diff --git a/roundcorners.scad b/roundcorners.scad index 3939bae..0cc58e0 100644 --- a/roundcorners.scad +++ b/roundcorners.scad @@ -9,7 +9,7 @@ // ``` ////////////////////////////////////////////////////////////////////// - +include include @@ -155,7 +155,7 @@ function round_corners(path, curve, type, all=undef, closed=true) = // and for the circle type, distance and radius. dk = [ for(i=[0:1:len(points)-1]) let( - angle = pathangle(select(points,i-1,i+1))/2, + angle = vector_angle(select(points,i-1,i+1))/2, parm0 = is_list(parm[i]) ? parm[i][0] : parm[i], k = (curve=="circle" && type=="radius")? parm0 : (curve=="circle" && type=="cut")? parm0 / (1/sin(angle) - 1) : @@ -181,79 +181,74 @@ function round_corners(path, curve, type, all=undef, closed=true) = [ for(i=[0:1:len(points)-1]) each (dk[i][0] == 0)? [points[i]] : - (curve=="smooth")? bezcorner(select(points,i-1,i+1), dk[i]) : - circlecorner(select(points,i-1,i+1), dk[i]) + (curve=="smooth")? _bezcorner(select(points,i-1,i+1), dk[i]) : + _circlecorner(select(points,i-1,i+1), dk[i]) ]; +// Computes the continuous curvature control points for a corner when given as +// input three points in a list defining the corner. The points must be +// equidistant from each other to produce the continuous curvature result. +// The output control points will include the 3 input points plus two +// interpolated points. +// +// k is the curvature parameter, ranging from 0 for very slow transition +// up to 1 for a sharp transition that doesn't have continuous curvature any more +function _smooth_bez_fill(points,k) = + [ + points[0], + lerp(points[1],points[0],k), + points[1], + lerp(points[1],points[2],k), + points[2], + ]; -function bezcorner(points, parm) = - let( - d = parm[0], - k = parm[1], - prev = normalize(points[0]-points[1]), - next = normalize(points[2]-points[1]), - P = [ - points[1]+d*prev, - points[1]+k*d*prev, - points[1], - points[1]+k*d*next, - points[1]+d*next - ], - N = $fn>0 ? max(3,$fn) : ceil(bezier_segment_length(P)/$fs) +// Computes the points of a continuous curvature roundover given as input +// the list of 3 points defining the corner and a parameter specification +// +// If parm is a scalar then it is treated as the curvature and the control +// points are calculated using _smooth_bez_fill. Otherwise, parm is assumed +// to be a pair [d,k] where d is the length of the curve. The length is +// calculated from the input point list and the control point list will not +// necessarily include points[0] or points[2] on its output. +// +// The number of points output is $fn if it is set. Otherwise $fs is used +// to calculate the point count. + +function _bezcorner(points, parm) = + let( + P = is_list(parm) ? + let( + d = parm[0], + k = parm[1], + prev = normalize(points[0]-points[1]), + next = normalize(points[2]-points[1])) + [ + points[1]+d*prev, + points[1]+k*d*prev, + points[1], + points[1]+k*d*next, + points[1]+d*next + ] : + _smooth_bez_fill(points,parm), + N = $fn>0 ? max(3,$fn) : ceil(bezier_segment_length(P)/$fs) ) bezier_curve(P,N); -function circlecorner(points, parm) = +function _circlecorner(points, parm) = let( - angle = pathangle(points)/2, + angle = vector_angle(points)/2, d = parm[0], r = parm[1], prev = normalize(points[0]-points[1]), next = normalize(points[2]-points[1]), - center = r/sin(angle) * normalize(prev+next)+points[1] + center = r/sin(angle) * normalize(prev+next)+points[1], + start = points[1]+prev*d, + end = points[1]+next*d ) - circular_arc(center, points[1]+prev*d, points[1]+next*d, 300); - - -// Compute points for the shortest circular arc that is centered at -// the specified center, starts at p1, and ends on the vector -// p2-center. The radius is the length of (p1-center). If (p2-center) -// has the same length then the arc will end at p2. - -function circular_arc(center, p1, p2, N) = - let( - angle = pathangle([p1,center,p2]), - v1 = p1-center, - v2 = p2-center, - N = ceil(angle/360) * segs(norm(v1)) - ) - len(center)==2? ( - let( - dir = sign(v1.x*v2.y-v1.y*v2.x), // z component of cross product - r=norm(v1) - ) - assert(dir != 0, "Colinear inputs don't define a unique arc") - [ - for(i=[0:1:N-1]) let( - theta=atan2(v1.y,v1.x)+i*dir*angle/(N-1) - ) r*[cos(theta),sin(theta)]+center - ] - ) : ( - let(axis = cross(v1,v2)) - assert(axis != [0,0,0], "Colinear inputs don't define a unique arc") - [ - for(i=[0:1:N-1]) - matrix3_rot_by_axis(axis, i*angle/(N-1)) * v1 + center - ] - ); - + arc(segs(norm(start-center)), cp=center, points=[start,end]); function bezier_curve(P,N) = [for(i=[0:1:N-1]) bez_point(P, i/(N-1))]; - -function pathangle(pts) = vector_angle(pts[0]-pts[1], pts[2]-pts[1]); - - // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap