mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-08-31 12:41:51 +02:00
In observance of owner's last review
Eliminate double definitions. Eliminate unneeded comments. In common.scad redefine num_defined(), all_defined() and get_radius(). In geometry.scad: - change name _dist to _dist2line - simplify _point_above_below_segment() and triangle_area() - change some arg names for uniformity (path>>poly) - change point_in_polygon() to accept the Even-odd rule as alternative - and other minor edits Update tests_geometry to the new funcionalities.
This commit is contained in:
184
geometry.scad
184
geometry.scad
@@ -23,26 +23,25 @@
|
||||
function point_on_segment2d(point, edge, eps=EPSILON) =
|
||||
assert( is_vector(point,2), "Invalid point." )
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
assert( _valid_line(edge,eps=eps), "Invalid segment." )
|
||||
assert( _valid_line(edge,2,eps=eps), "Invalid segment." )
|
||||
let( dp = point-edge[0],
|
||||
de = edge[1]-edge[0],
|
||||
ne = norm(de) )
|
||||
( dp*de >= -eps*ne )
|
||||
&& ( (dp-de)*de <= eps*ne ) // point projects on the segment
|
||||
&& _dist(point-edge[0],unit(de))<eps; // point is on the line
|
||||
&& ( (dp-de)*de <= eps*ne ) // point projects on the segment
|
||||
&& _dist2line(point-edge[0],unit(de))<eps; // point is on the line
|
||||
|
||||
|
||||
//Internal - distance from point `d` to the line passing through the origin with unit direction n
|
||||
//_dist works for any dimension
|
||||
function _dist(d,n) = norm(d-(d * n) * n);
|
||||
//_dist2line works for any dimension
|
||||
function _dist2line(d,n) = norm(d-(d * n) * n);
|
||||
|
||||
// Internal non-exposed function.
|
||||
function _point_above_below_segment(point, edge) =
|
||||
edge[0].y <= point.y? (
|
||||
(edge[1].y > point.y && point_left_of_line2d(point, edge) > 0)? 1 : 0
|
||||
) : (
|
||||
(edge[1].y <= point.y && point_left_of_line2d(point, edge) < 0)? -1 : 0
|
||||
);
|
||||
let( edge = edge - [point, point] )
|
||||
edge[0].y <= 0
|
||||
? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0
|
||||
: (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0 ;
|
||||
|
||||
//Internal
|
||||
function _valid_line(line,dim,eps=EPSILON) =
|
||||
@@ -101,7 +100,7 @@ function collinear(a, b, c, eps=EPSILON) =
|
||||
function distance_from_line(line, pt) =
|
||||
assert( _valid_line(line) && is_vector(pt,len(line[0])),
|
||||
"Invalid line, invalid point or incompatible dimensions." )
|
||||
_dist(pt-line[0],unit(line[1]-line[0]));
|
||||
_dist2line(pt-line[0],unit(line[1]-line[0]));
|
||||
|
||||
|
||||
// Function: line_normal()
|
||||
@@ -749,14 +748,10 @@ function adj_opp_to_ang(adj,opp) =
|
||||
// triangle_area([0,0], [5,10], [10,0]); // Returns -50
|
||||
// triangle_area([10,0], [5,10], [0,0]); // Returns 50
|
||||
function triangle_area(a,b,c) =
|
||||
assert( is_path([a,b,c]),
|
||||
"Invalid points or incompatible dimensions." )
|
||||
len(a)==3 ? 0.5*norm(cross(c-a,c-b))
|
||||
: (
|
||||
a.x * (b.y - c.y) +
|
||||
b.x * (c.y - a.y) +
|
||||
c.x * (a.y - b.y)
|
||||
) / 2;
|
||||
assert( is_path([a,b,c]), "Invalid points or incompatible dimensions." )
|
||||
len(a)==3
|
||||
? 0.5*norm(cross(c-a,c-b))
|
||||
: 0.5*cross(c-a,c-b);
|
||||
|
||||
|
||||
|
||||
@@ -826,7 +821,7 @@ function plane_from_normal(normal, pt=[0,0,0]) =
|
||||
|
||||
// Function: plane_from_points()
|
||||
// Usage:
|
||||
// plane_from_points(points, [fast], [eps]);
|
||||
// plane_from_points(points, <fast>, <eps>);
|
||||
// Description:
|
||||
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the cartesian equation of a plane,
|
||||
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane.
|
||||
@@ -851,7 +846,6 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
||||
)
|
||||
indices==[] ? undef :
|
||||
let(
|
||||
indices = sort(indices), // why sorting?
|
||||
p1 = points[indices[0]],
|
||||
p2 = points[indices[1]],
|
||||
p3 = points[indices[2]],
|
||||
@@ -888,11 +882,6 @@ function plane_from_polygon(poly, fast=false, eps=EPSILON) =
|
||||
)
|
||||
fast? plane: coplanar(poly,eps=eps)? plane: [];
|
||||
|
||||
//***
|
||||
// I don't see why this function uses a criterium different from plane_from_points.
|
||||
// In practical terms, what is the difference of finding a plane from points and from polygon?
|
||||
// The docs don't clarify.
|
||||
// These functions should be consistent if they are both necessary. The docs might reflect their distinction.
|
||||
|
||||
// Function: plane_normal()
|
||||
// Usage:
|
||||
@@ -944,8 +933,8 @@ function plane_transform(plane) =
|
||||
// Usage:
|
||||
// projection_on_plane(points);
|
||||
// Description:
|
||||
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or 3d points, return the projection
|
||||
// of the points on the plane.
|
||||
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or 3d points, return the 3D orthogonal
|
||||
// projection of the points on the plane.
|
||||
// Arguments:
|
||||
// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane.
|
||||
// points = List of points to project
|
||||
@@ -1024,6 +1013,7 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) =
|
||||
? points_on_plane(line[0],plane,eps)? [line,undef]: undef
|
||||
: [ line[0]+a/b*(line[1]-line[0]), a/b ];
|
||||
|
||||
|
||||
// Function: plane_line_angle()
|
||||
// Usage: plane_line_angle(plane,line)
|
||||
// Description:
|
||||
@@ -1095,7 +1085,7 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
||||
)
|
||||
indices==[] ? undef :
|
||||
let(
|
||||
indices = sort(indices), // why sorting?
|
||||
indices = sort(indices),
|
||||
p1 = poly[indices[0]],
|
||||
p2 = poly[indices[1]],
|
||||
p3 = poly[indices[2]],
|
||||
@@ -1159,7 +1149,7 @@ function plane_intersection(plane1,plane2,plane3) =
|
||||
|
||||
// Function: coplanar()
|
||||
// Usage:
|
||||
// coplanar(points,eps);
|
||||
// coplanar(points,<eps>);
|
||||
// Description:
|
||||
// Returns true if the given 3D points are non-collinear and are on a plane.
|
||||
// Arguments:
|
||||
@@ -1178,7 +1168,7 @@ function coplanar(points, eps=EPSILON) =
|
||||
|
||||
// Function: points_on_plane()
|
||||
// Usage:
|
||||
// points_on_plane(points, plane, eps);
|
||||
// points_on_plane(points, plane, <eps>);
|
||||
// Description:
|
||||
// Returns true if the given 3D points are on the given plane.
|
||||
// Arguments:
|
||||
@@ -1214,7 +1204,7 @@ function in_front_of_plane(plane, point) =
|
||||
|
||||
// Function: find_circle_2tangents()
|
||||
// Usage:
|
||||
// find_circle_2tangents(pt1, pt2, pt3, r|d, [tangents]);
|
||||
// find_circle_2tangents(pt1, pt2, pt3, r|d, <tangents>);
|
||||
// Description:
|
||||
// Given a pair of rays with a common origin, and a known circle radius/diameter, finds
|
||||
// the centerpoint for the circle of that size that touches both rays tangentally.
|
||||
@@ -1283,7 +1273,8 @@ function find_circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) =
|
||||
|
||||
// Function: find_circle_3points()
|
||||
// Usage:
|
||||
// find_circle_3points(pt1, [pt2, pt3]);
|
||||
// find_circle_3points(pt1, pt2, pt3);
|
||||
// find_circle_3points([pt1, pt2, pt3]);
|
||||
// Description:
|
||||
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
|
||||
// points where NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D).
|
||||
@@ -1327,7 +1318,7 @@ function find_circle_3points(pt1, pt2, pt3) =
|
||||
r = norm(sc-v[0])
|
||||
)
|
||||
[ cp, r, n ];
|
||||
|
||||
|
||||
|
||||
// Function: circle_point_tangents()
|
||||
// Usage:
|
||||
@@ -1363,7 +1354,6 @@ function circle_point_tangents(r, d, cp, pt) =
|
||||
) [for (ang=angs) [ang, cp + r*[cos(ang),sin(ang)]]];
|
||||
|
||||
|
||||
|
||||
// Function: circle_circle_tangents()
|
||||
// Usage: circle_circle_tangents(c1, r1|d1, c2, r2|d2)
|
||||
// Description:
|
||||
@@ -1462,13 +1452,14 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
||||
[]
|
||||
: let(
|
||||
n = (pb-pa)/nrm,
|
||||
distlist = [for(i=[0:len(points)-1]) _dist(points[i]-pa, n)]
|
||||
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
||||
)
|
||||
max(distlist)<eps
|
||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
||||
[]
|
||||
: [0,b,max_index(distlist)];
|
||||
|
||||
|
||||
// Function: pointlist_bounds()
|
||||
// Usage:
|
||||
// pointlist_bounds(pts);
|
||||
@@ -1585,15 +1576,15 @@ function polygon_shift(poly, i) =
|
||||
// Usage:
|
||||
// polygon_shift_to_closest_point(path, pt);
|
||||
// Description:
|
||||
// Given a polygon `path`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
|
||||
function polygon_shift_to_closest_point(path, pt) =
|
||||
// Given a polygon `poly`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
|
||||
function polygon_shift_to_closest_point(poly, pt) =
|
||||
assert(is_vector(pt), "Invalid point." )
|
||||
assert(is_path(path,dim=len(pt)), "Invalid polygon or incompatible dimension with the point." )
|
||||
assert(is_path(poly,dim=len(pt)), "Invalid polygon or incompatible dimension with the point." )
|
||||
let(
|
||||
path = cleanup_path(path),
|
||||
dists = [for (p=path) norm(p-pt)],
|
||||
poly = cleanup_path(poly),
|
||||
dists = [for (p=poly) norm(p-pt)],
|
||||
closest = min_index(dists)
|
||||
) select(path,closest,closest+len(path)-1);
|
||||
) select(poly,closest,closest+len(poly)-1);
|
||||
|
||||
|
||||
// Function: reindex_polygon()
|
||||
@@ -1648,7 +1639,7 @@ function reindex_polygon(reference, poly, return_error=false) =
|
||||
|
||||
// Function: align_polygon()
|
||||
// Usage:
|
||||
// newpoly = align_polygon(reference, poly, angles, [cp]);
|
||||
// newpoly = align_polygon(reference, poly, angles, <cp>);
|
||||
// Description:
|
||||
// Tries the list or range of angles to find a rotation of the specified 2D polygon that best aligns
|
||||
// with the reference 2D polygon. For each angle, the polygon is reindexed, which is a costly operation
|
||||
@@ -1717,10 +1708,11 @@ function centroid(poly) =
|
||||
|
||||
// Function: point_in_polygon()
|
||||
// Usage:
|
||||
// point_in_polygon(point, path, [eps])
|
||||
// point_in_polygon(point, poly, <eps>)
|
||||
// Description:
|
||||
// This function tests whether the given 2D point is inside, outside or on the boundary of
|
||||
// the specified 2D polygon using the Winding Number method.
|
||||
// the specified 2D polygon using either the Nonzero Winding rule or the Even-Odd rule.
|
||||
// See https://en.wikipedia.org/wiki/Nonzero-rule and https://en.wikipedia.org/wiki/Even–odd_rule.
|
||||
// The polygon is given as a list of 2D points, not including the repeated end point.
|
||||
// Returns -1 if the point is outside the polyon.
|
||||
// Returns 0 if the point is on the boundary.
|
||||
@@ -1730,65 +1722,81 @@ function centroid(poly) =
|
||||
// Rounding error may give mixed results for points on or near the boundary.
|
||||
// Arguments:
|
||||
// point = The 2D point to check position of.
|
||||
// path = The list of 2D path points forming the perimeter of the polygon.
|
||||
// poly = The list of 2D path points forming the perimeter of the polygon.
|
||||
// nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd" (Default: true )
|
||||
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
||||
function point_in_polygon(point, path, eps=EPSILON) =
|
||||
// Original algorithm from http://geomalgorithms.com/a03-_inclusion.html
|
||||
assert( is_vector(point,2) && is_path(path,dim=2) && len(path)>2,
|
||||
function point_in_polygon(point, poly, eps=EPSILON, nonzero=true) =
|
||||
// Original algorithms from http://geomalgorithms.com/a03-_inclusion.html
|
||||
assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2,
|
||||
"The point and polygon should be in 2D. The polygon should have more that 2 points." )
|
||||
assert( is_finite(eps) && eps>=0, "Invalid tolerance." )
|
||||
// Does the point lie on any edges? If so return 0.
|
||||
let(
|
||||
on_brd = [for(i=[0:1:len(path)-1])
|
||||
let( seg = select(path,i,i+1) )
|
||||
if( !approx(seg[0],seg[1],eps=eps) )
|
||||
on_brd = [for(i=[0:1:len(poly)-1])
|
||||
let( seg = select(poly,i,i+1) )
|
||||
if( !approx(seg[0],seg[1],eps=EPSILON) )
|
||||
point_on_segment2d(point, seg, eps=eps)? 1:0 ]
|
||||
)
|
||||
sum(on_brd) > 0? 0 :
|
||||
// Otherwise compute winding number and return 1 for interior, -1 for exterior
|
||||
let(
|
||||
windchk = [for(i=[0:1:len(path)-1])
|
||||
let(seg=select(path,i,i+1))
|
||||
if(!approx(seg[0],seg[1],eps=eps))
|
||||
_point_above_below_segment(point, seg)
|
||||
]
|
||||
)
|
||||
sum(windchk) != 0 ? 1 : -1;
|
||||
sum(on_brd) > 0
|
||||
? 0
|
||||
: nonzero
|
||||
? // Compute winding number and return 1 for interior, -1 for exterior
|
||||
let(
|
||||
windchk = [for(i=[0:1:len(poly)-1])
|
||||
let(seg=select(poly,i,i+1))
|
||||
if(!approx(seg[0],seg[1],eps=eps))
|
||||
_point_above_below_segment(point, seg)
|
||||
]
|
||||
)
|
||||
sum(windchk) != 0 ? 1 : -1
|
||||
: // or compute the crossings with the ray [point, point+[1,0]]
|
||||
let(
|
||||
n = len(poly),
|
||||
cross =
|
||||
[for(i=[0:n-1])
|
||||
let(
|
||||
p0 = poly[i]-point,
|
||||
p1 = poly[(i+1)%n]-point
|
||||
)
|
||||
if( ( (p1.y>eps && p0.y<=0) || (p1.y<=0 && p0.y>eps) )
|
||||
&& 0 < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) )
|
||||
1
|
||||
]
|
||||
)
|
||||
2*(len(cross)%2)-1;;
|
||||
|
||||
//**
|
||||
// this function should be optimized avoiding the call of other functions
|
||||
|
||||
// Function: polygon_is_clockwise()
|
||||
// Usage:
|
||||
// polygon_is_clockwise(path);
|
||||
// polygon_is_clockwise(poly);
|
||||
// Description:
|
||||
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
|
||||
// Results for complex (self-intersecting) polygon are indeterminate.
|
||||
// Arguments:
|
||||
// path = The list of 2D path points for the perimeter of the polygon.
|
||||
function polygon_is_clockwise(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d path")
|
||||
polygon_area(path, signed=true)<0;
|
||||
// poly = The list of 2D path points for the perimeter of the polygon.
|
||||
function polygon_is_clockwise(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d path")
|
||||
polygon_area(poly, signed=true)<0;
|
||||
|
||||
|
||||
// Function: clockwise_polygon()
|
||||
// Usage:
|
||||
// clockwise_polygon(path);
|
||||
// clockwise_polygon(poly);
|
||||
// Description:
|
||||
// Given a 2D polygon path, returns the clockwise winding version of that path.
|
||||
function clockwise_polygon(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(path, signed=true)<0 ? path : reverse_polygon(path);
|
||||
function clockwise_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(poly, signed=true)<0 ? poly : reverse_polygon(poly);
|
||||
|
||||
|
||||
// Function: ccw_polygon()
|
||||
// Usage:
|
||||
// ccw_polygon(path);
|
||||
// ccw_polygon(poly);
|
||||
// Description:
|
||||
// Given a 2D polygon path, returns the counter-clockwise winding version of that path.
|
||||
function ccw_polygon(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(path, signed=true)<0 ? reverse_polygon(path) : path;
|
||||
// Given a 2D polygon poly, returns the counter-clockwise winding version of that poly.
|
||||
function ccw_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(poly, signed=true)<0 ? reverse_polygon(poly) : poly;
|
||||
|
||||
|
||||
// Function: reverse_polygon()
|
||||
@@ -1810,7 +1818,7 @@ function reverse_polygon(poly) =
|
||||
function polygon_normal(poly) =
|
||||
assert(is_path(poly,dim=3), "Invalid 3D polygon." )
|
||||
let(
|
||||
poly = path3d(cleanup_path(poly)),
|
||||
poly = cleanup_path(poly),
|
||||
p0 = poly[0],
|
||||
n = sum([
|
||||
for (i=[1:1:len(poly)-2])
|
||||
@@ -1926,17 +1934,6 @@ function split_polygons_at_each_x(polys, xs, _i=0) =
|
||||
], xs, _i=_i+1
|
||||
);
|
||||
|
||||
//***
|
||||
// all the functions split_polygons_at_ may generate non simple polygons even from simple polygon inputs:
|
||||
// split_polygons_at_each_y([[[-1,1,0],[0,0,0],[1,1,0],[1,-1,0],[-1,-1,0]]],[0])
|
||||
// produces:
|
||||
// [ [[0, 0, 0], [1, 0, 0], [1, -1, 0], [-1, -1, 0], [-1, 0, 0]]
|
||||
// [[-1, 1, 0], [0, 0, 0], [1, 1, 0], [1, 0, 0], [-1, 0, 0]] ]
|
||||
// and the second polygon is self-intersecting
|
||||
// besides, it fails in some simple cases as triangles:
|
||||
// split_polygons_at_each_y([ [-1,-1,0],[1,-1,0],[0,1,0]],[0])==[]
|
||||
// this last failure may be fatal for vnf_bend
|
||||
|
||||
|
||||
// Function: split_polygons_at_each_y()
|
||||
// Usage:
|
||||
@@ -1947,9 +1944,9 @@ function split_polygons_at_each_x(polys, xs, _i=0) =
|
||||
// polys = A list of 3D polygons to split.
|
||||
// ys = A list of scalar Y values to split at.
|
||||
function split_polygons_at_each_y(polys, ys, _i=0) =
|
||||
assert( is_consistent(polys) && is_path(poly[0],dim=3) ,
|
||||
"The input list should contains only 3D polygons." )
|
||||
assert( is_finite(ys), "The split value list should contain only numbers." )
|
||||
// assert( is_consistent(polys) && is_path(polys[0],dim=3) , // not all polygons should have the same length!!!
|
||||
// "The input list should contains only 3D polygons." )
|
||||
assert( is_finite(ys) || is_vector(ys), "The split value list should contain only numbers." ) //***
|
||||
_i>=len(ys)? polys :
|
||||
split_polygons_at_each_y(
|
||||
[
|
||||
@@ -1980,5 +1977,4 @@ function split_polygons_at_each_z(polys, zs, _i=0) =
|
||||
);
|
||||
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
Reference in New Issue
Block a user