////////////////////////////////////////////////////////////////////// // LibFile: transforms.scad // Functions and modules to mutate children in various ways. // Includes: // include ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// // Section: Volume Division Mutators ////////////////////////////////////////////////////////////////////// // Module: bounding_box() // Usage: // bounding_box() ... // Description: // Returns an axis-aligned cube shape that exactly contains all the 3D children given. // Arguments: // excess = The amount that the bounding box should be larger than needed to bound the children, in each axis. // planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false // Example: // #bounding_box() { // translate([10,8,4]) cube(5); // translate([3,0,12]) cube(2); // } // translate([10,8,4]) cube(5); // translate([3,0,12]) cube(2); module bounding_box(excess=0, planar=true) { xs = excess>.1? excess : 1; // a 3D approx. of the children projection on X axis module _xProjection() if (planar) { projection() rotate([90,0,0]) linear_extrude(xs, center=true) hull() children(); } else { linear_extrude(xs, center=true) projection() rotate([90,0,0]) linear_extrude(xs, center=true) projection() hull() children(); } // a bounding box with an offset of 1 in all axis module _oversize_bbox() { if (planar) { minkowski() { _xProjection() children(); // x axis rotate(-90) _xProjection() rotate(90) children(); // y axis } } else { minkowski() { _xProjection() children(); // x axis rotate(-90) _xProjection() rotate(90) children(); // y axis rotate([0,-90,0]) _xProjection() rotate([0,90,0]) children(); // z axis } } } module _shrink_cube() { intersection() { translate((1-excess)*[ 1, 1, planar?0: 1]) children(); translate((1-excess)*[-1,-1, planar?0:-1]) children(); } } render(convexity=2) if (excess>.1) { _oversize_bbox() children(); } else { _shrink_cube() _oversize_bbox() children(); } } // Function&Module: half_of() // // Usage: as module // half_of(v, , ) ... // Usage: as function // half_of(v, , p, )... // // Description: // Slices an object at a cut plane, and masks away everything that is on one side. // * Called as a function with a path in the `p` argument, returns the // intersection of path `p` and given half-space. // * Called as a function with a 2D path in the `p` argument // and a 2D vector `p`, returns the intersection of path `p` and given // half-plane. // // Arguments: // v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP) // cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. This can be used to shift where it slices the object at. Default: [0,0,0] // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100 // planar = If true, this becomes a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively. // // Examples: // half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false); // half_of(DOWN+LEFT, s=200) sphere(d=150); // Example(2D): // half_of([1,1], planar=true) circle(d=50); module half_of(v=UP, cp, s=1000, planar=false) { cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] : is_vector(cp)? cp : is_num(cp)? cp*unit(v) : [0,0,0]; v = is_vector(v,4)? plane_normal(v) : v; if (cp != [0,0,0]) { translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children(); } else if (planar) { v = (v==UP)? BACK : (v==DOWN)? FWD : v; ang = atan2(v.y, v.x); difference() { children(); rotate(ang+90) { back(s/2) square(s, center=true); } } } else { difference() { children(); rot(from=UP, to=-v) { up(s/2) cube(s, center=true); } } } } function half_of(_arg1=_undef, _arg2=_undef, _arg3=_undef, _arg4=_undef, v=_undef, cp=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3, _arg4], [[v,undef,0], [cp,0,2], [p,undef,1], [s, 1e4]]), v=args[0], cp0=args[1], p=args[2], s=args[3], cp = is_num(cp0) ? cp0*unit(v) : cp0) assert(is_vector(v,2)||is_vector(v,3), "must provide a half-plane or half-space") let(d=len(v)) assert(len(cp) == d, str("cp must have dimension ", d)) is_vector(p) ? assert(len(p) == d, str("vector must have dimension ", d)) let(z=(p-cp)*v) (z >= 0 ? p : p - (z*v)/(v*v)) : p == [] ? [] : // special case: empty path remains empty is_path(p) ? assert(len(p[0]) == d, str("path must have dimension ", d)) let(z = [for(x=p) (x-cp)*v]) [ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [], // we assume a closed path here; // to make this correct for an open path, // just replace this by [] when i==len(p)-1: let(j=(i+1)%len(p)) // the remaining path may have flattened sections, but this cannot // create self-intersection or whiskers: z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ] : is_vnf(p) ? // we must put is_vnf() before is_region(), because most triangulated // VNFs will pass is_region() test vnf_halfspace(halfspace=concat(v,[-v*cp]), vnf=p) : is_region(p) ? assert(len(v) == 2, str("3D vector not compatible with region")) let(u=unit(v), w=[-u[1], u[0]], R=[[cp+s*w, cp+s*(v+v), cp+s*(v-w), cp-s*w]]) // half-plane intersection(R, p) : assert(false, "must pass either a point, a path, a region, or a VNF"); // Function&Module: left_half() // // Usage: as module // left_half(, ) ... // left_half(planar=true, , ) ... // Usage: as function // left_half(, , path) // left_half(, , region) // left_half(, , vnf) // // Description: // Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it. // // Arguments: // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // x = The X coordinate of the cut-plane. Default: 0 // planar = If true, this becomes a 2D operation. // // Examples: // left_half() sphere(r=20); // left_half(x=-8) sphere(r=20); // Example(2D): // left_half(planar=true) circle(r=20); module left_half(s=1000, x=0, planar=false) { dir = LEFT; difference() { children(); translate([x,0,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function left_half(_arg1=_undef, _arg2=_undef, _arg3=_undef, x=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3], [[x, 0,1], [p,undef,0], [s, 1e4]]), x=args[0], p=args[1], s=args[2]) half_of(v=[1,0,0], cp=x, p=p); // Function&Module: right_half() // // Usage: // right_half([s], [x]) ... // right_half(planar=true, [s], [x]) ... // // Description: // Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it. // // Arguments: // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // x = The X coordinate of the cut-plane. Default: 0 // planar = If true, this becomes a 2D operation. // // Examples(FlatSpin): // right_half() sphere(r=20); // right_half(x=-5) sphere(r=20); // Example(2D): // right_half(planar=true) circle(r=20); module right_half(s=1000, x=0, planar=false) { dir = RIGHT; difference() { children(); translate([x,0,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef, x=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3], [[x, 0,1], [p,undef,0], [s, 1e4]]), x=args[0], p=args[1], s=args[2]) half_of(v=[-1,0,0], cp=x, p=p); // Function&Module: front_half() // // Usage: // front_half([s], [y]) ... // front_half(planar=true, [s], [y]) ... // // Description: // Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it. // // Arguments: // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // y = The Y coordinate of the cut-plane. Default: 0 // planar = If true, this becomes a 2D operation. // // Examples(FlatSpin): // front_half() sphere(r=20); // front_half(y=5) sphere(r=20); // Example(2D): // front_half(planar=true) circle(r=20); module front_half(s=1000, y=0, planar=false) { dir = FWD; difference() { children(); translate([0,y,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function front_half(_arg1=_undef, _arg2=_undef, _arg3=_undef, x=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3], [[x, 0,1], [p,undef,0], [s, 1e4]]), x=args[0], p=args[1], s=args[2]) half_of(v=[0,1,0], cp=x, p=p); // Function&Module: back_half() // // Usage: // back_half([s], [y]) ... // back_half(planar=true, [s], [y]) ... // // Description: // Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it. // // Arguments: // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // y = The Y coordinate of the cut-plane. Default: 0 // planar = If true, this becomes a 2D operation. // // Examples: // back_half() sphere(r=20); // back_half(y=8) sphere(r=20); // Example(2D): // back_half(planar=true) circle(r=20); module back_half(s=1000, y=0, planar=false) { dir = BACK; difference() { children(); translate([0,y,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function back_half(_arg1=_undef, _arg2=_undef, _arg3=_undef, x=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3], [[x, 0,1], [p,undef,0], [s, 1e4]]), x=args[0], p=args[1], s=args[2]) half_of(v=[0,-1,0], cp=x, p=p); // Function&Module: bottom_half() // // Usage: // bottom_half([s], [z]) ... // // Description: // Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it. // // Arguments: // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // z = The Z coordinate of the cut-plane. Default: 0 // // Examples: // bottom_half() sphere(r=20); // bottom_half(z=-10) sphere(r=20); module bottom_half(s=1000, z=0) { dir = DOWN; difference() { children(); translate([0,0,z]-dir*s/2) { cube(s, center=true); } } } function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef, x=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3], [[x, 0,1], [p,undef,0], [s, 1e4]]), x=args[0], p=args[1], s=args[2]) half_of(v=[0,0,-1], cp=x, p=p); // Function&Module: top_half() // // Usage: // top_half([s], [z]) ... // // Description: // Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it. // // Arguments: // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000 // z = The Z coordinate of the cut-plane. Default: 0 // // Examples(Spin): // top_half() sphere(r=20); // top_half(z=5) sphere(r=20); module top_half(s=1000, z=0) { dir = UP; difference() { children(); translate([0,0,z]-dir*s/2) { cube(s, center=true); } } } function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef, x=_undef, p=_undef, s=_undef) = let(args=get_named_args([_arg1, _arg2, _arg3], [[x, 0,1], [p,undef,0], [s, 1e4]]), x=args[0], p=args[1], s=args[2]) half_of(v=[0,0,1], cp=x, p=p); ////////////////////////////////////////////////////////////////////// // Section: Chain Mutators ////////////////////////////////////////////////////////////////////// // Module: chain_hull() // // Usage: // chain_hull() ... // // Description: // Performs hull operations between consecutive pairs of children, // then unions all of the hull results. This can be a very slow // operation, but it can provide results that are hard to get // otherwise. // // Side Effects: // `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually. // `$primary` is set to true when the child is the first in a chain pair. // // Example: // chain_hull() { // cube(5, center=true); // translate([30, 0, 0]) sphere(d=15); // translate([60, 30, 0]) cylinder(d=10, h=20); // translate([60, 60, 0]) cube([10,1,20], center=false); // } // Example: Using `$idx` and `$primary` // chain_hull() { // zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // } module chain_hull() { union() { if ($children == 1) { children(); } else if ($children > 1) { for (i =[1:1:$children-1]) { $idx = i; hull() { let($primary=true) children(i-1); let($primary=false) children(i); } } } } } ////////////////////////////////////////////////////////////////////// // Section: Warp Mutators ////////////////////////////////////////////////////////////////////// // Module: cylindrical_extrude() // Usage: // cylindrical_extrude(size, ir|id, or|od, [convexity]) ... // Description: // Extrudes all 2D children outwards, curved around a cylindrical shape. // Arguments: // or = The outer radius to extrude to. // od = The outer diameter to extrude to. // ir = The inner radius to extrude from. // id = The inner diameter to extrude from. // size = The [X,Y] size of the 2D children to extrude. Default: [1000,1000] // convexity = The max number of times a line could pass though a wall. Default: 10 // spin = Amount in degrees to spin around cylindrical axis. Default: 0 // orient = The orientation of the cylinder to wrap around, given as a vector. Default: UP // Example: // cylindrical_extrude(or=50, ir=45) // text(text="Hello World!", size=10, halign="center", valign="center"); // Example: Spin Around the Cylindrical Axis // cylindrical_extrude(or=50, ir=45, spin=90) // text(text="Hello World!", size=10, halign="center", valign="center"); // Example: Orient to the Y Axis. // cylindrical_extrude(or=40, ir=35, orient=BACK) // text(text="Hello World!", size=10, halign="center", valign="center"); module cylindrical_extrude(or, ir, od, id, size=1000, convexity=10, spin=0, orient=UP) { assert(is_num(size) || is_vector(size,2)); size = is_num(size)? [size,size] : size; ir = get_radius(r=ir,d=id); or = get_radius(r=or,d=od); index_r = or; circumf = 2 * PI * index_r; width = min(size.x, circumf); assert(width <= circumf, "Shape would more than completely wrap around."); sides = segs(or); step = circumf / sides; steps = ceil(width / step); rot(from=UP, to=orient) rot(spin) { for (i=[0:1:steps-2]) { x = (i+0.5-steps/2) * step; zrot(360 * x / circumf) { fwd(or*cos(180/sides)) { xrot(-90) { linear_extrude(height=or-ir, scale=[ir/or,1], center=false, convexity=convexity) { yflip() intersection() { left(x) children(); rect([quantup(step,pow(2,-15)),size.y],center=true); } } } } } } } } ////////////////////////////////////////////////////////////////////// // Section: Offset Mutators ////////////////////////////////////////////////////////////////////// // Module: minkowski_difference() // Usage: // minkowski_difference() { base_shape(); diff_shape(); ... } // Description: // Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the // surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the // surface of its base shape. // Arguments: // planar = If true, performs minkowski difference in 2D. Default: false (3D) // Example: // minkowski_difference() { // union() { // cube([120,70,70], center=true); // cube([70,120,70], center=true); // cube([70,70,120], center=true); // } // sphere(r=10); // } module minkowski_difference(planar=false) { difference() { bounding_box(excess=0, planar=planar) children(0); render(convexity=20) { minkowski() { difference() { bounding_box(excess=1, planar=planar) children(0); children(0); } for (i=[1:1:$children-1]) children(i); } } } } // Module: round2d() // Usage: // round2d(r) ... // round2d(or) ... // round2d(ir) ... // round2d(or, ir) ... // Description: // Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir` // rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or` // can let you round to different radii for concave and convex corners. The 2D object must not have // any parts narrower than twice the `or` radius. Such parts will disappear. // Arguments: // r = Radius to round all concave and convex corners to. // or = Radius to round only outside (convex) corners to. Use instead of `r`. // ir = Radius to round only inside (concave) corners to. Use instead of `r`. // Examples(2D): // round2d(r=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(or=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);} module round2d(r, or, ir) { or = get_radius(r1=or, r=r, dflt=0); ir = get_radius(r1=ir, r=r, dflt=0); offset(or) offset(-ir-or) offset(delta=ir,chamfer=true) children(); } // Module: shell2d() // Usage: // shell2d(thickness, [or], [ir], [fill], [round]) // Description: // Creates a hollow shell from 2D children, with optional rounding. // Arguments: // thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both. // or = Radius to round corners on the outside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no outside rounding) // ir = Radius to round corners on the inside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no inside rounding) // Examples(2D): // shell2d(10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(-10) {square([40,100], center=true); square([100,40], center=true);} // shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,round=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,fill=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(8,or=16,ir=8,round=16,fill=8) {square([40,100], center=true); square([100,40], center=true);} module shell2d(thickness, or=0, ir=0) { thickness = is_num(thickness)? ( thickness<0? [thickness,0] : [0,thickness] ) : (thickness[0]>thickness[1])? ( [thickness[1],thickness[0]] ) : thickness; orad = is_finite(or)? [or,or] : or; irad = is_finite(ir)? [ir,ir] : ir; difference() { round2d(or=orad[0],ir=orad[1]) offset(delta=thickness[1]) children(); round2d(or=irad[1],ir=irad[0]) offset(delta=thickness[0]) children(); } } // Module: offset3d() // Usage: // offset3d(r, [size], [convexity]); // Description: // Expands or contracts the surface of a 3D object by a given amount. This is very, very slow. // No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort. // This is so slow that no example images will be rendered. // Arguments: // r = Radius to expand object by. Negative numbers contract the object. // size = Maximum size of object to be contracted, given as a scalar. Default: 100 // convexity = Max number of times a line could intersect the walls of the object. Default: 10 module offset3d(r=1, size=100, convexity=10) { n = quant(max(8,segs(abs(r))),4); if (r==0) { children(); } else if (r>0) { render(convexity=convexity) minkowski() { children(); sphere(r, $fn=n); } } else { size2 = size * [1,1,1]; size1 = size2 * 1.02; render(convexity=convexity) difference() { cube(size2, center=true); minkowski() { difference() { cube(size1, center=true); children(); } sphere(-r, $fn=n); } } } } // Module: round3d() // Usage: // round3d(r) ... // round3d(or) ... // round3d(ir) ... // round3d(or, ir) ... // Description: // Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir` // rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or` // can let you round to different radii for concave and convex corners. The 3D object must not have // any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely* // slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times. // Use this as a last resort. This is so slow that no example images will be rendered. // Arguments: // r = Radius to round all concave and convex corners to. // or = Radius to round only outside (convex) corners to. Use instead of `r`. // ir = Radius to round only inside (concave) corners to. Use instead of `r`. module round3d(r, or, ir, size=100) { or = get_radius(r1=or, r=r, dflt=0); ir = get_radius(r1=ir, r=r, dflt=0); offset3d(or, size=size) offset3d(-ir-or, size=size) offset3d(ir, size=size) children(); } ////////////////////////////////////////////////////////////////////// // Section: Colors ////////////////////////////////////////////////////////////////////// // Function&Module: HSL() // Usage: // HSL(h,[s],[l],[a]) ... // rgb = HSL(h,[s],[l]); // Description: // When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace. // When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace. // Arguments: // h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta. // s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1 // l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5 // a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1 // Example: // HSL(h=120,s=1,l=0.5) sphere(d=60); // Example: // rgb = HSL(h=270,s=0.75,l=0.6); // color(rgb) cube(60, center=true); function HSL(h,s=1,l=0.5) = let( h=posmod(h,360) ) [ for (n=[0,8,4]) let( k=(n+h/30)%12 ) l - s*min(l,1-l)*max(min(k-3,9-k,1),-1) ]; module HSL(h,s=1,l=0.5,a=1) color(HSL(h,s,l),a) children(); // Function&Module: HSV() // Usage: // HSV(h,[s],[v],[a]) ... // rgb = HSV(h,[s],[v]); // Description: // When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace. // When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace. // Arguments: // h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta. // s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1 // v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1 // a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1 // Example: // HSV(h=120,s=1,v=1) sphere(d=60); // Example: // rgb = HSV(h=270,s=0.75,v=0.9); // color(rgb) cube(60, center=true); function HSV(h,s=1,v=1) = let( h=posmod(h,360), v2=v*(1-s), r=lookup(h,[[0,v], [60,v], [120,v2], [240,v2], [300,v], [360,v]]), g=lookup(h,[[0,v2], [60,v], [180,v], [240,v2], [360,v2]]), b=lookup(h,[[0,v2], [120,v2], [180,v], [300,v], [360,v2]]) ) [r,g,b]; module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children(); // Module: rainbow() // Usage: // rainbow(list) ... // Description: // Iterates the list, displaying children in different colors for each list item. // This is useful for debugging lists of paths and such. // Arguments: // list = The list of items to iterate through. // stride = Consecutive colors stride around the color wheel divided into this many parts. // Side Effects: // Sets the color to progressive values along the ROYGBIV spectrum for each item. // Sets `$idx` to the index of the current item in `list` that we want to show. // Sets `$item` to the current item in `list` that we want to show. // Example(2D): // rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center"); // Example(2D): // rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)]; // rainbow(rgn) stroke($item, closed=true); module rainbow(list, stride=1) { ll = len(list); huestep = 360 / ll; hues = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)]; for($idx=idx(list)) { $item = list[$idx]; HSV(h=hues[$idx]) children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap