof3d = path3d(profile);
pdepth = -min(subindex(profile,1));
pmax = pitch * max(subindex(profile,1));
pdepth = -min(columns(profile,1));
pmax = pitch * max(columns(profile,1));
rmax = max(_r1,_r2)+pmax;
depth = pdepth * pitch;
dummy1 = assert(_r1>depth && _r2>depth, "Screw profile deeper than rod radius");
@ -1087,7 +1087,7 @@ module generic_threaded_nut(
bevel1 = first_defined([bevel1,bevel,false]);
bevel2 = first_defined([bevel2,bevel,false]);
dummy1 = assert(is_num(pitch) && pitch>0);
depth = -pitch*min(subindex(profile,1));
depth = -pitch*min(columns(profile,1));
attachable(anchor,spin,orient, size=[od/cos(30),od,h]) {
difference() {
cyl(d=od/cos(30), h=h, center=true, $fn=6,chamfer1=bevel1?depth:undef,chamfer2=bevel2?depth:undef);

View File

@ -263,11 +263,50 @@ function vector_axis(v1,v2=undef,v3=undef) =
// Function: min_index()
// Usage:
// idx = min_index(vals);
// idxlist = min_index(vals, all=true);
// Topics: List Handling
// See Also: max_index(), list_increasing(), list_decreasing()
// Description:
// Returns the index of the first occurrence of the minimum value in the given list.
// If `all` is true then returns a list of all indices where the minimum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the minimum. Default: false
// Example:
// a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8
// b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7]
function min_index(vals, all=false) =
assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.")
all ? search(min(vals),vals,0) : search(min(vals), vals)[0];
// Function: max_index()
// Usage:
// idx = max_index(vals);
// idxlist = max_index(vals, all=true);
// Topics: List Handling
// See Also: min_index(), list_increasing(), list_decreasing()
// Description:
// Returns the index of the first occurrence of the maximum value in the given list.
// If `all` is true then returns a list of all indices where the maximum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the maximum. Default: false
// Example:
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
function max_index(vals, all=false) =
assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.")
all ? search(max(vals),vals,0) : search(max(vals), vals)[0];
// Section: Vector Searching
// Function: closest_point()
// Usage:
// index = closest_point(pt, points);
@ -504,8 +543,8 @@ function vector_nearest(query, k, target) =
"More results are requested than the number of points.")
tgpts
? let( tree = _bt_tree(target, count(len(target))) )
subindex(_bt_nearest( query, k, target, tree),0)
: subindex(_bt_nearest( query, k, target[0], target[1]),0);
columns(_bt_nearest( query, k, target, tree),0)
: columns(_bt_nearest( query, k, target[0], target[1]),0);
//Ball tree nearest

138
vnf.scad
View File

@ -287,9 +287,9 @@ function vnf_tri_array(points, row_wrap=false, reverse=false, vnf=EMPTY_VNF) =
// and eliminates any faces with fewer than 3 vertices.
// (Unreferenced vertices of the input VNFs are not dropped.)
// Arguments:
// vnfs - a list of the VNFs to merge in one VNF.
// cleanup - when true, consolidates the duplicate vertices of the merge. Default: false
// eps - the tolerance in finding duplicates when cleanup=true. Default: EPSILON
// vnfs = a list of the VNFs to merge in one VNF.
// cleanup = when true, consolidates the duplicate vertices of the merge. Default: false
// eps = the tolerance in finding duplicates when cleanup=true. Default: EPSILON
function vnf_merge(vnfs, cleanup=false, eps=EPSILON) =
is_vnf(vnfs) ? vnf_merge([vnfs], cleanup, eps) :
assert( is_vnf_list(vnfs) , "Improper vnf or vnf list")  
@ -350,6 +350,95 @@ function vnf_from_polygons(polygons) =
function _path_path_closest_vertices(path1,path2) =
let(
dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]],
i1 = min_index(columns(dists,1)),
i2 = dists[i1][0]
) [dists[i1][1], i1, i2];
function _join_paths_at_vertices(path1,path2,v1,v2) =
let(
repeat_start = !approx(path1[v1],path2[v2]),
path1 = clockwise_polygon(polygon_shift(path1,v1)),
path2 = ccw_polygon(polygon_shift(path2,v2))
)
[
each path1,
if (repeat_start) path1[0],
each path2,
if (repeat_start) path2[0],
];
// Given a region that is connected and has its outer border in region[0],
// produces a polygon with the same points that has overlapping connected paths
// to join internal holes to the outer border. Output is a single path.
function _cleave_connected_region(region) =
len(region)==0? [] :
len(region)<=1? clockwise_polygon(region[0]) :
let(
dists = [
for (i=[1:1:len(region)-1])
_path_path_closest_vertices(region[0],region[i])
],
idxi = min_index(columns(dists,0)),
newoline = _join_paths_at_vertices(
region[0], region[idxi+1],
dists[idxi][1], dists[idxi][2]
)
) len(region)==2? clockwise_polygon(newoline) :
let(
orgn = [
newoline,
for (i=idx(region))
if (i>0 && i!=idxi+1)
region[i]
]
)
assert(len(orgn)<len(region))
_cleave_connected_region(orgn);
// Function: vnf_from_region()
// Usage:
// vnf = vnf_from_region(region, [transform], [reverse], [vnf]);
// Description:
// Given a (two-dimensional) region, applies the given transformation matrix to it and makes a triangulated VNF of
// faces for that region, reversed if desired.
// Arguments:
// region = The region to conver to a vnf.
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false
// vnf = If given, the faces are added to this VNF. Default: `EMPTY_VNF`
// Example(3D):
// region = [square([20,10],center=true),
// right(5,square(4,center=true)),
// left(5,square(6,center=true))];
// vnf = vnf_from_region(region);
// color("gray")down(.125)
// linear_extrude(height=.125)region(region);
// vnf_wireframe(vnf,width=.25);
function vnf_from_region(region, transform, reverse=false, vnf=EMPTY_VNF) =
let (
regions = region_parts(force_region(region)),
vnfs = [
if (vnf != EMPTY_VNF) vnf,
for (rgn = regions) let(
cleaved = path3d(_cleave_connected_region(rgn)),
face = is_undef(transform)? cleaved : apply(transform,cleaved),
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
) [face, [faceidxs]]
],
outvnf = vnf_merge(vnfs)
)
vnf_triangulate(outvnf);
// Section: VNF Testing and Access
@ -390,7 +479,7 @@ function vnf_faces(vnf) = vnf[1];
// Usage:
// rvnf = vnf_reverse_faces(vnf);
// Description:
// Reverses the facing of all the faces in the given VNF.
// Reverses the orientation of all the faces in the given VNF.
function vnf_reverse_faces(vnf) =
[vnf[0], [for (face=vnf[1]) reverse(face)]];
@ -407,14 +496,47 @@ function vnf_quantize(vnf,q=pow(2,-12)) =
[[for (pt = vnf[0]) quant(pt,q)], vnf[1]];
// Function: vnf_drop_unused_points()
// Usage:
// clean_vnf=vnf_drop_unused_points(vnf);
// Description:
// Remove all unreferenced vertices from a VNF. Note that in most
// cases unreferenced vertices cause no harm, and this function may
// be slow on large VNFs.
function vnf_drop_unused_points(vnf) =
let(
flat = flatten(vnf[1]),
ind = _link_indicator(flat,0,len(vnf[0])-1),
verts = [for(i=idx(vnf[0])) if(ind[i]==1) vnf[0][i] ],
map = cumsum(ind)
)
[ verts, [for(face=vnf[1]) [for(v=face) map[v]-1 ] ] ];
function _link_indicator(l,imin,imax) =
len(l) == 0 ? repeat(imax-imin+1,0) :
imax-imin<100 || len(l)<400 ? [for(si=search(list([imin:1:imax]),l,1)) si!=[] ? 1: 0 ] :
let(
pivot = floor((imax+imin)/2),
lesser = [ for(li=l) if( li< pivot) li ],
greater = [ for(li=l) if( li> pivot) li ]
)
concat( _link_indicator(lesser ,imin,pivot-1),
search(pivot,l,1) ? 1 : 0 ,
_link_indicator(greater,pivot+1,imax) ) ;
// Function: vnf_triangulate()
// Usage:
// vnf2 = vnf_triangulate(vnf);
// Description:
// Triangulates faces in the VNF that have more than 3 vertices.
// Triangulates faces in the VNF that have more than 3 vertices.
// Example:
// include <BOSL2/polyhedra.scad>
// vnf = zrot(33,regular_polyhedron_info("vnf", "dodecahedron", side=12));
// vnf_polyhedron(vnf);
// triangulated = vnf_triangulate(vnf);
// color("red")vnf_wireframe(triangulated,width=.3);
function vnf_triangulate(vnf) =
let(
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf,
verts = vnf[0],
faces = [for (face=vnf[1]) each len(face)==3 ? [face] :
polygon_triangulate(verts, face)]
@ -446,7 +568,7 @@ function vnf_slice(vnf,dir,cuts) =
function _split_polygon_at_x(poly, x) =
let(
xs = subindex(poly,0)
xs = columns(poly,0)
) (min(xs) >= x || max(xs) <= x)? [poly] :
let(
poly2 = [
@ -709,7 +831,7 @@ function vnf_halfspace(plane, vnf, closed=true) =
let(
M = project_plane(plane),
faceregion = [for(path=newpaths) path2d(apply(M,select(newvert,path)))],
facevnf = region_faces(faceregion,transform=rot_inverse(M),reverse=true)
facevnf = vnf_from_region(faceregion,transform=rot_inverse(M),reverse=true)
)
vnf_merge([[newvert, faces_edges_vertices[0]], facevnf]);