mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-08-29 22:19:53 +02:00
Removed overrides for square() and circle() builtin modules.
This commit is contained in:
253
primitives.scad
253
primitives.scad
@@ -14,138 +14,59 @@
|
||||
|
||||
// Function&Module: square()
|
||||
// Usage:
|
||||
// square(size, [center], [rounding], [chamfer], [anchor], [spin])
|
||||
// square(size, [center])
|
||||
// Description:
|
||||
// When called as a module, creates a 2D square of the given size, with optional rounding or chamfering.
|
||||
// When called as the builtin module, creates a 2D square or rectangle of the given size.
|
||||
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
|
||||
// Arguments:
|
||||
// size = The size of the square to create. If given as a scalar, both X and Y will be the same size.
|
||||
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
|
||||
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
|
||||
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// anchor = (Function only) Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = (Function only) Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example(2D):
|
||||
// square(40);
|
||||
// Example(2D): Centered
|
||||
// square([40,30], center=true);
|
||||
// Example(2D): Anchored
|
||||
// square([40,30], anchor=FRONT);
|
||||
// Example(2D): Spun
|
||||
// square([40,30], anchor=FRONT, spin=30);
|
||||
// Example(2D): Chamferred Rect
|
||||
// square([40,30], chamfer=5, center=true);
|
||||
// Example(2D): Rounded Rect
|
||||
// square([40,30], rounding=5, center=true);
|
||||
// Example(2D): Mixed Chamferring and Rounding
|
||||
// square([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
|
||||
// Example(2D): Called as Function
|
||||
// path = square([40,30], chamfer=5, anchor=FRONT, spin=30);
|
||||
// path = square([40,30], anchor=FRONT, spin=30);
|
||||
// stroke(path, closed=true);
|
||||
// move_copies(path) color("blue") circle(d=2,$fn=8);
|
||||
module square(size=1, center, rounding=0, chamfer=0, anchor, spin=0) {
|
||||
size = is_num(size)? [size,size] : point2d(size);
|
||||
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT);
|
||||
pts = square(size=size, rounding=rounding, chamfer=chamfer, center=true);
|
||||
attachable(anchor,spin, two_d=true, size=size) {
|
||||
translate(-size/2) polygon(move(size/2,p=pts)); // Extraneous translation works around fine grid quantizing.
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function square(size=1, center, rounding=0, chamfer=0, anchor, spin=0) =
|
||||
assert(is_num(size) || is_vector(size))
|
||||
assert(is_num(chamfer) || len(chamfer)==4)
|
||||
assert(is_num(rounding) || len(rounding)==4)
|
||||
function square(size=1, center, anchor, spin=0) =
|
||||
let(
|
||||
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]),
|
||||
size = is_num(size)? [size,size] : point2d(size),
|
||||
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT),
|
||||
complex = rounding!=0 || chamfer!=0
|
||||
)
|
||||
(rounding==0 && chamfer==0)? let(
|
||||
path = [
|
||||
[ size.x/2, -size.y/2],
|
||||
[-size.x/2, -size.y/2],
|
||||
[-size.x/2, size.y/2],
|
||||
[ size.x/2, size.y/2]
|
||||
]
|
||||
) rot(spin, p=move(-vmul(anchor,size/2), p=path)) :
|
||||
let(
|
||||
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
|
||||
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
|
||||
quadorder = [3,2,1,0],
|
||||
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
|
||||
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
|
||||
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
|
||||
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
|
||||
)
|
||||
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the square width.")
|
||||
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the square height.")
|
||||
let(
|
||||
path = [
|
||||
for(i = [0:3])
|
||||
let(
|
||||
quad = quadorder[i],
|
||||
inset = insets[quad],
|
||||
cverts = quant(segs(inset),4)/4,
|
||||
cp = vmul(size/2-[inset,inset], quadpos[quad]),
|
||||
step = 90/cverts,
|
||||
angs =
|
||||
chamfer[quad] > 0? [0,-90]-90*[i,i] :
|
||||
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
|
||||
[0]
|
||||
)
|
||||
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
|
||||
]
|
||||
) complex?
|
||||
reorient(anchor,spin, two_d=true, path=path, p=path) :
|
||||
reorient(anchor,spin, two_d=true, size=size, p=path);
|
||||
[ size.x,-size.y],
|
||||
[-size.x,-size.y],
|
||||
[-size.x, size.y],
|
||||
[ size.x, size.y]
|
||||
] / 2
|
||||
) reorient(anchor,spin, two_d=true, size=size, p=path);
|
||||
|
||||
|
||||
// Function&Module: circle()
|
||||
// Usage:
|
||||
// circle(r|d, [realign], [circum])
|
||||
// circle(r|d)
|
||||
// Description:
|
||||
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
|
||||
// When called as the builtin module, creates a 2D polygon that approximates a circle of the given size.
|
||||
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
|
||||
// Arguments:
|
||||
// r = The radius of the circle to create.
|
||||
// d = The diameter of the circle to create.
|
||||
// realign = If true, rotates the polygon that approximates the circle by half of one size.
|
||||
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// anchor = (Function only) Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = (Function only) Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example(2D): By Radius
|
||||
// circle(r=25);
|
||||
// Example(2D): By Diameter
|
||||
// circle(d=50);
|
||||
// Example(2D): Anchoring
|
||||
// circle(d=50, anchor=FRONT);
|
||||
// Example(2D): Spin
|
||||
// circle(d=50, anchor=FRONT, spin=45);
|
||||
// Example(NORENDER): Called as Function
|
||||
// path = circle(d=50, anchor=FRONT, spin=45);
|
||||
module circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
sides = segs(r);
|
||||
rr = circum? r/cos(180/sides) : r;
|
||||
pts = circle(r=rr, realign=realign, $fn=sides);
|
||||
attachable(anchor,spin, two_d=true, r=rr) {
|
||||
polygon(pts);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
||||
function circle(r, d, anchor=CENTER, spin=0) =
|
||||
let(
|
||||
r = get_radius(r=r, d=d, dflt=1),
|
||||
sides = segs(r),
|
||||
offset = realign? 180/sides : 0,
|
||||
rr = r / (circum? cos(180/sides) : 1),
|
||||
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]]
|
||||
) reorient(anchor,spin, two_d=true, r=rr, p=pts);
|
||||
path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]]
|
||||
) reorient(anchor,spin, two_d=true, r=r, p=path);
|
||||
|
||||
|
||||
|
||||
@@ -185,10 +106,11 @@ function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
||||
module cube(size=1, center, anchor, spin=0, orient=UP)
|
||||
{
|
||||
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG);
|
||||
vnf = cube(size, center=true);
|
||||
siz = scalar_vec3(size);
|
||||
attachable(anchor,spin,orient, size=siz) {
|
||||
vnf_polyhedron(vnf, convexity=2);
|
||||
size = scalar_vec3(size);
|
||||
attachable(anchor,spin,orient, size=size) {
|
||||
linear_extrude(height=size.z, center=true, convexity=2) {
|
||||
square([size.x,size.y], center=true);
|
||||
}
|
||||
children();
|
||||
}
|
||||
}
|
||||
@@ -266,9 +188,18 @@ module cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
|
||||
l = first_defined([h, l, 1]);
|
||||
sides = segs(max(r1,r2));
|
||||
vnf = cylinder(l=l, r1=r1, r2=r2, center=true);
|
||||
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
|
||||
vnf_polyhedron(vnf, convexity=2);
|
||||
if(r1>r2) {
|
||||
linear_extrude(height=l, center=true, convexity=2, scale=r2/r1) {
|
||||
circle(r=r1);
|
||||
}
|
||||
} else {
|
||||
zflip() {
|
||||
linear_extrude(height=l, center=true, convexity=2, scale=r1/r2) {
|
||||
circle(r=r2);
|
||||
}
|
||||
}
|
||||
}
|
||||
children();
|
||||
}
|
||||
}
|
||||
@@ -307,7 +238,7 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
|
||||
// r = Radius of the sphere.
|
||||
// d = Diameter of the sphere.
|
||||
// circum = If true, the sphere is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
|
||||
// style = The style of the sphere's construction. One of "orig", "alt", "stagger", or "icosa". Default: "orig"
|
||||
// style = The style of the sphere's construction. One of "orig", "aligned", "stagger", or "icosa". Default: "orig"
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
@@ -317,8 +248,8 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
|
||||
// sphere(d=100);
|
||||
// Example: style="orig"
|
||||
// sphere(d=100, style="orig", $fn=10);
|
||||
// Example: style="alt"
|
||||
// sphere(d=100, style="alt", $fn=10);
|
||||
// Example: style="aligned"
|
||||
// sphere(d=100, style="aligned", $fn=10);
|
||||
// Example: style="stagger"
|
||||
// sphere(d=100, style="stagger", $fn=10);
|
||||
// Example: style="icosa"
|
||||
@@ -336,110 +267,12 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
|
||||
// Example: Called as Function
|
||||
// vnf = sphere(d=100, style="icosa");
|
||||
// vnf_polyhedron(vnf);
|
||||
module sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
sides = segs(r);
|
||||
vnf = sphere(r=r, circum=circum, style=style);
|
||||
attachable(anchor,spin,orient, r=r) {
|
||||
vnf_polyhedron(vnf, convexity=2);
|
||||
children();
|
||||
}
|
||||
}
|
||||
module sphere(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP)
|
||||
spheroid(r=r, d=d, circum=circum, style=style, anchor=anchor, spin=spin, orient=orient) children();
|
||||
|
||||
|
||||
function sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) =
|
||||
let(
|
||||
r = get_radius(r=r, d=d, dflt=1),
|
||||
hsides = segs(r),
|
||||
vsides = max(2,ceil(hsides/2)),
|
||||
icosa_steps = round(max(5,hsides)/5),
|
||||
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r,
|
||||
stagger = style=="stagger",
|
||||
verts = style=="orig"? [
|
||||
for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides))
|
||||
for (j=[0:1:hsides-1]) let(theta = j*360/hsides)
|
||||
spherical_to_xyz(rr, theta, phi),
|
||||
] : style=="alt" || style=="stagger"? [
|
||||
spherical_to_xyz(rr, 0, 0),
|
||||
for (i=[1:1:vsides-1]) let(phi = i*180/vsides)
|
||||
for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides)
|
||||
spherical_to_xyz(rr, theta, phi),
|
||||
spherical_to_xyz(rr, 0, 180)
|
||||
] : style=="icosa"? [
|
||||
for (tb=[0,1], j=[0,2], i = [0:1:4]) let(
|
||||
theta0 = i*360/5,
|
||||
theta1 = (i-0.5)*360/5,
|
||||
theta2 = (i+0.5)*360/5,
|
||||
phi0 = 180/3 * j,
|
||||
phi1 = 180/3,
|
||||
v0 = spherical_to_xyz(1,theta0,phi0),
|
||||
v1 = spherical_to_xyz(1,theta1,phi1),
|
||||
v2 = spherical_to_xyz(1,theta2,phi1),
|
||||
ax0 = vector_axis(v0, v1),
|
||||
ang0 = vector_angle(v0, v1),
|
||||
ax1 = vector_axis(v0, v2),
|
||||
ang1 = vector_angle(v0, v2)
|
||||
)
|
||||
for (k = [0:1:icosa_steps]) let(
|
||||
u = k/icosa_steps,
|
||||
vv0 = rot(ang0*u, ax0, p=v0),
|
||||
vv1 = rot(ang1*u, ax1, p=v0),
|
||||
ax2 = vector_axis(vv0, vv1),
|
||||
ang2 = vector_angle(vv0, vv1)
|
||||
)
|
||||
for (l = [0:1:k]) let(
|
||||
v = k? l/k : 0,
|
||||
pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1)
|
||||
) pt
|
||||
] : assert(in_list(style,["orig","alt","stagger","icosa"])),
|
||||
lv = len(verts),
|
||||
faces = style=="orig"? [
|
||||
[for (i=[0:1:hsides-1]) hsides-i-1],
|
||||
[for (i=[0:1:hsides-1]) lv-hsides+i],
|
||||
for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [
|
||||
[(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides],
|
||||
[(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides],
|
||||
]
|
||||
] : style=="alt" || style=="stagger"? [
|
||||
for (i=[0:1:hsides-1]) let(
|
||||
b2 = lv-2-hsides
|
||||
) each [
|
||||
[i+1, 0, ((i+1)%hsides)+1],
|
||||
[lv-1, b2+i+1, b2+((i+1)%hsides)+1],
|
||||
],
|
||||
for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let(
|
||||
base = 1 + hsides*i
|
||||
) each (
|
||||
(stagger && i%2!=0)? [
|
||||
[base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides],
|
||||
[base+j, base+(j+1)%hsides, base+hsides+j],
|
||||
] : [
|
||||
[base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides],
|
||||
[base+j, base+hsides+(j+1)%hsides, base+hsides+j],
|
||||
]
|
||||
)
|
||||
] : style=="icosa"? let(
|
||||
pyr = [for (x=[0:1:icosa_steps+1]) x],
|
||||
tri = sum(pyr),
|
||||
soff = cumsum(pyr)
|
||||
) [
|
||||
for (tb=[0,1], j=[0,1], i = [0:1:4]) let(
|
||||
base = ((((tb*2) + j) * 5) + i) * tri
|
||||
)
|
||||
for (k = [0:1:icosa_steps-1])
|
||||
for (l = [0:1:k]) let(
|
||||
v1 = base + soff[k] + l,
|
||||
v2 = base + soff[k+1] + l,
|
||||
v3 = base + soff[k+1] + (l + 1),
|
||||
faces = [
|
||||
if(l>0) [v1-1,v1,v2],
|
||||
[v1,v3,v2],
|
||||
],
|
||||
faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces
|
||||
) each faces2
|
||||
] : []
|
||||
) [reorient(anchor,spin,orient, r=r, p=verts), faces];
|
||||
function sphere(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP) =
|
||||
spheroid(r=r, d=d, circum=circum, style=style, anchor=anchor, spin=spin, orient=orient);
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
Reference in New Issue
Block a user