From f509c0eeff843535eef8c020d4b8552fa49950ce Mon Sep 17 00:00:00 2001 From: Adrian Mariano Date: Sat, 4 Sep 2021 22:10:25 -0400 Subject: [PATCH] Add path_text() Move some functions in path.scad to "functions" section --- paths.scad | 798 +++++++++++++++++++++++++++++++---------------------- 1 file changed, 475 insertions(+), 323 deletions(-) diff --git a/paths.scad b/paths.scad index 79d10ed..93e98af 100644 --- a/paths.scad +++ b/paths.scad @@ -1,3 +1,4 @@ +include ////////////////////////////////////////////////////////////////////// // LibFile: paths.scad // Support for polygons and paths. @@ -357,9 +358,11 @@ function path_tangents(path, closed=false, uniform=true) = // Compute the normal vector to the input path. This vector is perpendicular to the // path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve // at path point i to be the plane defined by point i and its two neighbors. At the endpoints of open paths -// we use the three end points. The computed normal is the one lying in this plane and pointing to the -// right of the direction of the path. If points are collinear then the path does not define a unique plane -// and hence the (right pointing) normal is not uniquely defined. In this case the function issues an error. +// we use the three end points. For 3d paths the computed normal is the one lying in this plane that points +// towards the center of curvature at that path point. For 2d paths, which lie in the xy plane, the normal +// is the path pointing to the right of the direction the path is traveling. If points are collinear then +// a 3d path has no center of curvature, and hence the +// normal is not uniquely defined. In this case the function issues an error. // For 2d paths the plane is always defined so the normal fails to exist only // when the derivative is zero (in the case of repeated points). function path_normals(path, tangents, closed=false) = @@ -378,7 +381,8 @@ function path_normals(path, tangents, closed=false) = : select(path,i-1,i+1) ) dim == 2 ? [tangents[i].y,-tangents[i].x] - : let(v=cross(cross(pts[1]-pts[0], pts[2]-pts[0]),tangents[i])) + : let( fff=i==10?echo(pts=pts, tangent=tangents[10],cp=cross(pts[1]-pts[0], pts[2]-pts[0])):0, + v=cross(cross(pts[1]-pts[0], pts[2]-pts[0]),tangents[i])) assert(norm(v)>EPSILON, "3D path contains collinear points") unit(v) ]; @@ -937,6 +941,342 @@ function assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) = +// Function: path_cut_points() +// +// Usage: +// cuts = path_cut_points(path, dists, [closed=], [direction=]); +// +// Description: +// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut +// points and indices of the next point in the path after that point. So for example, a return +// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after +// this point is path[5]. If the path is too short then path_cut_points returns undef. If you set +// `direction` to true then `path_cut_points` will also return the tangent vector to the path and a normal +// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut +// point. If this fails it will return a normal vector parallel to the xy plane. The output with +// direction vectors will be `[point, next_index, tangent, normal]`. +// . +// If you give the very last point of the path as a cut point then the returned index will be +// one larger than the last index (so it will not be a valid index). If you use the closed +// option then the returned index will be equal to the path length for cuts along the closing +// path segment, and if you give a point equal to the path length you will get an +// index of len(path)+1 for the index. +// +// Arguments: +// path = path to cut +// dists = distances where the path should be cut (a list) or a scalar single distance +// --- +// closed = set to true if the curve is closed. Default: false +// direction = set to true to return direction vectors. Default: false +// +// Example(NORENDER): +// square=[[0,0],[1,0],[1,1],[0,1]]; +// path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]] +// path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]] +// path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]] +// path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef] +function path_cut_points(path, dists, closed=false, direction=false) = + let(long_enough = len(path) >= (closed ? 3 : 2)) + assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points") + is_num(dists) ? path_cut_points(path, [dists],closed, direction)[0] : + assert(is_vector(dists)) + assert(list_increasing(dists), "Cut distances must be an increasing list") + let(cuts = _path_cut_points(path,dists,closed)) + !direction + ? cuts + : let( + dir = _path_cuts_dir(path, cuts, closed), + normals = _path_cuts_normals(path, cuts, dir, closed) + ) + hstack(cuts, array_group(dir,1), array_group(normals,1)); + +// Main recursive path cut function +function _path_cut_points(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) = + dind == len(dists) ? result : + let( + lastpt = len(result)==0? [] : last(result)[0], // location of last cut point + dpartial = len(result)==0? 0 : norm(lastpt-select(path,pind)), // remaining length in segment + nextpoint = dists[dind] < dpartial+dtotal // Do we have enough length left on the current segment? + ? [lerp(lastpt,select(path,pind),(dists[dind]-dtotal)/dpartial),pind] + : _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind) + ) + _path_cut_points(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint])); + + +// Search for a single cut point in the path +function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) = + // If we get to the very end of the path (ind is last point or wraparound for closed case) then + // check if we are within epsilon of the final path point. If not we're out of path, so we fail + ind==len(path)-(closed?0:1) ? + assert(dist dist ? + [lerp(path[ind],select(path,ind+1),dist/d), ind+1] : + _path_cut_single(path, dist-d,closed, ind+1, eps); + +// Find normal directions to the path, coplanar to local part of the path +// Or return a vector parallel to the x-y plane if the above fails +function _path_cuts_normals(path, cuts, dirs, closed=false) = + [for(i=[0:len(cuts)-1]) + len(path[0])==2? [-dirs[i].y, dirs[i].x] + : + let( + plane = len(path)<3 ? undef : + let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2) + ) + plane==undef? + ( dirs[i].x==0 && dirs[i].y==0 ? [1,0,0] // If it's z direction return x vector + : unit([-dirs[i].y, dirs[i].x,0])) // otherwise perpendicular to projection + : unit(cross(dirs[i],cross(plane[0],plane[1]))) + ]; + +// Scan from the specified point (ind) to find a noncoplanar triple to use +// to define the plane of the path. +function _path_plane(path, ind, i,closed) = + i<(closed?-1:0) ? undef : + !collinear(path[ind],path[ind-1], select(path,i))? + [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : + _path_plane(path, ind, i-1); + +// Find the direction of the path at the cut points +function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) = + [for(ind=[0:len(cuts)-1]) + let( + zeros = path[0]*0, + nextind = cuts[ind][1], + nextpath = unit(select(path, nextind+1)-select(path, nextind),zeros), + thispath = unit(select(path, nextind) - select(path,nextind-1),zeros), + lastpath = unit(select(path,nextind-1) - select(path, nextind-2),zeros), + nextdir = + nextind==len(path) && !closed? lastpath : + (nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps) + ? unit(nextpath+thispath) + : (nextind>1 || closed) && approx(cuts[ind][0],select(path,nextind-1),eps) + ? unit(thispath+lastpath) + : thispath + ) nextdir + ]; + + +// Function: path_cut() +// Topics: Paths +// See Also: path_cut_points() +// Usage: +// path_list = path_cut(path, cutdist, [closed=]); +// Description: +// Given a list of distances in `cutdist`, cut the path into +// subpaths at those lengths, returning a list of paths. +// If the input path is closed then the final path will include the +// original starting point. The list of cut distances must be +// in ascending order. If you repeat a distance you will get an +// empty list in that position in the output. +// Arguments: +// path = The original path to split. +// cutdist = Distance or list of distances where path is cut +// closed = If true, treat the path as a closed polygon. +// Example(2D): +// path = circle(d=100); +// segs = path_cut(path, [50, 200], closed=true); +// rainbow(segs) stroke($item); +function path_cut(path,cutdist,closed) = + is_num(cutdist) ? path_cut(path,[cutdist],closed) : + assert(is_vector(cutdist)) + assert(last(cutdist)0, "Cut distances must be strictly positive") + let( + cutlist = path_cut_points(path,cutdist,closed=closed), + cuts = len(cutlist) + ) + [ + [ each list_head(path,cutlist[0][1]-1), + if (!approx(cutlist[0][0], path[cutlist[0][1]-1])) cutlist[0][0] + ], + for(i=[0:1:cuts-2]) + cutlist[i][0]==cutlist[i+1][0] ? [] + : + [ if (!approx(cutlist[i][0], select(path,cutlist[i][1]))) cutlist[i][0], + each slice(path, cutlist[i][1], cutlist[i+1][1]-1), + if (!approx(cutlist[i+1][0], select(path,cutlist[i+1][1]-1))) cutlist[i+1][0], + ], + [ + if (!approx(cutlist[cuts-1][0], select(path,cutlist[cuts-1][1]))) cutlist[cuts-1][0], + each select(path,cutlist[cuts-1][1],closed ? 0 : -1) + ] + ]; + + + +// Input `data` is a list that sums to an integer. +// Returns rounded version of input data so that every +// entry is rounded to an integer and the sum is the same as +// that of the input. Works by rounding an entry in the list +// and passing the rounding error forward to the next entry. +// This will generally distribute the error in a uniform manner. +function _sum_preserving_round(data, index=0) = + index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) : + let( + newval = round(data[index]), + error = newval - data[index] + ) _sum_preserving_round( + list_set(data, [index,index+1], [newval, data[index+1]-error]), + index+1 + ); + + +// Function: subdivide_path() +// Usage: +// newpath = subdivide_path(path, [N|refine], method); +// Description: +// Takes a path as input (closed or open) and subdivides the path to produce a more +// finely sampled path. The new points can be distributed proportional to length +// (`method="length"`) or they can be divided up evenly among all the path segments +// (`method="segment"`). If the extra points don't fit evenly on the path then the +// algorithm attempts to distribute them uniformly. The `exact` option requires that +// the final length is exactly as requested. If you set it to `false` then the +// algorithm will favor uniformity and the output path may have a different number of +// points due to rounding error. +// . +// With the `"segment"` method you can also specify a vector of lengths. This vector, +// `N` specfies the desired point count on each segment: with vector input, `subdivide_path` +// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid +// double counting the endpoints, which are shared by pairs of segments, so that for +// a closed polygon the total number of points will be sum(N). Note that with an open +// path there is an extra point at the end, so the number of points will be sum(N)+1. +// Arguments: +// path = path to subdivide +// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i. +// refine = number of points to add each segment. +// closed = set to false if the path is open. Default: True +// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True +// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"` +// Example(2D): +// mypath = subdivide_path(square([2,2],center=true), 12); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(2D): +// mypath = subdivide_path(square([8,2],center=true), 12); +// move_copies(mypath)circle(r=.2,$fn=32); +// Example(2D): +// mypath = subdivide_path(square([8,2],center=true), 12, method="segment"); +// move_copies(mypath)circle(r=.2,$fn=32); +// Example(2D): +// mypath = subdivide_path(square([2,2],center=true), 17, closed=false); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(2D): Specifying different numbers of points on each segment +// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment"); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(2D): Requested point total is 14 but 15 points output due to extra end point +// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible. +// mypath = subdivide_path(pentagon(side=2), 17); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(2D): With `exact=false` a uniform distribution, but only 15 points +// mypath = subdivide_path(pentagon(side=2), 17, exact=false); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18 +// mypath = subdivide_path(pentagon(side=2), 18, exact=false); +// move_copies(mypath)circle(r=.1,$fn=32); +// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work +// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12); +// move_copies(mypath)sphere(r=.1,$fn=32); +function subdivide_path(path, N, refine, closed=true, exact=true, method="length") = + assert(is_path(path)) + assert(method=="length" || method=="segment") + assert(num_defined([N,refine]),"Must give exactly one of N and refine") + let( + N = !is_undef(N)? N : + !is_undef(refine)? len(path) * refine : + undef + ) + assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector") + let( + count = len(path) - (closed?0:1), + add_guess = method=="segment"? ( + is_list(N)? ( + assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length") + add_scalar(N,-1) + ) : repeat((N-len(path)) / count, count) + ) : // method=="length" + assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"") + let( + path_lens = concat( + [ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ], + closed? [norm(path[len(path)-1]-path[0])] : [] + ), + add_density = (N - len(path)) / sum(path_lens) + ) + path_lens * add_density, + add = exact? _sum_preserving_round(add_guess) : + [for (val=add_guess) round(val)] + ) concat( + [ + for (i=[0:1:count]) each [ + for(j=[0:1:add[i]]) + lerp(path[i],select(path,i+1), j/(add[i]+1)) + ] + ], + closed? [] : [last(path)] + ); + + +// Function: path_length_fractions() +// Usage: +// fracs = path_length_fractions(path, [closed]); +// Description: +// Returns the distance fraction of each point in the path along the path, so the first +// point is zero and the final point is 1. If the path is closed the length of the output +// will have one extra point because of the final connecting segment that connects the last +// point of the path to the first point. +function path_length_fractions(path, closed=false) = + assert(is_path(path)) + assert(is_bool(closed)) + let( + lengths = [ + 0, + for (i=[0:1:len(path)-(closed?1:2)]) + norm(select(path,i+1)-path[i]) + ], + partial_len = cumsum(lengths), + total_len = last(partial_len) + ) partial_len / total_len; + + +// Function: resample_path() +// Usage: +// newpath = resample_path(path, N|spacing, [closed]); +// Description: +// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N +// points spaced uniformly (by linear interpolation along the input path segments). The only points of the +// input path that are guaranteed to appear in the output path are the starting and ending points. +// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives +// a uniform sampling of the path and the resulting uniformly sampled path is returned. +// Note that because this function operates on a discrete input path the quality of the output depends on +// the sampling of the input. If you want very accurate output, use a lot of points for the input. +// Arguments: +// path = path to resample +// N = Number of points in output +// spacing = Approximate spacing desired +// closed = set to true if path is closed. Default: false +function resample_path(path, N, spacing, closed=false) = + assert(is_path(path)) + assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing") + assert(is_bool(closed)) + let( + length = path_length(path,closed), + // In the open path case decrease N by 1 so that we don't try to get + // path_cut to return the endpoint (which might fail due to rounding) + // Add last point later + N = is_def(N) ? N-(closed?0:1) : round(length/spacing), + distlist = lerpn(0,length,N,false), + cuts = path_cut_points(path, distlist, closed=closed) + ) + [ each subindex(cuts,0), + if (!closed) last(path) // Then add last point here + ]; + + + + // Section: 2D Modules @@ -1302,337 +1642,149 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals } -// Function: path_cut_points() -// -// Usage: -// cuts = path_cut_points(path, dists, [closed=], [direction=]); -// -// Description: -// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut -// points and indices of the next point in the path after that point. So for example, a return -// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after -// this point is path[5]. If the path is too short then path_cut_points returns undef. If you set -// `direction` to true then `path_cut_points` will also return the tangent vector to the path and a normal -// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut -// point. If this fails it will return a normal vector parallel to the xy plane. The output with -// direction vectors will be `[point, next_index, tangent, normal]`. -// . -// If you give the very last point of the path as a cut point then the returned index will be -// one larger than the last index (so it will not be a valid index). If you use the closed -// option then the returned index will be equal to the path length for cuts along the closing -// path segment, and if you give a point equal to the path length you will get an -// index of len(path)+1 for the index. -// -// Arguments: -// path = path to cut -// dists = distances where the path should be cut (a list) or a scalar single distance -// --- -// closed = set to true if the curve is closed. Default: false -// direction = set to true to return direction vectors. Default: false -// -// Example(NORENDER): -// square=[[0,0],[1,0],[1,1],[0,1]]; -// path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]] -// path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]] -// path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]] -// path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef] -function path_cut_points(path, dists, closed=false, direction=false) = - let(long_enough = len(path) >= (closed ? 3 : 2)) - assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points") - is_num(dists) ? path_cut_points(path, [dists],closed, direction)[0] : - assert(is_vector(dists)) - assert(list_increasing(dists), "Cut distances must be an increasing list") - let(cuts = _path_cut_points(path,dists,closed)) - !direction - ? cuts - : let( - dir = _path_cuts_dir(path, cuts, closed), - normals = _path_cuts_normals(path, cuts, dir, closed) - ) - hstack(cuts, array_group(dir,1), array_group(normals,1)); - -// Main recursive path cut function -function _path_cut_points(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) = - dind == len(dists) ? result : +function _cut_interp(pathcut, path, data) = + [for(entry=pathcut) let( - lastpt = len(result)==0? [] : last(result)[0], // location of last cut point - dpartial = len(result)==0? 0 : norm(lastpt-select(path,pind)), // remaining length in segment - nextpoint = dists[dind] < dpartial+dtotal // Do we have enough length left on the current segment? - ? [lerp(lastpt,select(path,pind),(dists[dind]-dtotal)/dpartial),pind] - : _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind) - ) - _path_cut_points(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint])); - - -// Search for a single cut point in the path -function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) = - // If we get to the very end of the path (ind is last point or wraparound for closed case) then - // check if we are within epsilon of the final path point. If not we're out of path, so we fail - ind==len(path)-(closed?0:1) ? - assert(dist dist ? - [lerp(path[ind],select(path,ind+1),dist/d), ind+1] : - _path_cut_single(path, dist-d,closed, ind+1, eps); - -// Find normal directions to the path, coplanar to local part of the path -// Or return a vector parallel to the x-y plane if the above fails -function _path_cuts_normals(path, cuts, dirs, closed=false) = - [for(i=[0:len(cuts)-1]) - len(path[0])==2? [-dirs[i].y, dirs[i].x] : ( - let( - plane = len(path)<3 ? undef : - let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2) - ) - plane==undef? - unit([-dirs[i].y, dirs[i].x,0]) : - unit(cross(dirs[i],cross(plane[0],plane[1]))) - ) - ]; - -// Scan from the specified point (ind) to find a noncoplanar triple to use -// to define the plane of the path. -function _path_plane(path, ind, i,closed) = - i<(closed?-1:0) ? undef : - !collinear(path[ind],path[ind-1], select(path,i))? - [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : - _path_plane(path, ind, i-1); - -// Find the direction of the path at the cut points -function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) = - [for(ind=[0:len(cuts)-1]) - let( - zeros = path[0]*0, - nextind = cuts[ind][1], - nextpath = unit(select(path, nextind+1)-select(path, nextind),zeros), - thispath = unit(select(path, nextind) - select(path,nextind-1),zeros), - lastpath = unit(select(path,nextind-1) - select(path, nextind-2),zeros), - nextdir = - nextind==len(path) && !closed? lastpath : - (nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps) - ? unit(nextpath+thispath) - : (nextind>1 || closed) && approx(cuts[ind][0],select(path,nextind-1),eps) - ? unit(thispath+lastpath) - : thispath - ) nextdir - ]; - - -// Function: path_cut() -// Topics: Paths -// See Also: path_cut_points() -// Usage: -// path_list = path_cut(path, cutdist, [closed=]); -// Description: -// Given a list of distances in `cutdist`, cut the path into -// subpaths at those lengths, returning a list of paths. -// If the input path is closed then the final path will include the -// original starting point. The list of cut distances must be -// in ascending order. If you repeat a distance you will get an -// empty list in that position in the output. -// Arguments: -// path = The original path to split. -// cutdist = Distance or list of distances where path is cut -// closed = If true, treat the path as a closed polygon. -// Example(2D): -// path = circle(d=100); -// segs = path_cut(path, [50, 200], closed=true); -// rainbow(segs) stroke($item); -function path_cut(path,cutdist,closed) = - is_num(cutdist) ? path_cut(path,[cutdist],closed) : - assert(is_vector(cutdist)) - assert(last(cutdist)0, "Cut distances must be strictly positive") - let( - cutlist = path_cut_points(path,cutdist,closed=closed), - cuts = len(cutlist) - ) - [ - [ each list_head(path,cutlist[0][1]-1), - if (!approx(cutlist[0][0], path[cutlist[0][1]-1])) cutlist[0][0] - ], - for(i=[0:1:cuts-2]) - cutlist[i][0]==cutlist[i+1][0] ? [] - : - [ if (!approx(cutlist[i][0], select(path,cutlist[i][1]))) cutlist[i][0], - each slice(path, cutlist[i][1], cutlist[i+1][1]-1), - if (!approx(cutlist[i+1][0], select(path,cutlist[i+1][1]-1))) cutlist[i+1][0], - ], - [ - if (!approx(cutlist[cuts-1][0], select(path,cutlist[cuts-1][1]))) cutlist[cuts-1][0], - each select(path,cutlist[cuts-1][1],closed ? 0 : -1) - ] + a = path[entry[1]-1], + b = path[entry[1]], + c = entry[0], + i = max_index(v_abs(b-a)), + factor = (c[i]-a[i])/(b[i]-a[i]) + ) + (1-factor)*data[entry[1]-1]+ factor * data[entry[1]] ]; - -// Input `data` is a list that sums to an integer. -// Returns rounded version of input data so that every -// entry is rounded to an integer and the sum is the same as -// that of the input. Works by rounding an entry in the list -// and passing the rounding error forward to the next entry. -// This will generally distribute the error in a uniform manner. -function _sum_preserving_round(data, index=0) = - index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) : - let( - newval = round(data[index]), - error = newval - data[index] - ) _sum_preserving_round( - list_set(data, [index,index+1], [newval, data[index+1]-error]), - index+1 - ); - - -// Function: subdivide_path() +// Module: path_text() // Usage: -// newpath = subdivide_path(path, [N|refine], method); +// path_text(path, text, [size], [thickness], [font], [lettersize], [offset], [reverse], [normal], [top], [textmetrics]) // Description: -// Takes a path as input (closed or open) and subdivides the path to produce a more -// finely sampled path. The new points can be distributed proportional to length -// (`method="length"`) or they can be divided up evenly among all the path segments -// (`method="segment"`). If the extra points don't fit evenly on the path then the -// algorithm attempts to distribute them uniformly. The `exact` option requires that -// the final length is exactly as requested. If you set it to `false` then the -// algorithm will favor uniformity and the output path may have a different number of -// points due to rounding error. +// Place the text letter by letter onto the specified path using textmetrics (if available and requested) +// or user specified letter spacing. By default letters are positioned on the tangent line to the path with the path normal +// pointing toward the reader. The path normal points away from the center of curvature (the opposite of the normal produced +// by path_normals()). Note that this means that if the center of curvature switches sides the text will flip upside down. +// If you want text on such a path you must supply your own normal or top vector. +// . +// Text appears starting at the beginning of the path, so if the path moves right to left +// then a left-to-right reading language will display in the wrong order. The text appears positioned to be +// read from "outside" of the curve (from a point on the other side of the curve from the center of curvature). +// If you need the text to read properly from the inside, you can set reverse to true to flip the text, or supply +// your own normal. // . -// With the `"segment"` method you can also specify a vector of lengths. This vector, -// `N` specfies the desired point count on each segment: with vector input, `subdivide_path` -// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid -// double counting the endpoints, which are shared by pairs of segments, so that for -// a closed polygon the total number of points will be sum(N). Note that with an open -// path there is an extra point at the end, so the number of points will be sum(N)+1. +// If you do not have the experimental textmetrics feature enabled then you must specify the space for the letters +// using lettersize, which can be a scalar or array. You will have the easiest time getting good results by using +// a monospace font such as Courier. Note that even with text metrics, spacing may be different because path_text() +// doesn't do kerning to adjust positions of individual glyphs. Also if your font has ligatures they won't be used. +// . +// By default letters appear centered on the path. The offset can be specified to shift letters toward the reader (in +// the direction of the normal). +// . +// You can specify your own normal by setting `normal` to a direction or a list of directions. Your normal vector should +// point toward the reader. You can also specify +// top, which directs the top of the letters in a desired direction. If you specify your own directions and they +// are not perpendicular to the path then the direction you specify will take priority and the +// letters will not rest on the tangent line of the path. Note that the normal or top directions that you +// specify must not be parallel to the path. // Arguments: -// path = path to subdivide -// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i. -// refine = number of points to add each segment. -// closed = set to false if the path is open. Default: True -// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True -// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"` -// Example(2D): -// mypath = subdivide_path(square([2,2],center=true), 12); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(2D): -// mypath = subdivide_path(square([8,2],center=true), 12); -// move_copies(mypath)circle(r=.2,$fn=32); -// Example(2D): -// mypath = subdivide_path(square([8,2],center=true), 12, method="segment"); -// move_copies(mypath)circle(r=.2,$fn=32); -// Example(2D): -// mypath = subdivide_path(square([2,2],center=true), 17, closed=false); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(2D): Specifying different numbers of points on each segment -// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment"); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(2D): Requested point total is 14 but 15 points output due to extra end point -// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible. -// mypath = subdivide_path(pentagon(side=2), 17); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(2D): With `exact=false` a uniform distribution, but only 15 points -// mypath = subdivide_path(pentagon(side=2), 17, exact=false); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18 -// mypath = subdivide_path(pentagon(side=2), 18, exact=false); -// move_copies(mypath)circle(r=.1,$fn=32); -// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work -// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12); -// move_copies(mypath)sphere(r=.1,$fn=32); -function subdivide_path(path, N, refine, closed=true, exact=true, method="length") = - assert(is_path(path)) - assert(method=="length" || method=="segment") - assert(num_defined([N,refine]),"Must give exactly one of N and refine") - let( - N = !is_undef(N)? N : - !is_undef(refine)? len(path) * refine : - undef - ) - assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector") - let( - count = len(path) - (closed?0:1), - add_guess = method=="segment"? ( - is_list(N)? ( - assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length") - add_scalar(N,-1) - ) : repeat((N-len(path)) / count, count) - ) : // method=="length" - assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"") - let( - path_lens = concat( - [ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ], - closed? [norm(path[len(path)-1]-path[0])] : [] - ), - add_density = (N - len(path)) / sum(path_lens) - ) - path_lens * add_density, - add = exact? _sum_preserving_round(add_guess) : - [for (val=add_guess) round(val)] - ) concat( - [ - for (i=[0:1:count]) each [ - for(j=[0:1:add[i]]) - lerp(path[i],select(path,i+1), j/(add[i]+1)) - ] - ], - closed? [] : [last(path)] - ); +// path = path to place the text on +// text = text to create +// size = font size +// thickness = thickness of letters +// font = font to use +// --- +// lettersize = scalar or array giving size of letters +// offset = distance to shift letters "up" (towards the reader). Default: 0 +// normal = direction or list of directions pointing towards the reader of the text +// top = direction or list of directions pointing toward the top of the text +// reverse = reverse the letters if true. Default: false +// textmetrics = if set to true and lettersize is not given then use the experimental textmetrics feature. You must be running a dev snapshot that includes this feature and have the feature turned on in your preferences. Default: false +// Example: The examples use Courier, a monospaced font. The width is 1/1.2 times the specified size for this font. This text could wrap around a cylinder. +// path = path3d(arc(100, r=25, angle=[245, 370])); +// color("red")stroke(path, width=.3); +// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2); +// Example: By setting the normal to UP we can get text that lies flat, for writing around the edge of a disk: +// path = path3d(arc(100, r=25, angle=[245, 370])); +// color("red")stroke(path, width=.3); +// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, normal=UP); +// Example: If we want text that reads from the other side we can use reverse. Note we have to reverse the direction of the path and also set the reverse option. +// path = reverse(path3d(arc(100, r=25, angle=[65, 190]))); +// color("red")stroke(path, width=.3); +// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, reverse=true); +// Example: text debossed onto a cylinder in a spiral. The text is 1 unit deep because it is half in, half out. +// text = ("A long text example to wrap around a cylinder, possibly for a few times."); +// L = 5*len(text); +// maxang = 360*L/(PI*50); +// spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]]; +// difference(){ +// cyl(d=50, l=50, $fn=120); +// path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2); +// } +// Example: Same example but text embossed. Make sure you have enough depth for the letters to fully overlap the object. +// text = ("A long text example to wrap around a cylinder, possibly for a few times."); +// L = 5*len(text); +// maxang = 360*L/(PI*50); +// spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]]; +// cyl(d=50, l=50, $fn=120); +// path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2); +// Example: Here the text baseline sits on the path. (Note the default orientation makes text readable from below, so we specify the normal.) +// path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]); +// color("red")stroke(path,width=.2); +// path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", normal=FRONT); +// Example: If we use top to orient the text upward, the text baseline is no longer aligned with the path. +// path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]); +// color("red")stroke(path,width=.2); +// path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", top=UP); +// Example: The path center of curvature changes, and the text flips. +// path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180]))))); +// color("red")stroke(path,width=.2); +// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2); +// Example: We can fix it with top: +// path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180]))))); +// color("red")stroke(path,width=.2); +// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2, top=UP); +module path_text(path, text, font, size, thickness=1, lettersize, offset=0, reverse=false, normal, top, textmetrics=false) +{ + dummy2=assert(num_defined([normal,top])<=1, "Cannot define both normal and top"); + normal = is_def(normal) && len(normal)==3 ? repeat(normal, len(path)) + : is_def(normal) ? normal + : undef; + top = is_def(top) && len(top)==3 ? repeat(top, len(path)) + : is_def(top) ? top + : undef; -// Function: path_length_fractions() -// Usage: -// fracs = path_length_fractions(path, [closed]); -// Description: -// Returns the distance fraction of each point in the path along the path, so the first -// point is zero and the final point is 1. If the path is closed the length of the output -// will have one extra point because of the final connecting segment that connects the last -// point of the path to the first point. -function path_length_fractions(path, closed=false) = - assert(is_path(path)) - assert(is_bool(closed)) - let( - lengths = [ - 0, - for (i=[0:1:len(path)-(closed?1:2)]) - norm(select(path,i+1)-path[i]) - ], - partial_len = cumsum(lengths), - total_len = last(partial_len) - ) partial_len / total_len; + lsize = is_def(lettersize) ? force_list(lettersize, len(text)) + : textmetrics ? [for(letter=text) let(t=textmetrics(letter, font=font, size=size)) t.advance[0]] + : assert(false, "textmetrics disabled: Must specify letter size"); + dummy1 = assert(sum(lsize)<=path_length(path),"Path is too short for the text"); + + pts = path_cut_points(path, add_scalar([0, each cumsum(lsize)],lsize[0]/2), direction=true); -// Function: resample_path() -// Usage: -// newpath = resample_path(path, N|spacing, [closed]); -// Description: -// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N -// points spaced uniformly (by linear interpolation along the input path segments). The only points of the -// input path that are guaranteed to appear in the output path are the starting and ending points. -// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives -// a uniform sampling of the path and the resulting uniformly sampled path is returned. -// Note that because this function operates on a discrete input path the quality of the output depends on -// the sampling of the input. If you want very accurate output, use a lot of points for the input. -// Arguments: -// path = path to resample -// N = Number of points in output -// spacing = Approximate spacing desired -// closed = set to true if path is closed. Default: false -function resample_path(path, N, spacing, closed=false) = - assert(is_path(path)) - assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing") - assert(is_bool(closed)) - let( - length = path_length(path,closed), - // In the open path case decrease N by 1 so that we don't try to get - // path_cut to return the endpoint (which might fail due to rounding) - // Add last point later - N = is_def(N) ? N-(closed?0:1) : round(length/spacing), - distlist = lerpn(0,length,N,false), - cuts = path_cut_points(path, distlist, closed=closed) - ) - [ each subindex(cuts,0), - if (!closed) last(path) // Then add last point here - ]; + usernorm = is_def(normal); + usetop = is_def(top); + + normpts = is_undef(normal) ? (reverse?1:-1)*subindex(pts,3) : _cut_interp(pts,path, normal); + toppts = is_undef(top) ? undef : _cut_interp(pts,path,top); + for(i=idx(text)) + assert(!usetop || !approx(pts[i][2]*toppts[i],norm(top[i])*norm(pts[i][2])), + str("Specified top direction parallel to path at character ",i)) + assert(usetop || !approx(pts[i][2]*normpts[i],norm(normpts[i])*norm(pts[i][2])), + str("Specified normal direction parallel to path at character ",i)) + let( + adjustment = usetop ? (pts[i][2]*toppts[i])*toppts[i]/(toppts[i]*toppts[i]) + : usernorm ? (pts[i][2]*normpts[i])*normpts[i]/(normpts[i]*normpts[i]) + : [0,0,0] + + ) + move(pts[i][0]) + multmatrix(affine3d_frame_map(x=pts[i][2]-adjustment, + z=usetop ? undef : normpts[i], + y=usetop ? toppts[i] : undef)) + up(offset-thickness/2) + linear_extrude(height=thickness) + left(lsize[0]/2)text(text[i], font=font, size=size); +}