////////////////////////////////////////////////////////////////////// // LibFile: transforms.scad // Functions and modules that provide shortcuts for translation, // rotation and mirror operations. Also provided are skew and frame_map // which remaps the coordinate axes. The shortcuts can act on // geometry, like the usual OpenSCAD rotate() and translate(). They // also work as functions that operate on lists of points in various // forms: paths, VNFS and bezier patches. Lastly, the function form // of the shortcuts can return a matrix representing the operation // the shortcut performs. The rotation and scaling shortcuts accept // an optional centerpoint for the rotation or scaling operation. // . // Almost all of the transformation functions take a point, a point // list, bezier patch, or VNF as a second positional argument to // operate on. The exceptions are rot(), frame_map() and skew(). // Includes: // include // FileGroup: Basic Modeling // FileSummary: Shortcuts for translation, rotation, etc. Can act on geometry, paths, or can return a matrix. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// // Section: Affine Transformations // OpenSCAD provides various built-in modules to transform geometry by // translation, scaling, rotation, and mirroring. All of these operations // are affine transformations. A three-dimensional affine transformation // can be represented by a 4x4 matrix. The transformation shortcuts in this // file generally have three modes of operation. They can operate // directly on geometry like their OpenSCAD built-in equivalents. For example, // `left(10) cube()`. They can operate on a list of points (or various other // types of geometric data). For example, operating on a list of points: `points = left(10, [[1,2,3],[4,5,6]])`. // The third option is that the shortcut can return the transformation matrix // corresponding to its action. For example, `M=left(10)`. // . // This capability allows you to store and manipulate transformations, and can // be useful in more advanced modeling. You can multiply these matrices // together, analogously to applying a sequence of operations with the // built-in transformations. So you can write `zrot(37)left(5)cube()` // to perform two operations on a cube. You can also store // that same transformation by multiplying the matrices together: `M = zrot(37) * left(5)`. // Note that the order is exactly the same as the order used to apply the transformation. // . // Suppose you have constructed `M` as above. What now? You can use // the OpensCAD built-in `multmatrix` to apply it to some geometry: `multmatrix(M) cube()`. // Alternative you can use the BOSL2 function `apply` to apply `M` to a point, a list // of points, a bezier patch, or a VNF. For example, `points = apply(M, [[3,4,5],[5,6,7]])`. // Note that the `apply` function can work on both 2D and 3D data, but if you want to // operate on 2D data, you must choose transformations that don't modify z // . // You can use matrices as described above without understanding the details, just // treating a matrix as a box that stores a transformation. The OpenSCAD manual section for multmatrix // gives some details of how this works. We'll elaborate a bit more below. An affine transformation // matrix for three dimensional data is a 4x4 matrix. The top left 3x3 portion gives the linear // transformation to apply to the data. For example, it could be a rotation or scaling, or combination of both. // The 3x1 column at the top right gives the translation to apply. The bottom row should be `[0,0,0,1]`. That // bottom row is only present to enable // the matrices to be multiplied together. OpenSCAD ignores it and in fact `multmatrix` will // accept a 3x4 matrix, where that row is missing. In order for a matrix to act on a point you have to // augment the point with an extra 1, making it a length 4 vector. In OpenSCAD you can then compute the // the affine transformed point as `tran_point = M * point`. However, this syntax hides a complication that // arises if you have a list of points. A list of points like `[[1,2,3,1],[4,5,6,1],[7,8,9,1]]` has the augmented points // as row vectors on the list. In order to transform such a list, it needs to be muliplied on the right // side, not the left side. _NO_ARG = [true,[123232345],false]; ////////////////////////////////////////////////////////////////////// // Section: Translations ////////////////////////////////////////////////////////////////////// // Function&Module: move() // Aliases: translate() // // Usage: As Module // move([x=], [y=], [z=]) ... // move(v) ... // Usage: Translate Points // pts = move(v, p); // pts = move([x=], [y=], [z=], p=); // Usage: Get Translation Matrix // mat = move(v); // mat = move([x=], [y=], [z=]); // // Topics: Affine, Matrices, Transforms, Translation // See Also: left(), right(), fwd(), back(), down(), up(), spherical_to_xyz(), altaz_to_xyz(), cylindrical_to_xyz(), polar_to_xy() // // Description: // Translates position by the given amount. // * Called as a module, moves/translates all children. // * Called as a function with a point in the `p` argument, returns the translated point. // * Called as a function with a list of points in the `p` argument, returns the translated list of points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF. // * Called as a function with the `p` argument, returns the translated point or list of points. // * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix. // * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix. // // Arguments: // v = An [X,Y,Z] vector to translate by. // p = Either a point, or a list of points to be translated when used as a function. // --- // x = X axis translation. // y = Y axis translation. // z = Z axis translation. // // Example: // #sphere(d=10); // move([0,20,30]) sphere(d=10); // // Example: // #sphere(d=10); // move(y=20) sphere(d=10); // // Example: // #sphere(d=10); // move(x=-10, y=-5) sphere(d=10); // // Example(FlatSpin): Using Altitude-Azimuth Coordinates // #sphere(d=10); // move(altaz_to_xyz(30,90,20)) sphere(d=10); // // Example(FlatSpin): Using Spherical Coordinates // #sphere(d=10); // move(spherical_to_xyz(20,45,30)) sphere(d=10); // // Example(2D): // path = square([50,30], center=true); // #stroke(path, closed=true); // stroke(move([10,20],p=path), closed=true); // // Example(NORENDER): // pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72] // pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42] // pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]] // pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]] // mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]] // mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]] module move(v=[0,0,0], p, x=0, y=0, z=0) { assert(is_undef(p), "Module form `move()` does not accept p= argument."); assert(is_vector(v) && (len(v)==3 || len(v)==2), "Invalid value for `v`") translate(point3d(v)+[x,y,z]) children(); } function move(v=[0,0,0], p=_NO_ARG, x=0, y=0, z=0) = assert(is_vector(v) && (len(v)==3 || len(v)==2), "Invalid value for `v`") let( m = affine3d_translate(point3d(v)+[x,y,z]) ) p==_NO_ARG ? m : apply(m, p); function translate(v=[0,0,0], p=_NO_ARG) = move(v=v, p=p); // Function&Module: left() // // Usage: As Module // left(x) ... // Usage: Translate Points // pts = left(x, p); // Usage: Get Translation Matrix // mat = left(x); // // Topics: Affine, Matrices, Transforms, Translation // See Also: move(), right(), fwd(), back(), down(), up() // // Description: // If called as a module, moves/translates all children left (in the X- direction) by the given amount. // If called as a function with the `p` argument, returns the translated point or list of points. // If called as a function without the `p` argument, returns an affine3d translation matrix. // // Arguments: // x = Scalar amount to move left. // p = Either a point, or a list of points to be translated when used as a function. // // Example: // #sphere(d=10); // left(20) sphere(d=10); // // Example(NORENDER): // pt1 = left(20, p=[23,42]); // Returns: [3,42] // pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42] // pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]] // mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]] module left(x=0, p) { assert(is_undef(p), "Module form `left()` does not accept p= argument."); assert(is_finite(x), "Invalid number") translate([-x,0,0]) children(); } function left(x=0, p=_NO_ARG) = assert(is_finite(x), "Invalid number") move([-x,0,0],p=p); // Function&Module: right() // // Usage: As Module // right(x) ... // Usage: Translate Points // pts = right(x, p); // Usage: Get Translation Matrix // mat = right(x); // // Topics: Affine, Matrices, Transforms, Translation // See Also: move(), left(), fwd(), back(), down(), up() // // Description: // If called as a module, moves/translates all children right (in the X+ direction) by the given amount. // If called as a function with the `p` argument, returns the translated point or list of points. // If called as a function without the `p` argument, returns an affine3d translation matrix. // // Arguments: // x = Scalar amount to move right. // p = Either a point, or a list of points to be translated when used as a function. // // Example: // #sphere(d=10); // right(20) sphere(d=10); // // Example(NORENDER): // pt1 = right(20, p=[23,42]); // Returns: [43,42] // pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42] // pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]] // mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]] module right(x=0, p) { assert(is_undef(p), "Module form `right()` does not accept p= argument."); assert(is_finite(x), "Invalid number") translate([x,0,0]) children(); } function right(x=0, p=_NO_ARG) = assert(is_finite(x), "Invalid number") move([x,0,0],p=p); // Function&Module: fwd() // // Usage: As Module // fwd(y) ... // Usage: Translate Points // pts = fwd(y, p); // Usage: Get Translation Matrix // mat = fwd(y); // // Topics: Affine, Matrices, Transforms, Translation // See Also: move(), left(), right(), back(), down(), up() // // Description: // If called as a module, moves/translates all children forward (in the Y- direction) by the given amount. // If called as a function with the `p` argument, returns the translated point or list of points. // If called as a function without the `p` argument, returns an affine3d translation matrix. // // Arguments: // y = Scalar amount to move forward. // p = Either a point, or a list of points to be translated when used as a function. // // Example: // #sphere(d=10); // fwd(20) sphere(d=10); // // Example(NORENDER): // pt1 = fwd(20, p=[23,42]); // Returns: [23,22] // pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42] // pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]] // mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]] module fwd(y=0, p) { assert(is_undef(p), "Module form `fwd()` does not accept p= argument."); assert(is_finite(y), "Invalid number") translate([0,-y,0]) children(); } function fwd(y=0, p=_NO_ARG) = assert(is_finite(y), "Invalid number") move([0,-y,0],p=p); // Function&Module: back() // // Usage: As Module // back(y) ... // Usage: Translate Points // pts = back(y, p); // Usage: Get Translation Matrix // mat = back(y); // // Topics: Affine, Matrices, Transforms, Translation // See Also: move(), left(), right(), fwd(), down(), up() // // Description: // If called as a module, moves/translates all children back (in the Y+ direction) by the given amount. // If called as a function with the `p` argument, returns the translated point or list of points. // If called as a function without the `p` argument, returns an affine3d translation matrix. // // Arguments: // y = Scalar amount to move back. // p = Either a point, or a list of points to be translated when used as a function. // // Example: // #sphere(d=10); // back(20) sphere(d=10); // // Example(NORENDER): // pt1 = back(20, p=[23,42]); // Returns: [23,62] // pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42] // pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]] // mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]] module back(y=0, p) { assert(is_undef(p), "Module form `back()` does not accept p= argument."); assert(is_finite(y), "Invalid number") translate([0,y,0]) children(); } function back(y=0,p=_NO_ARG) = assert(is_finite(y), "Invalid number") move([0,y,0],p=p); // Function&Module: down() // // Usage: As Module // down(z) ... // Usage: Translate Points // pts = down(z, p); // Usage: Get Translation Matrix // mat = down(z); // // Topics: Affine, Matrices, Transforms, Translation // See Also: move(), left(), right(), fwd(), back(), up() // // Description: // If called as a module, moves/translates all children down (in the Z- direction) by the given amount. // If called as a function with the `p` argument, returns the translated point or list of points. // If called as a function without the `p` argument, returns an affine3d translation matrix. // // Arguments: // z = Scalar amount to move down. // p = Either a point, or a list of points to be translated when used as a function. // // Example: // #sphere(d=10); // down(20) sphere(d=10); // // Example(NORENDER): // pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22] // pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]] // mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]] module down(z=0, p) { assert(is_undef(p), "Module form `down()` does not accept p= argument."); translate([0,0,-z]) children(); } function down(z=0, p=_NO_ARG) = move([0,0,-z],p=p); // Function&Module: up() // // Usage: As Module // up(z) ... // Usage: Translate Points // pts = up(z, p); // Usage: Get Translation Matrix // mat = up(z); // // Topics: Affine, Matrices, Transforms, Translation // See Also: move(), left(), right(), fwd(), back(), down() // // Description: // If called as a module, moves/translates all children up (in the Z+ direction) by the given amount. // If called as a function with the `p` argument, returns the translated point or list of points. // If called as a function without the `p` argument, returns an affine3d translation matrix. // // Arguments: // z = Scalar amount to move up. // p = Either a point, or a list of points to be translated when used as a function. // // Example: // #sphere(d=10); // up(20) sphere(d=10); // // Example(NORENDER): // pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62] // pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]] // mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]] module up(z=0, p) { assert(is_undef(p), "Module form `up()` does not accept p= argument."); assert(is_finite(z), "Invalid number"); translate([0,0,z]) children(); } function up(z=0, p=_NO_ARG) = assert(is_finite(z), "Invalid number") move([0,0,z],p=p); ////////////////////////////////////////////////////////////////////// // Section: Rotations ////////////////////////////////////////////////////////////////////// // Function&Module: rot() // // Usage: As a Module // rot(a, [cp], [reverse]) {...} // rot([X,Y,Z], [cp], [reverse]) {...} // rot(a, v, [cp], [reverse]) {...} // rot(from, to, [a], [reverse]) {...} // Usage: As a Function to transform data in `p` // pts = rot(a, p=, [cp=], [reverse=]); // pts = rot([X,Y,Z], p=, [cp=], [reverse=]); // pts = rot(a, v, p=, [cp=], [reverse=]); // pts = rot([a], from=, to=, p=, [reverse=]); // Usage: As a Function to return a transform matrix // M = rot(a, [cp=], [reverse=], [planar=]); // M = rot([X,Y,Z], [cp=], [reverse=], [planar=]); // M = rot(a, v, [cp=], [reverse=], [planar=]); // M = rot(from=, to=, [a=], [reverse=], [planar=]); // // Topics: Affine, Matrices, Transforms, Rotation // See Also: xrot(), yrot(), zrot() // // Description: // This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities. // You can specify the rotation to perform in one of several ways: // * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis. // * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis. // * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`. // * `rot(from=[0,0,1], to=[1,0,0])` rotates the `from` vector to line up with the `to` vector, in this case the top to the right and hence equivalent to `rot(a=90,v=[0,1,0]`. // * `rot(from=[0,1,1], to=[1,1,0], a=45)` rotates 45 degrees around the `from` vector ([0,1,1]) and then rotates the `from` vector to align with the `to` vector. Equivalent to `rot(from=[0,1,1],to=[1,1,0]) rot(a=45,v=[0,1,1])`. You can also regard `a` as as post-rotation around the `to` vector. For this form, `a` must be a scalar. // * If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint. So `rot(args...,cp=[1,2,3])` is equivalent to `move(-[1,2,3])rot(args...)move([1,2,3])`. // * If the `reverse` argument is true, then the rotations performed will be exactly reversed. // . // The behavior and return value varies depending on how `rot()` is called: // * Called as a module, rotates all children. // * Called as a function with a `p` argument containing a point, returns the rotated point. // * Called as a function with a `p` argument containing a list of points, returns the list of rotated points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF. // * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. The angle `a` must be a scalar. // * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix. // Note that unlike almost all the other transformations, the `p` argument must be given as a named argument. // // Arguments: // a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. If `planar` is true or if `p` holds 2d data, or if you use the `from` and `to` arguments then `a` must be a scalar. Default: `0` // v = vector for the axis of rotation. Default: [0,0,1] or UP // --- // cp = centerpoint to rotate around. Default: [0,0,0] // from = Starting vector for vector-based rotations. // to = Target vector for vector-based rotations. // reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false // planar = If called as a function, this specifies if you want to work with 2D points. // p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF. // // Example: // #cube([2,4,9]); // rot([30,60,0], cp=[0,0,9]) cube([2,4,9]); // // Example: // #cube([2,4,9]); // rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]); // // Example: // #cube([2,4,9]); // rot(from=UP, to=LEFT+BACK) cube([2,4,9]); // // Example(2D): // path = square([50,30], center=true); // #stroke(path, closed=true); // stroke(rot(30,p=path), closed=true); module rot(a=0, v, cp, from, to, reverse=false) { m = rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=false); multmatrix(m) children(); } function rot(a=0, v, cp, from, to, reverse=false, planar=false, p=_NO_ARG, _m) = assert(is_undef(from)==is_undef(to), "from and to must be specified together.") assert(is_undef(from) || is_vector(from, zero=false), "'from' must be a non-zero vector.") assert(is_undef(to) || is_vector(to, zero=false), "'to' must be a non-zero vector.") assert(is_undef(v) || is_vector(v, zero=false), "'v' must be a non-zero vector.") assert(is_undef(cp) || is_vector(cp), "'cp' must be a vector.") assert(is_finite(a) || is_vector(a), "'a' must be a finite scalar or a vector.") assert(is_bool(reverse)) assert(is_bool(planar)) let( m = planar? let( check = assert(is_num(a)), cp = is_undef(cp)? cp : point2d(cp), m1 = is_undef(from)? affine2d_zrot(a) : assert(a==0, "'from' and 'to' cannot be used with 'a' when 'planar' is true.") assert(approx(point3d(from).z, 0), "'from' must be a 2D vector when 'planar' is true.") assert(approx(point3d(to).z, 0), "'to' must be a 2D vector when 'planar' is true.") affine2d_zrot( v_theta(to) - v_theta(from) ), m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)), m3 = reverse? rot_inverse(m2) : m2 ) m3 : let( from = is_undef(from)? undef : point3d(from), to = is_undef(to)? undef : point3d(to), cp = is_undef(cp)? undef : point3d(cp), m1 = !is_undef(from) ? assert(is_num(a)) affine3d_rot_from_to(from,to) * affine3d_rot_by_axis(from,a) : !is_undef(v)? assert(is_num(a)) affine3d_rot_by_axis(v,a) : is_num(a) ? affine3d_zrot(a) : affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x), m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)), m3 = reverse? rot_inverse(m2) : m2 ) m3 ) p==_NO_ARG ? m : apply(m, p); // Function&Module: xrot() // // Usage: As Module // xrot(a, [cp=]) ... // Usage: As a function to rotate points // rotated = xrot(a, p, [cp=]); // Usage: As a function to return rotation matrix // mat = xrot(a, [cp=]); // // Topics: Affine, Matrices, Transforms, Rotation // See Also: rot(), yrot(), zrot() // // Description: // Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint. // * Called as a module, rotates all children. // * Called as a function with a `p` argument containing a point, returns the rotated point. // * Called as a function with a `p` argument containing a list of points, returns the list of rotated points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF. // * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. // * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix. // // Arguments: // a = angle to rotate by in degrees. // p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF. // --- // cp = centerpoint to rotate around. Default: [0,0,0] // // Example: // #cylinder(h=50, r=10, center=true); // xrot(90) cylinder(h=50, r=10, center=true); module xrot(a=0, p, cp) { assert(is_undef(p), "Module form `xrot()` does not accept p= argument."); if (a==0) { children(); // May be slightly faster? } else if (!is_undef(cp)) { translate(cp) rotate([a, 0, 0]) translate(-cp) children(); } else { rotate([a, 0, 0]) children(); } } function xrot(a=0, p=_NO_ARG, cp) = rot([a,0,0], cp=cp, p=p); // Function&Module: yrot() // // Usage: As Module // yrot(a, [cp=]) ... // Usage: Rotate Points // rotated = yrot(a, p, [cp=]); // Usage: Get Rotation Matrix // mat = yrot(a, [cp=]); // // Topics: Affine, Matrices, Transforms, Rotation // See Also: rot(), xrot(), zrot() // // Description: // Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint. // * Called as a module, rotates all children. // * Called as a function with a `p` argument containing a point, returns the rotated point. // * Called as a function with a `p` argument containing a list of points, returns the list of rotated points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF. // * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. // * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix. // // Arguments: // a = angle to rotate by in degrees. // p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF. // --- // cp = centerpoint to rotate around. Default: [0,0,0] // // Example: // #cylinder(h=50, r=10, center=true); // yrot(90) cylinder(h=50, r=10, center=true); module yrot(a=0, p, cp) { assert(is_undef(p), "Module form `yrot()` does not accept p= argument."); if (a==0) { children(); // May be slightly faster? } else if (!is_undef(cp)) { translate(cp) rotate([0, a, 0]) translate(-cp) children(); } else { rotate([0, a, 0]) children(); } } function yrot(a=0, p=_NO_ARG, cp) = rot([0,a,0], cp=cp, p=p); // Function&Module: zrot() // // Usage: As Module // zrot(a, [cp=]) ... // Usage: As Function to rotate points // rotated = zrot(a, p, [cp=]); // Usage: As Function to return rotation matrix // mat = zrot(a, [cp=]); // // Topics: Affine, Matrices, Transforms, Rotation // See Also: rot(), xrot(), yrot() // // Description: // Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint. // * Called as a module, rotates all children. // * Called as a function with a `p` argument containing a point, returns the rotated point. // * Called as a function with a `p` argument containing a list of points, returns the list of rotated points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF. // * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. // * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix. // // Arguments: // a = angle to rotate by in degrees. // p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF. // --- // cp = centerpoint to rotate around. Default: [0,0,0] // // Example: // #cube(size=[60,20,40], center=true); // zrot(90) cube(size=[60,20,40], center=true); module zrot(a=0, p, cp) { assert(is_undef(p), "Module form `zrot()` does not accept p= argument."); if (a==0) { children(); // May be slightly faster? } else if (!is_undef(cp)) { translate(cp) rotate(a) translate(-cp) children(); } else { rotate(a) children(); } } function zrot(a=0, p=_NO_ARG, cp) = rot(a, cp=cp, p=p); ////////////////////////////////////////////////////////////////////// // Section: Scaling ////////////////////////////////////////////////////////////////////// // Function&Module: scale() // Usage: As Module // scale(SCALAR) ... // scale([X,Y,Z]) ... // Usage: Scale Points // pts = scale(v, p, [cp=]); // Usage: Get Scaling Matrix // mat = scale(v, [cp=]); // Topics: Affine, Matrices, Transforms, Scaling // See Also: xscale(), yscale(), zscale() // Description: // Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount. // * Called as the built-in module, scales all children. // * Called as a function with a point in the `p` argument, returns the scaled point. // * Called as a function with a list of points in the `p` argument, returns the list of scaled points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF. // * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix. // * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix. // Arguments: // v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1 // p = If called as a function, the point or list of points to scale. // --- // cp = If given, centers the scaling on the point `cp`. // Example(NORENDER): // pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12] // pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16] // pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]] // mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]] // mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]] // Example(2D): // path = circle(d=50,$fn=12); // #stroke(path,closed=true); // stroke(scale([1.5,3],p=path),closed=true); function scale(v=1, p=_NO_ARG, cp=[0,0,0]) = assert(is_num(v) || is_vector(v),"Invalid scale") assert(p==_NO_ARG || is_list(p),"Invalid point list") assert(is_vector(cp)) let( v = is_num(v)? [v,v,v] : v, m = cp==[0,0,0] ? affine3d_scale(v) : affine3d_translate(point3d(cp)) * affine3d_scale(v) * affine3d_translate(point3d(-cp)) ) p==_NO_ARG? m : apply(m, p) ; // Function&Module: xscale() // // // Usage: As Module // xscale(x, [cp=]) ... // Usage: Scale Points // scaled = xscale(x, p, [cp=]); // Usage: Get Affine Matrix // mat = xscale(x, [cp=], [planar=]); // // Topics: Affine, Matrices, Transforms, Scaling // See Also: scale(), yscale(), zscale() // // Description: // Scales along the X axis by the scaling factor `x`. // * Called as the built-in module, scales all children. // * Called as a function with a point in the `p` argument, returns the scaled point. // * Called as a function with a list of points in the `p` argument, returns the list of scaled points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF. // * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix. // * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix. // // Arguments: // x = Factor to scale by, along the X axis. // p = A point, path, bezier patch, or VNF to scale, when called as a function. // --- // cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[cp,0,0]` // planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix. // // Example: As Module // xscale(3) sphere(r=10); // // Example(2D): Scaling Points // path = circle(d=50,$fn=12); // #stroke(path,closed=true); // stroke(xscale(2,p=path),closed=true); module xscale(x=1, p, cp=0, planar) { assert(is_undef(p), "Module form `xscale()` does not accept p= argument."); assert(is_undef(planar), "Module form `xscale()` does not accept planar= argument."); cp = is_num(cp)? [cp,0,0] : cp; if (cp == [0,0,0]) { scale([x,1,1]) children(); } else { translate(cp) scale([x,1,1]) translate(-cp) children(); } } function xscale(x=1, p=_NO_ARG, cp=0, planar=false) = assert(is_finite(x)) assert(p==_NO_ARG || is_list(p)) assert(is_finite(cp) || is_vector(cp)) assert(is_bool(planar)) let( cp = is_num(cp)? [cp,0,0] : cp ) (planar || (!is_undef(p) && len(p)==2)) ? scale([x,1], cp=cp, p=p) : scale([x,1,1], cp=cp, p=p); // Function&Module: yscale() // // Usage: As Module // yscale(y, [cp=]) ... // Usage: Scale Points // scaled = yscale(y, p, [cp=]); // Usage: Get Affine Matrix // mat = yscale(y, [cp=], [planar=]); // // Topics: Affine, Matrices, Transforms, Scaling // See Also: scale(), xscale(), zscale() // // Description: // Scales along the Y axis by the scaling factor `y`. // * Called as the built-in module, scales all children. // * Called as a function with a point in the `p` argument, returns the scaled point. // * Called as a function with a list of points in the `p` argument, returns the list of scaled points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF. // * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix. // * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix. // // Arguments: // y = Factor to scale by, along the Y axis. // p = A point, path, bezier patch, or VNF to scale, when called as a function. // --- // cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,cp,0]` // planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix. // // Example: As Module // yscale(3) sphere(r=10); // // Example(2D): Scaling Points // path = circle(d=50,$fn=12); // #stroke(path,closed=true); // stroke(yscale(2,p=path),closed=true); module yscale(y=1, p, cp=0, planar) { assert(is_undef(p), "Module form `yscale()` does not accept p= argument."); assert(is_undef(planar), "Module form `yscale()` does not accept planar= argument."); cp = is_num(cp)? [0,cp,0] : cp; if (cp == [0,0,0]) { scale([1,y,1]) children(); } else { translate(cp) scale([1,y,1]) translate(-cp) children(); } } function yscale(y=1, p=_NO_ARG, cp=0, planar=false) = assert(is_finite(y)) assert(p==_NO_ARG || is_list(p)) assert(is_finite(cp) || is_vector(cp)) assert(is_bool(planar)) let( cp = is_num(cp)? [0,cp,0] : cp ) (planar || (!is_undef(p) && len(p)==2)) ? scale([1,y], cp=cp, p=p) : scale([1,y,1], cp=cp, p=p); // Function&Module: zscale() // // Usage: As Module // zscale(z, [cp=]) ... // Usage: Scale Points // scaled = zscale(z, p, [cp=]); // Usage: Get Affine Matrix // mat = zscale(z, [cp=]); // // Topics: Affine, Matrices, Transforms, Scaling // See Also: scale(), xscale(), yscale() // // Description: // Scales along the Z axis by the scaling factor `z`. // * Called as the built-in module, scales all children. // * Called as a function with a point in the `p` argument, returns the scaled point. // * Called as a function with a list of points in the `p` argument, returns the list of scaled points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF. // * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix. // * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix. // // Arguments: // z = Factor to scale by, along the Z axis. // p = A point, path, bezier patch, or VNF to scale, when called as a function. // --- // cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,0,cp]` // // Example: As Module // zscale(3) sphere(r=10); // // Example: Scaling Points // path = xrot(90,p=path3d(circle(d=50,$fn=12))); // #stroke(path,closed=true); // stroke(zscale(2,path),closed=true); module zscale(z=1, p, cp=0) { assert(is_undef(p), "Module form `zscale()` does not accept p= argument."); cp = is_num(cp)? [0,0,cp] : cp; if (cp == [0,0,0]) { scale([1,1,z]) children(); } else { translate(cp) scale([1,1,z]) translate(-cp) children(); } } function zscale(z=1, p=_NO_ARG, cp=0) = assert(is_finite(z)) assert(is_undef(p) || is_list(p)) assert(is_finite(cp) || is_vector(cp)) let( cp = is_num(cp)? [0,0,cp] : cp ) scale([1,1,z], cp=cp, p=p); ////////////////////////////////////////////////////////////////////// // Section: Reflection (Mirroring) ////////////////////////////////////////////////////////////////////// // Function&Module: mirror() // Usage: As Module // mirror(v) ... // Usage: As Function // pt = mirror(v, p); // Usage: Get Reflection/Mirror Matrix // mat = mirror(v); // Topics: Affine, Matrices, Transforms, Reflection, Mirroring // See Also: xflip(), yflip(), zflip() // Description: // Mirrors/reflects across the plane or line whose normal vector is given in `v`. // * Called as the built-in module, mirrors all children across the line/plane. // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane. // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF. // * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix. // * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix. // Arguments: // v = The normal vector of the line or plane to mirror across. // p = If called as a function, the point or list of points to scale. // Example: // n = [1,0,0]; // module obj() right(20) rotate([0,15,-15]) cube([40,30,20]); // obj(); // mirror(n) obj(); // rot(a=atan2(n.y,n.x),from=UP,to=n) { // color("red") anchor_arrow(s=20, flag=false); // color("#7777") cube([75,75,0.1], center=true); // } // Example: // n = [1,1,0]; // module obj() right(20) rotate([0,15,-15]) cube([40,30,20]); // obj(); // mirror(n) obj(); // rot(a=atan2(n.y,n.x),from=UP,to=n) { // color("red") anchor_arrow(s=20, flag=false); // color("#7777") cube([75,75,0.1], center=true); // } // Example: // n = [1,1,1]; // module obj() right(20) rotate([0,15,-15]) cube([40,30,20]); // obj(); // mirror(n) obj(); // rot(a=atan2(n.y,n.x),from=UP,to=n) { // color("red") anchor_arrow(s=20, flag=false); // color("#7777") cube([75,75,0.1], center=true); // } // Example(2D): // n = [0,1]; // path = rot(30, p=square([50,30])); // color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]); // color("red") stroke([[0,0],10*n],endcap2="arrow2"); // #stroke(path,closed=true); // stroke(mirror(n, p=path),closed=true); // Example(2D): // n = [1,1]; // path = rot(30, p=square([50,30])); // color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]); // color("red") stroke([[0,0],10*n],endcap2="arrow2"); // #stroke(path,closed=true); // stroke(mirror(n, p=path),closed=true); function mirror(v, p=_NO_ARG) = assert(is_vector(v)) assert(p==_NO_ARG || is_list(p),"Invalid pointlist") let(m = len(v)==2? affine2d_mirror(v) : affine3d_mirror(v)) p==_NO_ARG? m : apply(m,p); // Function&Module: xflip() // // Usage: As Module // xflip([x]) ... // Usage: As Function // pt = xflip(p, [x]); // Usage: Get Affine Matrix // pt = xflip([x], [planar=]); // // Topics: Affine, Matrices, Transforms, Reflection, Mirroring // See Also: mirror(), yflip(), zflip() // // Description: // Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead. // * Called as the built-in module, mirrors all children across the line/plane. // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane. // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF. // * Called as a function without a `p` argument, and `planar=true`, returns the affine2d 3x3 mirror matrix. // * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix. // // Arguments: // x = The X coordinate of the plane of reflection. Default: 0 // p = If given, the point, path, patch, or VNF to mirror. Function use only. // --- // planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False // // Example: // xflip() yrot(90) cylinder(d1=10, d2=0, h=20); // color("blue", 0.25) cube([0.01,15,15], center=true); // color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20); // // Example: // xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20); // color("blue", 0.25) left(5) cube([0.01,15,15], center=true); // color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20); module xflip(p, x=0, planar) { assert(is_undef(p), "Module form `zflip()` does not accept p= argument."); assert(is_undef(planar), "Module form `zflip()` does not accept planar= argument."); translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children(); } function xflip(p=_NO_ARG, x=0, planar=false) = assert(is_finite(x)) assert(is_bool(planar)) assert(p==_NO_ARG || is_list(p),"Invalid point list") let( v = RIGHT, n = planar? point2d(v) : v ) x == 0 ? mirror(n,p=p) : let( cp = x * n, m = move(cp) * mirror(n) * move(-cp) ) p==_NO_ARG? m : apply(m, p); // Function&Module: yflip() // // Usage: As Module // yflip([y]) ... // Usage: As Function // pt = yflip(p, [y]); // Usage: Get Affine Matrix // pt = yflip([y], [planar=]); // // Topics: Affine, Matrices, Transforms, Reflection, Mirroring // See Also: mirror(), xflip(), zflip() // // Description: // Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead. // * Called as the built-in module, mirrors all children across the line/plane. // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane. // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF. // * Called as a function without a `p` argument, and `planar=true`, returns the affine2d 3x3 mirror matrix. // * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix. // // Arguments: // p = If given, the point, path, patch, or VNF to mirror. Function use only. // y = The Y coordinate of the plane of reflection. Default: 0 // --- // planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False // // Example: // yflip() xrot(90) cylinder(d1=10, d2=0, h=20); // color("blue", 0.25) cube([15,0.01,15], center=true); // color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20); // // Example: // yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20); // color("blue", 0.25) back(5) cube([15,0.01,15], center=true); // color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20); module yflip(p, y=0, planar) { assert(is_undef(p), "Module form `yflip()` does not accept p= argument."); assert(is_undef(planar), "Module form `yflip()` does not accept planar= argument."); translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children(); } function yflip(p=_NO_ARG, y=0, planar=false) = assert(is_finite(y)) assert(is_bool(planar)) assert(p==_NO_ARG || is_list(p),"Invalid point list") let( v = BACK, n = planar? point2d(v) : v ) y == 0 ? mirror(n,p=p) : let( cp = y * n, m = move(cp) * mirror(n) * move(-cp) ) p==_NO_ARG? m : apply(m, p); // Function&Module: zflip() // // Usage: As Module // zflip([z]) ... // Usage: As Function // pt = zflip(p, [z]); // Usage: Get Affine Matrix // pt = zflip([z]); // // Topics: Affine, Matrices, Transforms, Reflection, Mirroring // See Also: mirror(), xflip(), yflip() // // Description: // Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead. // * Called as the built-in module, mirrors all children across the line/plane. // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane. // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF. // * Called as a function without a `p` argument, returns the affine3d 4x4 mirror matrix. // // Arguments: // p = If given, the point, path, patch, or VNF to mirror. Function use only. // z = The Z coordinate of the plane of reflection. Default: 0 // // Example: // zflip() cylinder(d1=10, d2=0, h=20); // color("blue", 0.25) cube([15,15,0.01], center=true); // color("red", 0.333) cylinder(d1=10, d2=0, h=20); // // Example: // zflip(z=-5) cylinder(d1=10, d2=0, h=20); // color("blue", 0.25) down(5) cube([15,15,0.01], center=true); // color("red", 0.333) cylinder(d1=10, d2=0, h=20); module zflip(p, z=0) { assert(is_undef(p), "Module form `zflip()` does not accept p= argument."); translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children(); } function zflip(p=_NO_ARG, z=0) = assert(is_finite(z)) assert(p==_NO_ARG || is_list(p),"Invalid point list") z==0? mirror([0,0,1],p=p) : let(m = up(z) * mirror(UP) * down(z)) p==_NO_ARG? m : apply(m, p); ////////////////////////////////////////////////////////////////////// // Section: Other Transformations ////////////////////////////////////////////////////////////////////// // Function&Module: frame_map() // Usage: As module // frame_map(v1, v2, v3, [reverse=]) { ... } // Usage: As function to remap points // transformed = frame_map(v1, v2, v3, p=points, [reverse=]); // Usage: As function to return a transformation matrix: // map = frame_map(v1, v2, v3, [reverse=]); // map = frame_map(x=VECTOR1, y=VECTOR2, [reverse=]); // map = frame_map(x=VECTOR1, z=VECTOR2, [reverse=]); // map = frame_map(y=VECTOR1, z=VECTOR2, [reverse=]); // Topics: Affine, Matrices, Transforms, Rotation // See Also: rot(), xrot(), yrot(), zrot() // Description: // Maps one coordinate frame to another. You must specify two or // three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied, so if you // specify x=[1,1] then the x axis will be mapped to the line y=x. If you // give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand // coordinate system. If the vectors you give are orthogonal the result will be a rotation and the // `reverse` parameter will supply the inverse map, which enables you to map two arbitrary // coordinate systems to each other by using the canonical coordinate system as an intermediary. // You cannot use the `reverse` option with non-orthogonal inputs. Note that only the direction // of the specified vectors matters: the transformation will not apply scaling, though it can // skew if your provide non-orthogonal axes. // Arguments: // x = Destination 3D vector for x axis. // y = Destination 3D vector for y axis. // z = Destination 3D vector for z axis. // p = If given, the point, path, patch, or VNF to operate on. Function use only. // reverse = reverse direction of the map for orthogonal inputs. Default: false // Example: Remap axes after linear extrusion // frame_map(x=[0,1,0], y=[0,0,1]) linear_extrude(height=10) square(3); // Example: This map is just a rotation around the z axis // mat = frame_map(x=[1,1,0], y=[-1,1,0]); // multmatrix(mat) frame_ref(); // Example: This map is not a rotation because x and y aren't orthogonal // frame_map(x=[1,0,0], y=[1,1,0]) cube(10); // Example: This sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]. (Original directions shown in light shade, final directions shown dark.) // mat = frame_map(x=[0,1,1], y=[0,-1,1]) * frame_map(x=[1,1,0], y=[-1,1,0],reverse=true); // color("purple",alpha=.2) stroke([[0,0,0],10*[1,1,0]]); // color("green",alpha=.2) stroke([[0,0,0],10*[-1,1,0]]); // multmatrix(mat) { // color("purple") stroke([[0,0,0],10*[1,1,0]]); // color("green") stroke([[0,0,0],10*[-1,1,0]]); // } function frame_map(x,y,z, p=_NO_ARG, reverse=false) = p != _NO_ARG ? apply(frame_map(x,y,z,reverse=reverse), p) : assert(num_defined([x,y,z])>=2, "Must define at least two inputs") let( xvalid = is_undef(x) || (is_vector(x) && len(x)==3), yvalid = is_undef(y) || (is_vector(y) && len(y)==3), zvalid = is_undef(z) || (is_vector(z) && len(z)==3) ) assert(xvalid,"Input x must be a length 3 vector") assert(yvalid,"Input y must be a length 3 vector") assert(zvalid,"Input z must be a length 3 vector") let( x = is_undef(x)? undef : unit(x,RIGHT), y = is_undef(y)? undef : unit(y,BACK), z = is_undef(z)? undef : unit(z,UP), map = is_undef(x)? [cross(y,z), y, z] : is_undef(y)? [x, cross(z,x), z] : is_undef(z)? [x, y, cross(x,y)] : [x, y, z] ) reverse? ( let( ocheck = ( approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0) ) ) assert(ocheck, "Inputs must be orthogonal when reverse==true") [for (r=map) [for (c=r) c, 0], [0,0,0,1]] ) : [for (r=transpose(map)) [for (c=r) c, 0], [0,0,0,1]]; module frame_map(x,y,z,p,reverse=false) { assert(is_undef(p), "Module form `frame_map()` does not accept p= argument."); multmatrix(frame_map(x,y,z,reverse=reverse)) children(); } // Function&Module: skew() // Usage: As Module // skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]) ... // Usage: As Function // pts = skew(p, [sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]); // Usage: Get Affine Matrix // mat = skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=], [planar=]); // Topics: Affine, Matrices, Transforms, Skewing // // Description: // Skews geometry by the given skew factors. // * Called as the built-in module, skews all children. // * Called as a function with a point in the `p` argument, returns the skewed point. // * Called as a function with a list of points in the `p` argument, returns the list of skewed points. // * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch. // * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF. // * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix. // * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix. // Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis. // Arguments: // p = If given, the point, path, patch, or VNF to skew. Function use only. // --- // sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0 // sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0 // syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0 // syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0 // szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0 // szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0 // Example(2D): Skew along the X axis in 2D. // skew(sxy=0.5) square(40, center=true); // Example(2D): Skew along the Y axis in 2D. // skew(syx=0.5) square(40, center=true); // Example: Skew along the X axis in 3D as a factor of Y coordinate. // skew(sxy=0.5) cube(40, center=true); // Example: Skew along the X axis in 3D as a factor of Z coordinate. // skew(sxz=0.5) cube(40, center=true); // Example: Skew along the Y axis in 3D as a factor of X coordinate. // skew(syx=0.5) cube(40, center=true); // Example: Skew along the Y axis in 3D as a factor of Z coordinate. // skew(syz=0.5) cube(40, center=true); // Example: Skew along the Z axis in 3D as a factor of X coordinate. // skew(szx=0.5) cube(40, center=true); // Example: Skew along the Z axis in 3D as a factor of Y coordinate. // skew(szy=0.75) cube(40, center=true); // Example(FlatSpin,VPD=275): Skew Along Multiple Axes. // skew(sxy=0.5, syx=0.3, szy=0.75) cube(40, center=true); // Example(2D): Calling as a 2D Function // pts = skew(p=square(40,center=true), sxy=0.5); // color("yellow") stroke(pts, closed=true); // color("blue") move_copies(pts) circle(d=3, $fn=8); // Example(FlatSpin,VPD=175): Calling as a 3D Function // pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3); // stroke(pts,closed=true,dots=true,dots_color="blue"); module skew(p, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) { assert(is_undef(p), "Module form `skew()` does not accept p= argument.") multmatrix( affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy) ) children(); } function skew(p=_NO_ARG, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0, planar=false) = assert(is_finite(sxy)) assert(is_finite(sxz)) assert(is_finite(syx)) assert(is_finite(syz)) assert(is_finite(szx)) assert(is_finite(szy)) assert(is_bool(planar)) let( planar = planar || (is_list(p) && is_num(p.x) && len(p)==2), m = planar? [ [ 1, sxy, 0], [syx, 1, 0], [ 0, 0, 1] ] : affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy) ) p==_NO_ARG? m : apply(m, p); // Section: Applying transformation matrices to /// Internal Function: is_2d_transform() /// Usage: /// x = is_2d_transform(t); /// Topics: Affine, Matrices, Transforms, Type Checking /// See Also: is_affine(), is_matrix() /// Description: /// Checks if the input is a 3D transform that does not act on the z coordinate, except possibly /// for a simple scaling of z. Note that an input which is only a zscale returns false. /// Arguments: /// t = The transformation matrix to check. /// Example: /// b = is_2d_transform(zrot(45)); // Returns: true /// b = is_2d_transform(yrot(45)); // Returns: false /// b = is_2d_transform(xrot(45)); // Returns: false /// b = is_2d_transform(move([10,20,0])); // Returns: true /// b = is_2d_transform(move([10,20,30])); // Returns: false /// b = is_2d_transform(scale([2,3,4])); // Returns: true function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && (t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale() // Function: apply() // Usage: // pts = apply(transform, points); // Topics: Affine, Matrices, Transforms // Description: // Applies the specified transformation matrix `transform` to a point, point list, bezier patch or VNF. // When `points` contains 2D or 3D points the transform matrix may be a 4x4 affine matrix or a 3x4 matrix--- // the 4x4 matrix with its final row removed. When the data is 2D the matrix must not operate on the Z axis, // except possibly by scaling it. When points contains 2D data you can also supply the transform as // a 3x3 affine transformation matrix or the corresponding 2x3 matrix with the last row deleted. // . // Any other combination of matrices will produce an error, including acting with a 2D matrix (3x3) on 3D data. // The output of apply is always the same dimension as the input---projections are not supported. // Arguments: // transform = The 2D (3x3 or 2x3) or 3D (4x4 or 3x4) transformation matrix to apply. // points = The point, point list, bezier patch, or VNF to apply the transformation to. // Example(3D): // path1 = path3d(circle(r=40)); // tmat = xrot(45); // path2 = apply(tmat, path1); // #stroke(path1,closed=true); // stroke(path2,closed=true); // Example(2D): // path1 = circle(r=40); // tmat = translate([10,5]); // path2 = apply(tmat, path1); // #stroke(path1,closed=true); // stroke(path2,closed=true); // Example(2D): // path1 = circle(r=40); // tmat = rot(30) * back(15) * scale([1.5,0.5,1]); // path2 = apply(tmat, path1); // #stroke(path1,closed=true); // stroke(path2,closed=true); function apply(transform,points) = points==[] ? [] : is_vector(points) ? _apply(transform, [points])[0] // point : is_vnf(points) ? // vnf let( newvnf = [_apply(transform, points[0]), points[1]], reverse = (len(transform)==len(transform[0])) && determinant(transform)<0 ) reverse ? vnf_reverse_faces(newvnf) : newvnf : is_list(points) && is_list(points[0]) && is_vector(points[0][0]) // bezier patch ? [for (x=points) _apply(transform,x)] : _apply(transform,points); function _apply(transform,points) = assert(is_matrix(transform),"Invalid transformation matrix") assert(is_matrix(points),"Invalid points list") let( tdim = len(transform[0])-1, datadim = len(points[0]) ) assert(len(transform)==tdim || len(transform)-1==tdim, "transform matrix height not compatible with width") assert(datadim==2 || datadim==3,"Data must be 2D or 3D") let( scale = len(transform)==tdim ? 1 : transform[tdim][tdim], matrix = [for(i=[0:1:tdim]) [for(j=[0:1:datadim-1]) transform[j][i]/scale]] ) tdim==datadim ? [for(p=points) concat(p,1)] * matrix : tdim == 3 && datadim == 2 ? assert(is_2d_transform(transform), str("Transforms is 3D and acts on Z, but points are 2D")) [for(p=points) concat(p,[0,1])]*matrix : assert(false, str("Unsupported combination: ",len(transform),"x",len(transform[0])," transform (dimension ",tdim, "), data of dimension ",datadim)); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap