Reduced s= to 100 for half functions. Fixed asserts for extruded region/path attachment geometries.

This commit is contained in:
Garth Minette 2021-11-16 19:40:50 -08:00
parent 379678127f
commit e90b56f76c
2 changed files with 19 additions and 19 deletions

View File

@ -1756,7 +1756,7 @@ function _find_anchor(anchor, geom) =
pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,midy]) pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,midy])
) [anchor, pos, anchor, 0] ) [anchor, pos, anchor, 0]
) : type == "xrgn_isect"? ( //region ) : type == "xrgn_isect"? ( //region
assert(anchor.z==0, "The Z component of an anchor for a 2D shape must be 0.") assert(in_list(anchor.z,[-1,0,1]), "The Z component of an anchor for an extruded 2D shape must be -1, 0, or 1.")
let( let(
rgn_raw = move(-point2d(cp), p=geom[1]), rgn_raw = move(-point2d(cp), p=geom[1]),
l = geom[2], l = geom[2],
@ -1786,7 +1786,7 @@ function _find_anchor(anchor, geom) =
oang = approx(xyvec, [0,0])? 0 : atan2(xyvec.y, xyvec.x) + 90 oang = approx(xyvec, [0,0])? 0 : atan2(xyvec.y, xyvec.x) + 90
) [anchor, pos, vec, oang] ) [anchor, pos, vec, oang]
) : type == "xrgn_extent"? ( //region ) : type == "xrgn_extent"? ( //region
assert(anchor.z==0, "The Z component of an anchor for a 2D shape must be 0.") assert(in_list(anchor.z,[-1,0,1]), "The Z component of an anchor for an extruded 2D shape must be -1, 0, or 1.")
let( let(
rgn_raw = geom[1], l = geom[2], rgn_raw = geom[1], l = geom[2],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw], rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],

View File

@ -111,7 +111,7 @@ module bounding_box(excess=0, planar=false) {
// p = path, region or VNF to slice. (Function version) // p = path, region or VNF to slice. (Function version)
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP) // v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. Default: [0,0,0] // cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. Default: [0,0,0]
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Ignored for function version. Default: 1000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Ignored for function version. Default: 100
// planar = If true, perform a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively. // planar = If true, perform a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
// //
// Examples: // Examples:
@ -119,7 +119,7 @@ module bounding_box(excess=0, planar=false) {
// half_of(DOWN+LEFT, s=200) sphere(d=150); // half_of(DOWN+LEFT, s=200) sphere(d=150);
// Example(2D): // Example(2D):
// half_of([1,1], planar=true) circle(d=50); // half_of([1,1], planar=true) circle(d=50);
module half_of(v=UP, cp, s=1000, planar=false) module half_of(v=UP, cp, s=100, planar=false)
{ {
cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] : cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] :
is_vector(cp)? cp : is_vector(cp)? cp :
@ -210,7 +210,7 @@ function half_of(p, v=UP, cp) =
// //
// Arguments: // Arguments:
// p = VNF, region or path to slice (function version) // p = VNF, region or path to slice (function version)
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100
// x = The X coordinate of the cut-plane. Default: 0 // x = The X coordinate of the cut-plane. Default: 0
// planar = If true, perform a 2D operation. // planar = If true, perform a 2D operation.
// //
@ -219,7 +219,7 @@ function half_of(p, v=UP, cp) =
// left_half(x=-8) sphere(r=20); // left_half(x=-8) sphere(r=20);
// Example(2D): // Example(2D):
// left_half(planar=true) circle(r=20); // left_half(planar=true) circle(r=20);
module left_half(s=1000, x=0, planar=false) module left_half(s=100, x=0, planar=false)
{ {
dir = LEFT; dir = LEFT;
difference() { difference() {
@ -250,7 +250,7 @@ function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
// //
// Arguments: // Arguments:
// p = VNF, region or path to slice (function version) // p = VNF, region or path to slice (function version)
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100
// x = The X coordinate of the cut-plane. Default: 0 // x = The X coordinate of the cut-plane. Default: 0
// planar = If true perform a 2D operation. // planar = If true perform a 2D operation.
// //
@ -259,7 +259,7 @@ function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
// right_half(x=-5) sphere(r=20); // right_half(x=-5) sphere(r=20);
// Example(2D): // Example(2D):
// right_half(planar=true) circle(r=20); // right_half(planar=true) circle(r=20);
module right_half(s=1000, x=0, planar=false) module right_half(s=100, x=0, planar=false)
{ {
dir = RIGHT; dir = RIGHT;
difference() { difference() {
@ -290,7 +290,7 @@ function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]);
// //
// Arguments: // Arguments:
// p = VNF, region or path to slice (function version) // p = VNF, region or path to slice (function version)
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100
// y = The Y coordinate of the cut-plane. Default: 0 // y = The Y coordinate of the cut-plane. Default: 0
// planar = If true perform a 2D operation. // planar = If true perform a 2D operation.
// //
@ -299,7 +299,7 @@ function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]);
// front_half(y=5) sphere(r=20); // front_half(y=5) sphere(r=20);
// Example(2D): // Example(2D):
// front_half(planar=true) circle(r=20); // front_half(planar=true) circle(r=20);
module front_half(s=1000, y=0, planar=false) module front_half(s=100, y=0, planar=false)
{ {
dir = FWD; dir = FWD;
difference() { difference() {
@ -330,7 +330,7 @@ function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]);
// //
// Arguments: // Arguments:
// p = VNF, region or path to slice (function version) // p = VNF, region or path to slice (function version)
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100
// y = The Y coordinate of the cut-plane. Default: 0 // y = The Y coordinate of the cut-plane. Default: 0
// planar = If true perform a 2D operation. // planar = If true perform a 2D operation.
// //
@ -339,7 +339,7 @@ function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]);
// back_half(y=8) sphere(r=20); // back_half(y=8) sphere(r=20);
// Example(2D): // Example(2D):
// back_half(planar=true) circle(r=20); // back_half(planar=true) circle(r=20);
module back_half(s=1000, y=0, planar=false) module back_half(s=100, y=0, planar=false)
{ {
dir = BACK; dir = BACK;
difference() { difference() {
@ -369,13 +369,13 @@ function back_half(p,y=0) = half_of(p, BACK, [0,y,0]);
// //
// Arguments: // Arguments:
// p = VNF, region or path to slice (function version) // p = VNF, region or path to slice (function version)
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100
// z = The Z coordinate of the cut-plane. Default: 0 // z = The Z coordinate of the cut-plane. Default: 0
// //
// Examples: // Examples:
// bottom_half() sphere(r=20); // bottom_half() sphere(r=20);
// bottom_half(z=-10) sphere(r=20); // bottom_half(z=-10) sphere(r=20);
module bottom_half(s=1000, z=0) module bottom_half(s=100, z=0)
{ {
dir = DOWN; dir = DOWN;
difference() { difference() {
@ -400,13 +400,13 @@ function bottom_half(p,z=0) = half_of(p,BOTTOM,[0,0,z]);
// //
// Arguments: // Arguments:
// p = VNF, region or path to slice (function version) // p = VNF, region or path to slice (function version)
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100
// z = The Z coordinate of the cut-plane. Default: 0 // z = The Z coordinate of the cut-plane. Default: 0
// //
// Examples(Spin,VPD=175): // Examples(Spin,VPD=175):
// top_half() sphere(r=20); // top_half() sphere(r=20);
// top_half(z=5) sphere(r=20); // top_half(z=5) sphere(r=20);
module top_half(s=1000, z=0) module top_half(s=100, z=0)
{ {
dir = UP; dir = UP;
difference() { difference() {
@ -770,9 +770,9 @@ module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, hi
// Description: // Description:
// Extrudes 2D children along a 3D path. This may be slow. // Extrudes 2D children along a 3D path. This may be slow.
// Arguments: // Arguments:
// path = array of points for the bezier path to extrude along. // path = Array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through. // convexity = Maximum number of walls a ray can pass through.
// clipsize = increase if artifacts are left. Default: 1000 // clipsize = Increase if artifacts are left. Default: 100
// Example(FlatSpin,VPD=600,VPT=[75,16,20]): // Example(FlatSpin,VPD=600,VPT=[75,16,20]):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ]; // path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// path_extrude(path) circle(r=10, $fn=6); // path_extrude(path) circle(r=10, $fn=6);