[Prev: Edge Profiling with Attachment](Tutorial-Attachment-Edge-Profiling) # Making Attachables To make a shape attachable, you just need to wrap it with an `attachable()` module with a basic description of the shape's geometry. By default, the shape is expected to be centered at the origin. This fact is important, as this is how the `attachable()` module knows the dimensions of your part: it assumes it is symetric around the origin. The `attachable()` module expects exactly two children. The first will bethe shape to make attachable, and the second will be `children()`, literally. ### Pass-through Attachables The simplest way to make your own attachable module is to simply pass through to a pre-existing attachable submodule. This could be appropriate if you want to rename a module, or if the anchors of an existing module are suited to (or good enough for) your object. In order for your attachable module to work properly you need to accept the `anchor`, `spin` and `orient` parameters, give them suitable defaults, and pass them to the attachable submodule. Don't forget to pass the children to the attachable submodule as well, or your new module will ignore its children. ```openscad-3D include $fn=32; module cutcube(anchor=CENTER,spin=0,orient=UP) { tag_scope(){ diff() cuboid(15, rounding=2, anchor=anchor,spin=spin,orient=orient){ tag("remove")attach(TOP)cuboid(5); children(); } } } diff() cutcube() tag("remove")attach(RIGHT) cyl(d=2,h=8); ``` ### Prismoidal/Cuboidal Attachables To make a cuboidal or prismoidal shape attachable, you use the `size`, `size2`, and `offset` arguments of `attachable()`. In the most basic form, where the shape is fully cuboid, with top and bottom of the same size, and directly over one another, you can just use `size=`. ```openscad-3D;Big include module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=[s*3,s,s]) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(60); ``` When the shape is prismoidal, where the top is a different size from the bottom, you can use the `size2=` argument as well. While `size=` takes all three axes sizes, the `size2=` argument only takes the [X,Y] sizes of the top of the shape. ```openscad-3D;Big include module prismoidal(size=[100,100,100], scale=0.5, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale) { hull() { up(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y]*scale, center=true); down(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y], center=true); } children(); } } prismoidal([100,60,30], scale=0.5) show_anchors(20); ``` When the top of the prismoid can be shifted away from directly above the bottom, you can use the `shift=` argument. The `shift=` argument takes an [X,Y] vector of the offset of the center of the top from the XY center of the bottom of the shape. ```openscad-3D;Big include module prismoidal(size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale, shift=shift) { hull() { translate([shift.x, shift.y, size.z/2-0.005]) linear_extrude(height=0.01, center=true) square([size.x,size.y]*scale, center=true); down(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y], center=true); } children(); } } prismoidal([100,60,30], scale=0.5, shift=[-30,20]) show_anchors(20); ``` In the case that the prismoid is not oriented vertically, (ie, where the `shift=` or `size2=` arguments should refer to a plane other than XY) you can use the `axis=` argument. This lets you make prismoids naturally oriented forwards/backwards or sideways. ```openscad-3D;Big include module yprismoidal( size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP ) { attachable( anchor, spin, orient, size=size, size2=point2d(size)*scale, shift=shift, axis=BACK ) { xrot(-90) hull() { translate([shift.x, shift.y, size.z/2-0.005]) linear_extrude(height=0.01, center=true) square([size.x,size.y]*scale, center=true); down(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y], center=true); } children(); } } yprismoidal([100,60,30], scale=1.5, shift=[20,20]) show_anchors(20); ``` ### Cylindrical Attachables To make a cylindrical shape attachable, you use the `l`, and `r`/`d`, args of `attachable()`. ```openscad-3D;Big include module twistar(l,r,d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r, l=l) { linear_extrude(height=l, twist=90, slices=20, center=true, convexity=4) star(n=20, r=r, ir=r*0.9); children(); } } twistar(l=100, r=40) show_anchors(20); ``` If the cylinder is elipsoidal in shape, you can pass the unequal X/Y sizes as a 2-item vector to the `r=` or `d=` argument. ```openscad-3D include module ovalstar(l,rx,ry, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, r=[rx,ry], l=l) { linear_extrude(height=l, center=true, convexity=4) scale([1,ry/rx,1]) star(n=20, r=rx, ir=rx*0.9); children(); } } ovalstar(l=100, rx=50, ry=30) show_anchors(20); ``` For cylindrical shapes that aren't oriented vertically, use the `axis=` argument. ```openscad-3D include module ytwistar(l,r,d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r, l=l, axis=BACK) { xrot(-90) linear_extrude(height=l, twist=90, slices=20, center=true, convexity=4) star(n=20, r=r, ir=r*0.9); children(); } } ytwistar(l=100, r=40) show_anchors(20); ``` ### Conical Attachables To make a conical shape attachable, you use the `l`, `r1`/`d1`, and `r2`/`d2`, args of `attachable()`. ```openscad-3D;Big include module twistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) { r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1); r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { linear_extrude(height=l, twist=90, scale=r2/r1, slices=20, center=true, convexity=4) star(n=20, r=r1, ir=r1*0.9); children(); } } twistar(l=100, r1=40, r2=20) show_anchors(20); ``` If the cone is ellipsoidal in shape, you can pass the unequal X/Y sizes as a 2-item vectors to the `r1=`/`r2=` or `d1=`/`d2=` arguments. ```openscad-3D;Big include module ovalish(l,rx1,ry1,rx2,ry2, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, r1=[rx1,ry1], r2=[rx2,ry2], l=l) { hull() { up(l/2-0.005) linear_extrude(height=0.01, center=true) ellipse([rx2,ry2]); down(l/2-0.005) linear_extrude(height=0.01, center=true) ellipse([rx1,ry1]); } children(); } } ovalish(l=100, rx1=50, ry1=30, rx2=30, ry2=50) show_anchors(20); ``` For conical shapes that are not oriented vertically, use the `axis=` argument to indicate the direction of the primary shape axis: ```openscad-3D;Big include module ytwistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) { r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1); r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK) { xrot(-90) linear_extrude(height=l, twist=90, scale=r2/r1, slices=20, center=true, convexity=4) star(n=20, r=r1, ir=r1*0.9); children(); } } ytwistar(l=100, r1=40, r2=20) show_anchors(20); ``` ### Spherical Attachables To make a spherical shape attachable, you use the `r`/`d` args of `attachable()`. ```openscad-3D;Big include module spikeball(r, d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r*1.1) { union() { sphere_copies(r=r, n=512, cone_ang=180) cylinder(r1=r/10, r2=0, h=r/10); sphere(r=r); } children(); } } spikeball(r=50) show_anchors(20); ``` If the shape is an ellipsoid, you can pass a 3-item vector of sizes to `r=` or `d=`. ```openscad-3D include module spikeball(r, d, scale, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r*1.1*scale) { union() { sphere_copies(r=r, n=512, scale=scale, cone_ang=180) cylinder(r1=r/10, r2=0, h=r/10); scale(scale) sphere(r=r); } children(); } } spikeball(r=50, scale=[0.75,1,1.5]) show_anchors(20); ``` ### VNF Attachables If the shape just doesn't fit into any of the above categories, and you constructed it as a [VNF](vnf.scad), you can use the VNF itself to describe the geometry with the `vnf=` argument. There are two variations to how anchoring can work for VNFs. When `extent=true`, (the default) then a plane is projected out from the origin, perpendicularly in the direction of the anchor, to the furthest distance that intersects with the VNF shape. The anchor point is then the center of the points that still intersect that plane. ```openscad-FlatSpin,VPD=500 include module stellate_cube(s=100, anchor=CENTER, spin=0, orient=UP) { s2 = 3 * s; verts = [ [0,0,-s2*sqrt(2)/2], each down(s/2, p=path3d(square(s,center=true))), each zrot(45, p=path3d(square(s2,center=true))), each up(s/2, p=path3d(square(s,center=true))), [0,0,s2*sqrt(2)/2] ]; faces = [ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [1,2,6], [1,6,9], [6,10,9], [2,10,6], [1,5,4], [1,9,5], [9,12,5], [5,12,4], [4,8,3], [4,12,8], [12,11,8], [11,3,8], [2,3,7], [3,11,7], [7,11,10], [2,7,10], [9,10,13], [10,11,13], [11,12,13], [12,9,13] ]; vnf = [verts, faces]; attachable(anchor,spin,orient, vnf=vnf) { vnf_polyhedron(vnf); children(); } } stellate_cube(25) { attach(UP+RIGHT) { anchor_arrow(20); %cube([100,100,0.1],center=true); } } ``` When `extent=false`, then the anchor point will be the furthest intersection of the VNF with the anchor ray from the origin. The orientation of the anchor point will be the normal of the face at the intersection. If the intersection is at an edge or corner, then the orientation will bisect the angles between the faces. ```openscad-VPD=1250 include module stellate_cube(s=100, anchor=CENTER, spin=0, orient=UP) { s2 = 3 * s; verts = [ [0,0,-s2*sqrt(2)/2], each down(s/2, p=path3d(square(s,center=true))), each zrot(45, p=path3d(square(s2,center=true))), each up(s/2, p=path3d(square(s,center=true))), [0,0,s2*sqrt(2)/2] ]; faces = [ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [1,2,6], [1,6,9], [6,10,9], [2,10,6], [1,5,4], [1,9,5], [9,12,5], [5,12,4], [4,8,3], [4,12,8], [12,11,8], [11,3,8], [2,3,7], [3,11,7], [7,11,10], [2,7,10], [9,10,13], [10,11,13], [11,12,13], [12,9,13] ]; vnf = [verts, faces]; attachable(anchor,spin,orient, vnf=vnf, extent=false) { vnf_polyhedron(vnf); children(); } } stellate_cube() show_anchors(50); ``` ```openscad-3D include $fn=32; R = difference(circle(10), right(2, circle(9))); linear_sweep(R,height=10,atype="hull") attach(RIGHT) anchor_arrow(); ``` ## Making Named Anchors While vector anchors are often useful, sometimes there are logically extra attachment points that aren't on the perimeter of the shape. This is what named string anchors are for. For example, the `teardrop()` shape uses a cylindrical geometry for it's vector anchors, but it also provides a named anchor "cap" that is at the tip of the hat of the teardrop shape. Named anchors are passed as an array of `named_anchor()`s to the `anchors=` argument of `attachable()`. The `named_anchor()` call takes a name string, a positional point, an orientation vector, and a spin. The name is the name of the anchor. The positional point is where the anchor point is at. The orientation vector is the direction that a child attached at that anchor point should be oriented. The spin is the number of degrees that an attached child should be rotated counter-clockwise around the orientation vector. Spin is optional, and defaults to 0. To make a simple attachable shape similar to a `teardrop()` that provides a "cap" anchor, you may define it like this: ```openscad-3D include module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) { anchors = [ named_anchor("cap", [0,r/sin(45),0], BACK, 0) ]; attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) { linear_extrude(height=thick, center=true) { circle(r=r); back(r*sin(45)) zrot(45) square(r, center=true); } children(); } } raindrop(r=25, thick=20, anchor="cap"); ``` If you want multiple named anchors, just add them to the list of anchors: ```openscad-FlatSpin,VPD=150 include module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) { anchors = [ named_anchor("captop", [0,r/sin(45), thick/2], BACK+UP, 0), named_anchor("cap", [0,r/sin(45), 0 ], BACK, 0), named_anchor("capbot", [0,r/sin(45),-thick/2], BACK+DOWN, 0) ]; attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) { linear_extrude(height=thick, center=true) { circle(r=r); back(r*sin(45)) zrot(45) square(r, center=true); } children(); } } raindrop(r=15, thick=10) show_anchors(); ``` Sometimes the named anchor you want to add may be at a point that is reached through a complicated set of translations and rotations. One quick way to calculate that point is to reproduce those transformations in a transformation matrix chain. This is simplified by how you can use the function forms of almost all the transformation modules to get the transformation matrices, and chain them together with matrix multiplication. For example, if you have: ``` scale([1.1, 1.2, 1.3]) xrot(15) zrot(25) right(20) sphere(d=1); ``` and you want to calculate the center point of the sphere, you can do it like: ``` sphere_pt = apply( scale([1.1, 1.2, 1.3]) * xrot(15) * zrot(25) * right(20), [0,0,0] ); ``` ## Overriding Standard Anchors Sometimes you may want to use the standard anchors but override some of them. Returning to the square barebell example above, the anchors at the right and left sides are on the cubes at each end, but the anchors at x=0 are in floating in space. For prismoidal/cubic anchors in 3D and trapezoidal/rectangular anchors in 2D we can override a single anchor by specifying the override option and giving the anchor that is being overridden, and then the replacement in the form `[position, direction, spin]`. Most often you will only want to override the position. If you omit the other list items then the value drived from the standard anchor will be used. Below we override position of the FWD anchor: ```openscad-3D;Big include module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = [ [FWD, [[0,-s/8,0]]] ]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(60); ``` Note how the FWD anchor is now rooted on the cylindrical portion. If you wanted to also change its direction and spin you could do it like this: ```openscad-3D;Big include module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = [ [FWD, [[0,-s/8,0], FWD+LEFT, 225]] ]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(60); ``` In the above example we give three values for the override. As before, the first one places the anchor on the cylinder. We have added the second entry which points the anchor off to the left. The third entry gives a spin override, whose effect is shown by the position of the red flag on the arrow. If you want to override all of the x=0 anchors to be on the cylinder, with their standard directions, you can do that by supplying a list: ```openscad-3D;Big include module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = [ for(j=[-1:1:1], k=[-1:1:1]) if ([j,k]!=[0,0]) [[0,j,k], [s/8*unit([0,j,k])]] ]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(30); ``` Now all of the anchors in the middle are all rooted to the cylinder. Another way to do the same thing is to use a function literal for override. It will be called with the anchor as its argument and needs to return undef to just use the default, or a `[position, direction, spin]` triple to override the default. As before, you can omit values to keep their default. Here is the same example using a function literal for the override: ```openscad-3D;Big include module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = function (anchor) anchor.x!=0 || anchor==CTR ? undef // Keep these : [s/8*unit(anchor)]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(30); ``` ## Making Gometry With attach_geom() Sometimes it may be advantageous to create the attachable geometry as a data structure. This can be particularly useful if you want to implement anchor types with an object, because it allows for an easy way to create different anchor options without having to repeat code. Suppose we create a simple tetrahedron object: ```openscad-3D include module tetrahedron(base, height, spin=0, anchor=FWD+LEFT+BOT, orient=UP) { base_poly = path3d([[0,0],[0,base],[base,0]]); top = [0,0,height]; vnf = vnf_vertex_array([base_poly, repeat(top,3)],col_wrap=true,cap1=true); attachable(anchor=anchor,orient=orient,spin=spin,vnf=vnf,cp="centroid"){ vnf_polyhedron(vnf); children(); } } tetrahedron(20,18) show_anchors(); ``` For this module we have used VNF anchors, but this tetrahedron is the corner of a cuboid, so maybe sometimes you prefer to use anchors based on the corresponding cuboid (its bounding box). You can create a module with bounding box anchors like this, where we have explicitly centered the VNF to make it work with the prismoid type anchoring: ```openscad-3D include module tetrahedron(base, height, spin=0, anchor=FWD+LEFT+BOT, orient=UP) { base_poly = path3d([[0,0],[0,base],[base,0]]); top = [0,0,height]; vnf = move([-base/2,-base/2,-height/2], vnf_vertex_array([base_poly, repeat(top,3)],col_wrap=true,cap1=true)); attachable(anchor=anchor,orient=orient,spin=spin,size=[base,base,height]){ vnf_polyhedron(vnf); children(); } } tetrahedron(20,18) show_anchors(); ``` The arguments needed to attachable are different in this case. If you want to conditionally switch between these two modes of operation, this presents a complication. While it is possible to work around this by conditionally setting parameters to `undef`, the resulting code will be more complex and harder to read. A better solution is to compute the geometry conditionally. Then the geometry can be passed to `attachable()`. ```openscad-3D;Big include module tetrahedron(base, height, atype="vnf", spin=0, anchor=FWD+LEFT+BOT, orient=UP) { assert(atype=="vnf" || atype=="box"); base_poly = path3d([[0,0],[0,base],[base,0]]); top = [0,0,height]; vnf = move([-base/2,-base/2,-height/2], vnf_vertex_array([base_poly, repeat(top,3)],col_wrap=true,cap1=true)); geom = atype=="vnf" ? attach_geom(vnf=vnf,cp="centroid") : attach_geom(size=[base,base,height]); attachable(anchor=anchor,orient=orient,spin=spin,geom=geom){ vnf_polyhedron(vnf); children(); } } tetrahedron(20,18,atype="vnf") color("green")attach(TOP,BOT) cuboid(4); right(25) tetrahedron(20,18,atype="box") color("lightblue")attach(TOP,BOT) cuboid(4); ``` Here we have created an `atype` argument that accepts two attachment types and we compute the geometry conditionally based on the atype setting. We can then invoke `attachable()` once with the `geom` parameter to specify the geometry. ## Creating Attachable Parts If your object has multiple distinct parts you may wish to create attachble parts for your object. In the library, `tube()` create an attachable part called "inside" that lets you attach to the inside of the tube. Below we create an example where an object is made from two cylindrical parts, and we want to be able to attach to either one. In order to create attchable parts you must pass a list of the parts to `attachable()`. You create a part using the `define_part()` function which requires the part's name and its geometry. You can optionally provide a transformation using the `T=` parameter and give a flat with the `inside=` parameter. ```openscad-3D;Big include module twocyl(d1, d2, sep, h, ang=20) { parts = [ define_part("left", attach_geom(r=d1/2,h=h), T=left(sep/2)*yrot(-ang)), define_part("right", attach_geom(r=d2/2,h=h), T=right(sep/2)*yrot(ang)), ]; attachable(size=[sep+d1/2+d2/2,max(d1,d2),h], parts=parts){ union(){ left(sep/2) yrot(-ang) cyl(d=d1,h=h); right(sep/2) yrot(ang) cyl(d=d2,h=h); } children(); } } twocyl(d1=10,d2=13,sep=20,h=10){ attach_part("left") attach(FWD,BOT) color("lightblue") cuboid(3); attach_part("right") attach(RIGHT,BOT) color("green") cuboid(3); } ``` In the above example we create a parts list containing two parts named "left" and "right". Each part has its own geometry corresponding to the size of the cylinder, and it has a transformation specifying where the cylinder is located relative to the part's overall geometry. If you create an "inside" part for a tube, the inside object will naturally have its anchors on the inner cylinder **pointing outward**. You can anchor on the inside by setting `inside=true` when invoking `attach()` or `align()`, but another option is to set `inside=true` with `define_part()`. This marks the geometry as an inside geometry, which cause `align()` and `attach()` to invert the meaning of the `inside` parameter so that objects will attach on the inside by default.