Merge pull request #543 from adrianVmariano/master

Added general root finder
This commit is contained in:
Revar Desmera 2021-05-22 15:43:50 -07:00 committed by GitHub
commit f5c576c1e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 113 additions and 4 deletions

View File

@ -1631,8 +1631,6 @@ function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,
// Compute the norm of a complex number or vector.
function c_norm(z) = norm_fro(z);
// Section: Polynomials
// Function: quadratic_roots()
@ -1840,12 +1838,19 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// parts are zero. You can specify eps, in which case the test is
// z.y/(1+norm(z)) < eps. Because
// of poor convergence and higher error for repeated roots, such roots may
// be missed by the algorithm because their imaginary part is large.
// be missed by the algorithm because their imaginary part is large.
// Arguments:
// p = polynomial to solve as coefficient list, highest power term first
// eps = used to determine whether imaginary parts of roots are zero
// tol = tolerance for the complex polynomial root finder
// The algorithm is based on Brent's method and is a combination of
// bisection and inverse quadratic approximation, where bisection occurs
// at every step, with refinement using inverse quadratic approximation
// only when that approximation gives a good result. The detail
// of how to decide when to use the quadratic came from an article
// by Crenshaw on "The World's Best Root Finder".
// https://www.embedded.com/worlds-best-root-finder/
function real_roots(p,eps=undef,tol=1e-14) =
assert( is_vector(p), "Invalid polynomial." )
let( p = _poly_trim(p,eps=0) )
@ -1859,4 +1864,76 @@ function real_roots(p,eps=undef,tol=1e-14) =
? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
// Section: Operations on Functions
// Function: root_find()
// Usage:
// x = root_find(f, x0, x1, [tol])
// Description:
// Find a root of the continuous function f where the sign of f(x0) is different
// from the sign of f(x1). The function f is a function literal accepting one
// argument. You must have a version of OpenSCAD that supports function literals
// (2021.01 or newer). The tolerance (tol) specifies the accuracy of the solution:
// abs(f(x)) < tol * yrange, where yrange is the range of observed function values.
// This function can only find roots that cross the x axis: it cannot find the
// the root of x^2.
// Arguments:
// f = function literal for a single variable function
// x0 = endpoint of interval to search for root
// x1 = second endpoint of interval to search for root
// tol = tolerance for solution. Default: 1e-15
function root_find(f,x0,x1,tol=1e-15) =
let(
y0 = f(x0),
y1 = f(x1),
yrange = y0<y1 ? [y0,y1] : [y1,y0]
)
// Check endpoints
y0==0 || _rfcheck(x0, y0,yrange,tol) ? x0 :
y1==0 || _rfcheck(x1, y1,yrange,tol) ? x1 :
assert(y0*y1<0, "Sign of function must be different at the interval endpoints")
_rootfind(f,[x0,x1],[y0,y1],yrange,tol);
function _rfcheck(x,y,range,tol) =
assert(is_finite(y), str("Function not finite at ",x))
abs(y) < tol*(range[1]-range[0]);
// xpts and ypts are arrays whose first two entries contain the
// interval bracketing the root. Extra entries are ignored.
// yrange is the total observed range of y values (used for the
// tolerance test).
function _rootfind(f, xpts, ypts, yrange, tol, i=0) =
assert(i<100, "root_find did not converge to a solution")
let(
xmid = (xpts[0]+xpts[1])/2,
ymid = f(xmid),
yrange = [min(ymid, yrange[0]), max(ymid, yrange[1])]
)
_rfcheck(xmid, ymid, yrange, tol) ? xmid :
let(
// Force root to be between x0 and midpoint
y = ymid * ypts[0] < 0 ? [ypts[0], ymid, ypts[1]]
: [ypts[1], ymid, ypts[0]],
x = ymid * ypts[0] < 0 ? [xpts[0], xmid, xpts[1]]
: [xpts[1], xmid, xpts[0]],
v = y[2]*(y[2]-y[0]) - 2*y[1]*(y[1]-y[0])
)
v <= 0 ? _rootfind(f,x,y,yrange,tol,i+1) // Root is between first two points, extra 3rd point doesn't hurt
:
let( // Do quadratic approximation
B = (x[1]-x[0]) / (y[1]-y[0]),
C = y*[-1,2,-1] / (y[2]-y[1]) / (y[2]-y[0]),
newx = x[0] - B * y[0] *(1-C*y[1]),
newy = f(newx),
new_yrange = [min(yrange[0],newy), max(yrange[1], newy)],
// select interval that contains the root by checking sign
yinterval = newy*y[0] < 0 ? [y[0],newy] : [newy,y[1]],
xinterval = newy*y[0] < 0 ? [x[0],newx] : [newx,x[1]]
)
_rfcheck(newx, newy, new_yrange, tol)
? newx
: _rootfind(f, xinterval, yinterval, new_yrange, tol, i+1);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View File

@ -1264,4 +1264,36 @@ module test_poly_add(){
}
test_poly_add();
module test_root_find(){
flist = [
function(x) x*x*x-2*x-5,
function(x) 1-1/x/x,
function(x) pow(x-3,3),
function(x) pow(x-2,5),
function(x) (let(xi=0.61489) -3062*(1-xi)*exp(-x)/(xi+(1-xi)*exp(-x)) -1013 + 1628/x),
function(x) exp(x)-2-.01/x/x + .000002/x/x/x,
];
fint=[
[0,4],
[1e-4, 4],
[0,6],
[0,4],
[1e-4,5],
[-1,4]
];
answers = [2.094551481542328,
1,
3,
2,
1.037536033287040,
0.7032048403631350
];
roots = [for(i=idx(flist)) root_find(flist[i], fint[i][0], fint[i][1])];
assert_approx(roots, answers, 1e-10);
}
test_root_find();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View File

@ -6,7 +6,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,637];
BOSL_VERSION = [2,0,636];
// Section: BOSL Library Version Functions