mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 21:58:27 +01:00
Introduces convex collision and distance
This commit is contained in:
parent
3a857d89ec
commit
eccb006f85
418
geometry.scad
418
geometry.scad
@ -19,15 +19,8 @@
|
||||
// edge = Array of two points forming the line segment to test against.
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
function point_on_segment2d(point, edge, eps=EPSILON) =
|
||||
assert( is_vector(point,2), "Invalid point." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
assert( _valid_line(edge,2,eps=eps), "Invalid segment." )
|
||||
let( dp = point-edge[0],
|
||||
de = edge[1]-edge[0],
|
||||
ne = norm(de) )
|
||||
( dp*de >= -eps*ne )
|
||||
&& ( (dp-de)*de <= eps*ne ) // point projects on the segment
|
||||
&& _dist2line(point-edge[0],unit(de))<eps; // point is on the line
|
||||
point_segment_distance(point, edge)<eps;
|
||||
|
||||
|
||||
//Internal - distance from point `d` to the line passing through the origin with unit direction n
|
||||
@ -44,7 +37,7 @@ function _point_above_below_segment(point, edge) =
|
||||
//Internal
|
||||
function _valid_line(line,dim,eps=EPSILON) =
|
||||
is_matrix(line,2,dim)
|
||||
&& ! approx(norm(line[1]-line[0]), 0, eps);
|
||||
&& norm(line[1]-line[0])>eps*max(norm(line[1]),norm(line[0]));
|
||||
|
||||
//Internal
|
||||
function _valid_plane(p, eps=EPSILON) = is_vector(p,4) && ! approx(norm(p),0,eps);
|
||||
@ -85,22 +78,57 @@ function collinear(a, b, c, eps=EPSILON) =
|
||||
: noncollinear_triple(points,error=false,eps=eps)==[];
|
||||
|
||||
|
||||
// Function: distance_from_line()
|
||||
// Function: point_line_distance()
|
||||
// Usage:
|
||||
// distance_from_line(line, pt);
|
||||
// point_line_distance(line, pt);
|
||||
// Description:
|
||||
// Finds the perpendicular distance of a point `pt` from the line `line`.
|
||||
// Arguments:
|
||||
// line = A list of two points, defining a line that both are on.
|
||||
// pt = A point to find the distance of from the line.
|
||||
// Example:
|
||||
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
|
||||
function distance_from_line(line, pt) =
|
||||
// dist = point_line_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
|
||||
function point_line_distance(pt, line) =
|
||||
assert( _valid_line(line) && is_vector(pt,len(line[0])),
|
||||
"Invalid line, invalid point or incompatible dimensions." )
|
||||
_dist2line(pt-line[0],unit(line[1]-line[0]));
|
||||
|
||||
|
||||
// Function: point_segment_distance()
|
||||
// Usage:
|
||||
// dist = point_segment_distance(pt, seg);
|
||||
// Description:
|
||||
// Returns the closest distance of the given point to the given line segment.
|
||||
// Arguments:
|
||||
// pt = The point to check the distance of.
|
||||
// seg = The two points representing the line segment to check the distance of.
|
||||
// Example:
|
||||
// dist = point_segment_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
|
||||
// dist2 = point_segment_distance([14,3], [[-10,0], [10,0]]); // Returns: 5
|
||||
function point_segment_distance(pt, seg) =
|
||||
assert( is_matrix(concat([pt],seg),3),
|
||||
"Input should be a point and a valid segment with the dimension equal to the point." )
|
||||
norm(seg[0]-seg[1]) < EPSILON ? norm(pt-seg[0]) :
|
||||
norm(pt-segment_closest_point(seg,pt));
|
||||
|
||||
|
||||
// Function: segment_distance()
|
||||
// Usage:
|
||||
// dist = segment_distance(seg1, seg2);
|
||||
// Description:
|
||||
// Returns the closest distance of the two given line segments.
|
||||
// Arguments:
|
||||
// seg1 = The list of two points representing the first line segment to check the distance of.
|
||||
// seg2 = The list of two points representing the second line segment to check the distance of.
|
||||
// Example:
|
||||
// dist = segment_distance([[-14,3], [-15,9]], [[-10,0], [10,0]]); // Returns: 5
|
||||
// dist2 = segment_distance([[-5,5], [5,-5]], [[-10,3], [10,-3]]); // Returns: 0
|
||||
function segment_distance(seg1, seg2) =
|
||||
assert( is_matrix(concat(seg1,seg2),4),
|
||||
"Inputs should be two valid segments." )
|
||||
convex_distance(seg1,seg2);
|
||||
|
||||
|
||||
// Function: line_normal()
|
||||
// Usage:
|
||||
// line_normal([P1,P2])
|
||||
@ -436,17 +464,9 @@ function ray_closest_point(ray,pt) =
|
||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
||||
function segment_closest_point(seg,pt) =
|
||||
assert(_valid_line(seg), "Invalid segment." )
|
||||
assert(len(pt)==len(seg[0]), "Incompatible dimensions." )
|
||||
approx(seg[0],seg[1])? seg[0] :
|
||||
let(
|
||||
seglen = norm(seg[1]-seg[0]),
|
||||
segvec = (seg[1]-seg[0])/seglen,
|
||||
projection = (pt-seg[0]) * segvec
|
||||
)
|
||||
projection<=0 ? seg[0] :
|
||||
projection>=seglen ? seg[1] :
|
||||
seg[0] + projection*segvec;
|
||||
assert( is_matrix(concat([pt],seg),3) ,
|
||||
"Invalid point or segment or incompatible dimensions." )
|
||||
pt + _closest_s1([seg[0]-pt, seg[1]-pt])[0];
|
||||
|
||||
|
||||
// Function: line_from_points()
|
||||
@ -454,7 +474,7 @@ function segment_closest_point(seg,pt) =
|
||||
// line_from_points(points, [fast], [eps]);
|
||||
// Description:
|
||||
// Given a list of 2 or more collinear points, returns a line containing them.
|
||||
// If `fast` is false and the points are coincident, then `undef` is returned.
|
||||
// If `fast` is false and the points are coincident or non-collinear, then `undef` is returned.
|
||||
// if `fast` is true, then the collinearity test is skipped and a line passing through 2 distinct arbitrary points is returned.
|
||||
// Arguments:
|
||||
// points = The list of points to find the line through.
|
||||
@ -464,7 +484,7 @@ function line_from_points(points, fast=false, eps=EPSILON) =
|
||||
assert( is_path(points,dim=undef), "Improper point list." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
let( pb = furthest_point(points[0],points) )
|
||||
approx(norm(points[pb]-points[0]),0) ? undef :
|
||||
norm(points[pb]-points[0])<eps*max(norm(points[pb]),norm(points[0])) ? undef :
|
||||
fast || collinear(points) ? [points[pb], points[0]] : undef;
|
||||
|
||||
|
||||
@ -1072,9 +1092,9 @@ function plane_point_nearest_origin(plane) =
|
||||
point3d(plane) * plane[3];
|
||||
|
||||
|
||||
// Function: distance_from_plane()
|
||||
// Function: point_plane_distance()
|
||||
// Usage:
|
||||
// distance_from_plane(plane, point)
|
||||
// point_plane_distance(plane, point)
|
||||
// Description:
|
||||
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
||||
// is Ax+By+Cz=D, determines how far from that plane the given point is.
|
||||
@ -1085,7 +1105,7 @@ function plane_point_nearest_origin(plane) =
|
||||
// Arguments:
|
||||
// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane.
|
||||
// point = The distance evaluation point.
|
||||
function distance_from_plane(plane, point) =
|
||||
function point_plane_distance(plane, point) =
|
||||
assert( _valid_plane(plane), "Invalid input plane." )
|
||||
assert( is_vector(point,3), "The point should be a 3D point." )
|
||||
let( plane = normalize_plane(plane) )
|
||||
@ -1113,7 +1133,7 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) =
|
||||
// Description:
|
||||
// Returns a new representation [A,B,C,D] of `plane` where norm([A,B,C]) is equal to one.
|
||||
function normalize_plane(plane) =
|
||||
assert( _valid_plane(plane), "Invalid plane." )
|
||||
assert( _valid_plane(plane), str("Invalid plane. ",plane ) )
|
||||
plane/norm(point3d(plane));
|
||||
|
||||
|
||||
@ -1121,12 +1141,12 @@ function normalize_plane(plane) =
|
||||
// Usage:
|
||||
// angle = plane_line_angle(plane,line);
|
||||
// Description:
|
||||
// Compute the angle between a plane [A, B, C, D] and a line, specified as a pair of points [p1,p2].
|
||||
// Compute the angle between a plane [A, B, C, D] and a 3d line, specified as a pair of 3d points [p1,p2].
|
||||
// The resulting angle is signed, with the sign positive if the vector p2-p1 lies on
|
||||
// the same side of the plane as the plane's normal vector.
|
||||
function plane_line_angle(plane, line) =
|
||||
assert( _valid_plane(plane), "Invalid plane." )
|
||||
assert( _valid_line(line), "Invalid line." )
|
||||
assert( _valid_line(line,dim=3), "Invalid 3d line." )
|
||||
let(
|
||||
linedir = unit(line[1]-line[0]),
|
||||
normal = plane_normal(plane),
|
||||
@ -1151,7 +1171,7 @@ function plane_line_angle(plane, line) =
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
assert(_valid_plane(plane,eps=eps) && _valid_line(line,dim=3,eps=eps), "Invalid plane and/or line.")
|
||||
assert(_valid_plane(plane,eps=eps) && _valid_line(line,dim=3,eps=eps), "Invalid plane and/or 3d line.")
|
||||
assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition.")
|
||||
let(
|
||||
bounded = is_list(bounded)? bounded : [bounded, bounded],
|
||||
@ -1182,7 +1202,7 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
assert(is_path(poly,dim=3), "Invalid polygon." )
|
||||
assert(!is_list(bounded) || len(bounded)==2, "Invalid bound condition(s).")
|
||||
assert(_valid_line(line,dim=3,eps=eps), "Invalid line." )
|
||||
assert(_valid_line(line,dim=3,eps=eps), "Invalid 3D line." )
|
||||
let(
|
||||
bounded = is_list(bounded)? bounded : [bounded, bounded],
|
||||
poly = deduplicate(poly),
|
||||
@ -1310,7 +1330,7 @@ function points_on_plane(points, plane, eps=EPSILON) =
|
||||
// plane = The [A,B,C,D] coefficients for the first plane equation `Ax+By+Cz=D`.
|
||||
// point = The 3D point to test.
|
||||
function in_front_of_plane(plane, point) =
|
||||
distance_from_plane(plane, point) > EPSILON;
|
||||
point_plane_distance(plane, point) > EPSILON;
|
||||
|
||||
|
||||
|
||||
@ -1636,7 +1656,7 @@ function circle_circle_tangents(c1,r1,c2,r2,d1,d2) =
|
||||
// eps = epsilon used for identifying the case with one solution. Default: 1e-9
|
||||
function circle_line_intersection(c,r,d,line,bounded=false,eps=EPSILON) =
|
||||
let(r=get_radius(r=r,d=d,dflt=undef))
|
||||
assert(_valid_line(line,2), "Input 'line' is not a valid 2d line.")
|
||||
assert(_valid_line(line,2), "Invalid 2d line.")
|
||||
assert(is_vector(c,2), "Circle center must be a 2-vector")
|
||||
assert(is_num(r) && r>0, "Radius must be positive")
|
||||
assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition")
|
||||
@ -1680,14 +1700,14 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
||||
pb = points[b],
|
||||
nrm = norm(pa-pb)
|
||||
)
|
||||
approx(nrm, 0)
|
||||
nrm <= eps*max(norm(pa),norm(pb))
|
||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
||||
[]
|
||||
: let(
|
||||
n = (pb-pa)/nrm,
|
||||
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
||||
)
|
||||
max(distlist)<eps*nrm
|
||||
max(distlist) < eps*nrm
|
||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
||||
[]
|
||||
: [0,b,max_index(distlist)];
|
||||
@ -1703,12 +1723,13 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
||||
// Arguments:
|
||||
// pts = List of points.
|
||||
function pointlist_bounds(pts) =
|
||||
assert(is_matrix(pts) && len(pts)>0 && len(pts[0])>0 , "Invalid pointlist." )
|
||||
let(ptsT = transpose(pts))
|
||||
[
|
||||
[for(row=ptsT) min(row)],
|
||||
[for(row=ptsT) max(row)]
|
||||
];
|
||||
assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." )
|
||||
let(
|
||||
select = ident(len(pts[0])),
|
||||
spread = [for(i=[0:len(pts[0])-1])
|
||||
let( spreadi = pts*select[i] )
|
||||
[min(spreadi), max(spreadi)] ] )
|
||||
transpose(spread);
|
||||
|
||||
|
||||
// Function: closest_point()
|
||||
@ -1747,7 +1768,7 @@ function furthest_point(pt, points) =
|
||||
// area = polygon_area(poly);
|
||||
// Description:
|
||||
// Given a 2D or 3D planar polygon, returns the area of that polygon.
|
||||
// If the polygon is self-crossing, the results are undefined. For non-planar 3D polygon the result is [].
|
||||
// If the polygon is self-crossing, the results are undefined. For non-planar 3D polygon the result is `undef`.
|
||||
// When `signed` is true, a signed area is returned; a positive area indicates a clockwise polygon.
|
||||
// Arguments:
|
||||
// poly = Polygon to compute the area of.
|
||||
@ -1759,53 +1780,17 @@ function polygon_area(poly, signed=false) =
|
||||
? let( total = sum([for(i=[1:1:len(poly)-2]) cross(poly[i]-poly[0],poly[i+1]-poly[0]) ])/2 )
|
||||
signed ? total : abs(total)
|
||||
: let( plane = plane_from_polygon(poly) )
|
||||
plane==[]? [] :
|
||||
plane==[]? undef :
|
||||
let(
|
||||
n = plane_normal(plane),
|
||||
total = sum([
|
||||
for(i=[1:1:len(poly)-2])
|
||||
let(
|
||||
v1 = poly[i] - poly[0],
|
||||
v2 = poly[i+1] - poly[0]
|
||||
)
|
||||
cross(v1,v2)
|
||||
])* n/2
|
||||
total =
|
||||
sum([ for(i=[1:1:len(poly)-2])
|
||||
cross(poly[i]-poly[0], poly[i+1]-poly[0])
|
||||
]) * n/2
|
||||
)
|
||||
signed ? total : abs(total);
|
||||
|
||||
|
||||
// Function: is_convex_polygon()
|
||||
// Usage:
|
||||
// is_convex_polygon(poly);
|
||||
// Description:
|
||||
// Returns true if the given 2D or 3D polygon is convex.
|
||||
// The result is meaningless if the polygon is not simple (self-intersecting) or non coplanar.
|
||||
// If the points are collinear an error is generated.
|
||||
// Arguments:
|
||||
// poly = Polygon to check.
|
||||
// eps = Tolerance for the collinearity test. Default: EPSILON.
|
||||
// Example:
|
||||
// is_convex_polygon(circle(d=50)); // Returns: true
|
||||
// is_convex_polygon(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
|
||||
// Example:
|
||||
// spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]];
|
||||
// is_convex_polygon(spiral); // Returns: false
|
||||
function is_convex_polygon(poly,eps=EPSILON) =
|
||||
assert(is_path(poly), "The input should be a 2D or 3D polygon." )
|
||||
let( lp = len(poly),
|
||||
p0 = poly[0] )
|
||||
assert( lp>=3 , "A polygon must have at least 3 points" )
|
||||
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
||||
len(p0)==2
|
||||
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" )
|
||||
min(crosses) >=0 || max(crosses)<=0
|
||||
: let( prod = crosses*sum(crosses),
|
||||
minc = min(prod),
|
||||
maxc = max(prod) )
|
||||
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" )
|
||||
minc>=0 || maxc<=0;
|
||||
|
||||
|
||||
// Function: polygon_shift()
|
||||
// Usage:
|
||||
// polygon_shift(poly, i);
|
||||
@ -1972,9 +1957,9 @@ function centroid(poly, eps=EPSILON) =
|
||||
// Returns -1 if the point is outside the polygon.
|
||||
// Returns 0 if the point is on the boundary.
|
||||
// Returns 1 if the point lies in the interior.
|
||||
// The polygon does not need to be simple: it can have self-intersections.
|
||||
// The polygon does not need to be simple: it may have self-intersections.
|
||||
// But the polygon cannot have holes (it must be simply connected).
|
||||
// Rounding error may give mixed results for points on or near the boundary.
|
||||
// Rounding errors may give mixed results for points on or near the boundary.
|
||||
// Arguments:
|
||||
// point = The 2D point to check position of.
|
||||
// poly = The list of 2D path points forming the perimeter of the polygon.
|
||||
@ -2067,7 +2052,7 @@ function ccw_polygon(poly) =
|
||||
// poly = The list of the path points for the perimeter of the polygon.
|
||||
function reverse_polygon(poly) =
|
||||
assert(is_path(poly), "Input should be a polygon")
|
||||
let(lp=len(poly)) [for (i=idx(poly)) poly[(lp-i)%lp]];
|
||||
[poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ];
|
||||
|
||||
|
||||
// Function: polygon_normal()
|
||||
@ -2075,7 +2060,7 @@ function reverse_polygon(poly) =
|
||||
// n = polygon_normal(poly);
|
||||
// Description:
|
||||
// Given a 3D planar polygon, returns a unit-length normal vector for the
|
||||
// clockwise orientation of the polygon. If the polygon points are collinear, returns [].
|
||||
// clockwise orientation of the polygon. If the polygon points are collinear, returns `undef`.
|
||||
// It doesn't check for coplanarity.
|
||||
// Arguments:
|
||||
// poly = The list of 3D path points for the perimeter of the polygon.
|
||||
@ -2083,7 +2068,7 @@ function polygon_normal(poly) =
|
||||
assert(is_path(poly,dim=3), "Invalid 3D polygon." )
|
||||
len(poly)==3 ? point3d(plane3pt(poly[0],poly[1],poly[2])) :
|
||||
let( triple = sort(noncollinear_triple(poly,error=false)) )
|
||||
triple==[] ? [] :
|
||||
triple==[] ? undef :
|
||||
point3d(plane3pt(poly[triple[0]],poly[triple[1]],poly[triple[2]])) ;
|
||||
|
||||
|
||||
@ -2237,4 +2222,255 @@ function split_polygons_at_each_z(polys, zs, _i=0) =
|
||||
);
|
||||
|
||||
|
||||
|
||||
// Section: Convex Sets
|
||||
|
||||
|
||||
// Function: is_convex_polygon()
|
||||
// Usage:
|
||||
// is_convex_polygon(poly);
|
||||
// Description:
|
||||
// Returns true if the given 2D or 3D polygon is convex.
|
||||
// The result is meaningless if the polygon is not simple (self-intersecting) or non coplanar.
|
||||
// If the points are collinear an error is generated.
|
||||
// Arguments:
|
||||
// poly = Polygon to check.
|
||||
// eps = Tolerance for the collinearity test. Default: EPSILON.
|
||||
// Example:
|
||||
// is_convex_polygon(circle(d=50)); // Returns: true
|
||||
// is_convex_polygon(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
|
||||
// Example:
|
||||
// spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]];
|
||||
// is_convex_polygon(spiral); // Returns: false
|
||||
function is_convex_polygon(poly,eps=EPSILON) =
|
||||
assert(is_path(poly), "The input should be a 2D or 3D polygon." )
|
||||
let( lp = len(poly),
|
||||
p0 = poly[0] )
|
||||
assert( lp>=3 , "A polygon must have at least 3 points" )
|
||||
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
||||
len(p0)==2
|
||||
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" )
|
||||
min(crosses) >=0 || max(crosses)<=0
|
||||
: let( prod = crosses*sum(crosses),
|
||||
minc = min(prod),
|
||||
maxc = max(prod) )
|
||||
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" )
|
||||
minc>=0 || maxc<=0;
|
||||
|
||||
|
||||
// Function: convex_distance()
|
||||
// Usage:
|
||||
// convex_distance(pts1, pts2,<eps=>);
|
||||
// See also:
|
||||
// convex_collision
|
||||
// Description:
|
||||
// Returns the smallest distance between a point in convex hull of `points1`
|
||||
// and a point in the convex hull of `points2`. All the points in the lists
|
||||
// should have the same dimension, either 2D or 3D.
|
||||
// A zero result means the hulls intercept whithin a tolerance `eps`.
|
||||
// Arguments:
|
||||
// points1 - first list of 2d or 3d points.
|
||||
// points2 - second list of 2d or 3d points.
|
||||
// eps - tolerance in distance evaluations. Default: EPSILON.
|
||||
// Example(2D):
|
||||
// pts1 = move([-3,0], p=square(3,center=true));
|
||||
// pts2 = rot(a=45, p=square(2,center=true));
|
||||
// pts3 = [ [2,0], [1,2],[3,2], [3,-2], [1,-2] ];
|
||||
// polygon(pts1);
|
||||
// polygon(pts2);
|
||||
// polygon(pts3);
|
||||
// echo(convex_distance(pts1,pts2)); // Returns: 0.0857864
|
||||
// echo(convex_distance(pts2,pts3)); // Returns: 0
|
||||
// Example(3D):
|
||||
// sphr1 = sphere(2,$fn=10);
|
||||
// sphr2 = move([4,0,0], p=sphr1);
|
||||
// sphr3 = move([4.5,0,0], p=sphr1);
|
||||
// vnf_polyhedron(sphr1);
|
||||
// vnf_polyhedron(sphr2);
|
||||
// echo(convex_distance(sphr1[0], sphr2[0])); // Returns: 0
|
||||
// echo(convex_distance(sphr1[0], sphr3[0])); // Returns: 0.5
|
||||
function convex_distance(points1, points2, eps=EPSILON) =
|
||||
assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])),
|
||||
"The input list should be a consistent non empty list of points of same dimension.")
|
||||
assert(len(points1[0])==2 || len(points1[0])==3 ,
|
||||
"The input points should be 2d or 3d points.")
|
||||
let( d = points1[0]-points2[0] )
|
||||
norm(d)<eps ? 0 :
|
||||
let( v = _support_diff(points1,points2,-d) )
|
||||
norm(_GJK_distance(points1, points2, eps, 0, v, [v]));
|
||||
|
||||
|
||||
// Finds the vector difference between the hulls of the two pointsets by the GJK algorithm
|
||||
// Based on:
|
||||
// http://www.dtecta.com/papers/jgt98convex.pdf
|
||||
function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) =
|
||||
let( nrd = norm(d) ) // distance upper bound
|
||||
nrd<eps ? d :
|
||||
let(
|
||||
v = _support_diff(points1,points2,-d),
|
||||
lbd = max(lbd, d*v/nrd), // distance lower bound
|
||||
close = (nrd-lbd <= eps*nrd)
|
||||
)
|
||||
// v already in the simplex is a degenerence due to numerical errors
|
||||
// and may produce a non-stopping loop
|
||||
close || [for(nv=norm(v), s=simplex) if(norm(s-v)<=eps*nv) 1]!=[] ? d :
|
||||
let( newsplx = _closest_simplex(concat(simplex,[v]),eps) )
|
||||
_GJK_distance(points1, points2, eps, lbd, newsplx[0], newsplx[1]);
|
||||
|
||||
|
||||
// Function: convex_collision()
|
||||
// Usage:
|
||||
// convex_collision(pts1, pts2,<eps=>);
|
||||
// See also:
|
||||
// convex_distance
|
||||
// Description:
|
||||
// Returns `true` if the convex hull of `points1` intercepts the convex hull of `points2`
|
||||
// otherwise, `false`.
|
||||
// All the points in the lists should have the same dimension, either 2D or 3D.
|
||||
// This function is tipically faster than `convex_distance` to find a non-collision.
|
||||
// Arguments:
|
||||
// points1 - first list of 2d or 3d points.
|
||||
// points2 - second list of 2d or 3d points.
|
||||
// eps - tolerance for the intersection tests. Default: EPSILON.
|
||||
// Example(2D):
|
||||
// pts1 = move([-3,0], p=square(3,center=true));
|
||||
// pts2 = rot(a=45, p=square(2,center=true));
|
||||
// pts3 = [ [2,0], [1,2],[3,2], [3,-2], [1,-2] ];
|
||||
// polygon(pts1);
|
||||
// polygon(pts2);
|
||||
// polygon(pts3);
|
||||
// echo(convex_collision(pts1,pts2)); // Returns: false
|
||||
// echo(convex_collision(pts2,pts3)); // Returns: true
|
||||
// Example(3D):
|
||||
// sphr1 = sphere(2,$fn=10);
|
||||
// sphr2 = move([4,0,0], p=sphr1);
|
||||
// sphr3 = move([4.5,0,0], p=sphr1);
|
||||
// vnf_polyhedron(sphr1);
|
||||
// vnf_polyhedron(sphr2);
|
||||
// echo(convex_collision(sphr1[0], sphr2[0])); // Returns: true
|
||||
// echo(convex_collision(sphr1[0], sphr3[0])); // Returns: false
|
||||
//
|
||||
function convex_collision(points1, points2, eps=EPSILON) =
|
||||
assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])),
|
||||
"The input list should be a consistent non empty list of points of same dimension.")
|
||||
assert(len(points1[0])==2 || len(points1[0])==3 ,
|
||||
"The input points should be 2d or 3d points.")
|
||||
let( d = points1[0]-points2[0] )
|
||||
norm(d)<eps ? true :
|
||||
let( v = _support_diff(points1,points2,-d) )
|
||||
_GJK_collide(points1, points2, v, [v], eps);
|
||||
|
||||
|
||||
// Based on the GJK collision algorithms found in:
|
||||
// http://uu.diva-portal.org/smash/get/diva2/FFULLTEXT01.pdf
|
||||
// or
|
||||
// http://www.dtecta.com/papers/jgt98convex.pdf
|
||||
function _GJK_collide(points1, points2, d, simplex, eps=EPSILON) =
|
||||
norm(d) < eps ? true : // does collide
|
||||
let( v = _support_diff(points1,points2,-d) )
|
||||
v*d > eps ? false : // no collision
|
||||
let( newsplx = _closest_simplex(concat(simplex,[v]),eps) )
|
||||
_GJK_collide(points1, points2, newsplx[0], newsplx[1], eps);
|
||||
|
||||
|
||||
// given a simplex s, returns a pair:
|
||||
// - the point of the s closest to the origin
|
||||
// - the smallest sub-simplex of s that contains that point
|
||||
function _closest_simplex(s,eps=EPSILON) =
|
||||
assert(len(s)>=2 && len(s)<=4, "Internal error.")
|
||||
len(s)==2 ? _closest_s1(s,eps) :
|
||||
len(s)==3 ? _closest_s2(s,eps)
|
||||
: _closest_s3(s,eps);
|
||||
|
||||
|
||||
// find the closest to a 1-simplex
|
||||
// Based on: http://uu.diva-portal.org/smash/get/diva2/FFULLTEXT01.pdf
|
||||
function _closest_s1(s,eps=EPSILON) =
|
||||
norm(s[1]-s[0])<eps*(norm(s[0])+norm(s[1]))/2 ? [ s[0], [s[0]] ] :
|
||||
let(
|
||||
c = s[1]-s[0],
|
||||
t = -s[0]*c/(c*c)
|
||||
)
|
||||
t<0 ? [ s[0], [s[0]] ] :
|
||||
t>1 ? [ s[1], [s[1]] ] :
|
||||
[ s[0]+t*c, s ];
|
||||
|
||||
|
||||
// find the closest to a 2-simplex
|
||||
// Based on: http://uu.diva-portal.org/smash/get/diva2/FFULLTEXT01.pdf
|
||||
function _closest_s2(s,eps=EPSILON) =
|
||||
let(
|
||||
dim = len(s[0]),
|
||||
a = dim==3 ? s[0]: [ each s[0], 0] ,
|
||||
b = dim==3 ? s[1]: [ each s[1], 0] ,
|
||||
c = dim==3 ? s[2]: [ each s[2], 0] ,
|
||||
ab = norm(a-b),
|
||||
bc = norm(b-c),
|
||||
ca = norm(c-a),
|
||||
nr = cross(b-a,c-a)
|
||||
)
|
||||
norm(nr) <= eps*max(ab,bc,ca) // degenerate case
|
||||
? let( i = max_index([ab, bc, ca]) )
|
||||
_closest_s1([s[i],s[(i+1)%3]],eps)
|
||||
// considering that s[2] was the last inserted vertex in s,
|
||||
// the only possible outcomes are :
|
||||
// s, [s[0],s[2]] and [s[1],s[2]]
|
||||
: let(
|
||||
class = (cross(nr,a-b)*a<0 ? 1 : 0 )
|
||||
+ (cross(nr,c-a)*a<0 ? 2 : 0 )
|
||||
+ (cross(nr,b-c)*b<0 ? 4 : 0 )
|
||||
)
|
||||
assert( class!=1, "Internal error" )
|
||||
class==0 ? [ nr*(nr*a)/(nr*nr), s] : // origin projects (or is) on the tri
|
||||
// class==1 ? _closest_s1([s[0],s[1]]) :
|
||||
class==2 ? _closest_s1([s[0],s[2]],eps) :
|
||||
class==4 ? _closest_s1([s[1],s[2]],eps) :
|
||||
// class==3 ? a*(a-b)> 0 ? _closest_s1([s[0],s[1]]) : _closest_s1([s[0],s[2]]) :
|
||||
class==3 ? _closest_s1([s[0],s[2]],eps) :
|
||||
// class==5 ? b*(b-c)<=0 ? _closest_s1([s[0],s[1]]) : _closest_s1([s[1],s[2]]) :
|
||||
class==5 ? _closest_s1([s[1],s[2]],eps) :
|
||||
c*(c-a)>0 ? _closest_s1([s[0],s[2]],eps) : _closest_s1([s[1],s[2]],eps);
|
||||
|
||||
|
||||
// find the closest to a 3-simplex
|
||||
// it seems that degenerate 3-simplices are correctly manage without extra code
|
||||
function _closest_s3(s,eps=EPSILON) =
|
||||
assert( len(s[0])==3 && len(s)==4, "Internal error." )
|
||||
let( nr = cross(s[1]-s[0],s[2]-s[0]),
|
||||
sz = [ norm(s[1]-s[0]), norm(s[1]-s[2]), norm(s[2]-s[0]) ] )
|
||||
norm(nr)<eps*max(sz)
|
||||
? let( i = max_index(sz) )
|
||||
_closest_s2([ s[i], s[(i+1)%3], s[3] ], eps) // degenerate case
|
||||
// considering that s[3] was the last inserted vertex in s,
|
||||
// the only possible outcomes will be:
|
||||
// s or some of the 3 triangles of s containing s[3]
|
||||
: let(
|
||||
tris = [ [s[0], s[1], s[3]],
|
||||
[s[1], s[2], s[3]],
|
||||
[s[2], s[0], s[3]] ],
|
||||
cntr = sum(s)/4,
|
||||
// indicator of the tris facing the origin
|
||||
facing = [for(i=[0:2])
|
||||
let( nrm = _tri_normal(tris[i]) )
|
||||
if( ((nrm*(s[i]-cntr))>0)==(nrm*s[i]<0) ) i ]
|
||||
)
|
||||
len(facing)==0 ? [ [0,0,0], s ] : // origin is inside the simplex
|
||||
len(facing)==1 ? _closest_s2(tris[facing[0]], eps) :
|
||||
let( // look for the origin-facing tri closest to the origin
|
||||
closest = [for(i=facing) _closest_s2(tris[i], eps) ],
|
||||
dist = [for(cl=closest) norm(cl[0]) ],
|
||||
nearest = min_index(dist)
|
||||
)
|
||||
closest[nearest];
|
||||
|
||||
|
||||
function _tri_normal(tri) = cross(tri[1]-tri[0],tri[2]-tri[0]);
|
||||
|
||||
|
||||
function _support_diff(p1,p2,d) =
|
||||
let( p1d = p1*d, p2d = p2*d )
|
||||
p1[search(max(p1d),p1d,1)[0]] - p2[search(min(p2d),p2d,1)[0]];
|
||||
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
@ -9,7 +9,9 @@ include <../std.scad>
|
||||
test_point_on_segment2d();
|
||||
test_point_left_of_line2d();
|
||||
test_collinear();
|
||||
test_distance_from_line();
|
||||
test_point_line_distance();
|
||||
test_point_segment_distance();
|
||||
test_segment_distance();
|
||||
test_line_normal();
|
||||
test_line_intersection();
|
||||
//test_line_ray_intersection();
|
||||
@ -44,7 +46,7 @@ test_plane_normal();
|
||||
test_plane_offset();
|
||||
test_projection_on_plane();
|
||||
test_plane_point_nearest_origin();
|
||||
test_distance_from_plane();
|
||||
test_point_plane_distance();
|
||||
|
||||
test__general_plane_line_intersection();
|
||||
test_plane_line_angle();
|
||||
@ -88,7 +90,7 @@ test_cleanup_path();
|
||||
test_simplify_path();
|
||||
test_simplify_path_indexed();
|
||||
test_is_region();
|
||||
|
||||
test_convex_distance();
|
||||
|
||||
// to be used when there are two alternative symmetrical outcomes
|
||||
// from a function like a plane output; v must be a vector
|
||||
@ -230,7 +232,7 @@ module test__general_plane_line_intersection() {
|
||||
interspoint = line1[0]+inters1[1]*(line1[1]-line1[0]);
|
||||
assert_approx(inters1[0],interspoint, info1);
|
||||
assert_approx(point3d(plane1)*inters1[0], plane1[3], info1); // interspoint on the plane
|
||||
assert_approx(distance_from_plane(plane1, inters1[0]), 0, info1); // inters1[0] on the plane
|
||||
assert_approx(point_plane_distance(plane1, inters1[0]), 0, info1); // inters1[0] on the plane
|
||||
}
|
||||
|
||||
// line parallel to the plane
|
||||
@ -351,13 +353,35 @@ module test_collinear() {
|
||||
*test_collinear();
|
||||
|
||||
|
||||
module test_distance_from_line() {
|
||||
assert(abs(distance_from_line([[-10,-10,-10], [10,10,10]], [1,1,1])) < EPSILON);
|
||||
assert(abs(distance_from_line([[-10,-10,-10], [10,10,10]], [-1,-1,-1])) < EPSILON);
|
||||
assert(abs(distance_from_line([[-10,-10,-10], [10,10,10]], [1,-1,0]) - sqrt(2)) < EPSILON);
|
||||
assert(abs(distance_from_line([[-10,-10,-10], [10,10,10]], [8,-8,0]) - 8*sqrt(2)) < EPSILON);
|
||||
module test_point_line_distance() {
|
||||
assert_approx(point_line_distance([1,1,1], [[-10,-10,-10], [10,10,10]]), 0);
|
||||
assert_approx(point_line_distance([-1,-1,-1], [[-10,-10,-10], [10,10,10]]), 0);
|
||||
assert_approx(point_line_distance([1,-1,0], [[-10,-10,-10], [10,10,10]]), sqrt(2));
|
||||
assert_approx(point_line_distance([8,-8,0], [[-10,-10,-10], [10,10,10]]), 8*sqrt(2));
|
||||
}
|
||||
*test_distance_from_line();
|
||||
*test_point_line_distance();
|
||||
|
||||
|
||||
module test_point_segment_distance() {
|
||||
assert_approx(point_segment_distance([3,8], [[-10,0], [10,0]]), 8);
|
||||
assert_approx(point_segment_distance([14,3], [[-10,0], [10,0]]), 5);
|
||||
}
|
||||
*test_point_segment_distance();
|
||||
|
||||
|
||||
module test_segment_distance() {
|
||||
assert_approx(segment_distance([[-14,3], [-14,9]], [[-10,0], [10,0]]), 5);
|
||||
assert_approx(segment_distance([[-14,3], [-15,9]], [[-10,0], [10,0]]), 5);
|
||||
assert_approx(segment_distance([[14,3], [14,9]], [[-10,0], [10,0]]), 5);
|
||||
assert_approx(segment_distance([[-14,-3], [-14,-9]], [[-10,0], [10,0]]), 5);
|
||||
assert_approx(segment_distance([[-14,-3], [-15,-9]], [[-10,0], [10,0]]), 5);
|
||||
assert_approx(segment_distance([[14,-3], [14,-9]], [[-10,0], [10,0]]), 5);
|
||||
assert_approx(segment_distance([[14,3], [14,-3]], [[-10,0], [10,0]]), 4);
|
||||
assert_approx(segment_distance([[-14,3], [-14,-3]], [[-10,0], [10,0]]), 4);
|
||||
assert_approx(segment_distance([[-6,5], [4,-5]], [[-10,0], [10,0]]), 0);
|
||||
assert_approx(segment_distance([[-5,5], [5,-5]], [[-10,3], [10,-3]]), 0);
|
||||
}
|
||||
*test_segment_distance();
|
||||
|
||||
|
||||
module test_line_normal() {
|
||||
@ -713,12 +737,12 @@ module test_plane_normal() {
|
||||
*test_plane_normal();
|
||||
|
||||
|
||||
module test_distance_from_plane() {
|
||||
module test_point_plane_distance() {
|
||||
plane1 = plane3pt([-10,0,0], [0,10,0], [10,0,0]);
|
||||
assert(distance_from_plane(plane1, [0,0,5]) == 5);
|
||||
assert(distance_from_plane(plane1, [5,5,8]) == 8);
|
||||
assert(point_plane_distance(plane1, [0,0,5]) == 5);
|
||||
assert(point_plane_distance(plane1, [5,5,8]) == 8);
|
||||
}
|
||||
*test_distance_from_plane();
|
||||
*test_point_plane_distance();
|
||||
|
||||
|
||||
module test_polygon_line_intersection() {
|
||||
@ -1051,6 +1075,20 @@ module test_is_region() {
|
||||
}
|
||||
*test_is_region();
|
||||
|
||||
|
||||
module test_convex_distance() {
|
||||
c1 = circle(10,$fn=24);
|
||||
c2 = move([15,0], p=c1);
|
||||
assert(convex_distance(c1, c2)==0);
|
||||
c3 = move([22,0],c1);
|
||||
assert(abs(convex_distance(c1, c3)-2)<EPSILON);
|
||||
s1 = sphere(10,$fn=4);
|
||||
s2 = move([15,0], p=s1);
|
||||
assert_approx(convex_distance(s1[0], s2[0]), 0.857864376269);
|
||||
s3 = move([25.3,0],s1);
|
||||
assert_approx(convex_distance(s1[0], s3[0]), 11.1578643763);
|
||||
s4 = move([30,25],s1);
|
||||
assert_approx(convex_distance(s1[0], s4[0]), 28.8908729653);
|
||||
}
|
||||
*test_convex_distance();
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
Loading…
x
Reference in New Issue
Block a user