////////////////////////////////////////////////////////////////////// // LibFile: attachments.scad // The modules in this file allows you to attach one object to another by making one object the child of another object. // You can place the child object in relation to its parent object and control the position and orientation // relative to the parent. The modifiers allow you to treat children in different ways that simple union, such // as differencing them from the parent, or changing their color. Attachment only works when the parent and child // are both written to support attachment. Also included in this file are the tools to make your own "attachable" objects. // Includes: // include ////////////////////////////////////////////////////////////////////// // Default values for attachment code. $tags = ""; $overlap = 0; $color = undef;//"yellow"; $attach_to = undef; $attach_anchor = [CENTER, CENTER, UP, 0]; $attach_norot = false; $parent_anchor = BOTTOM; $parent_spin = 0; $parent_orient = UP; $parent_size = undef; $parent_geom = undef; $tags_shown = []; $tags_hidden = []; _ANCHOR_TYPES = ["intersect","hull"]; // Section: Anchors, Spin, and Orientation // This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()` // and `sphere()` builtins, as well as to most of the shapes provided by this library itself. // - An anchor is a place on an object which you can align the object to, or attach other objects // to using `attach()` or `position()`. An anchor has a position, a direction, and a spin. // The direction and spin are used to orient other objects to match when using `attach()`. // - Spin is a simple rotation around the Z axis. // - Orientation is rotating an object so that its top is pointed towards a given vector. // An object will first be translated to its anchor position, then spun, then oriented. // . // ## Anchor // Anchoring is specified with the `anchor` argument in most shape modules. Specifying `anchor` // when creating an object will translate the object so that the anchor point is at the origin // (0,0,0). Anchoring always occurs before spin and orientation are applied. // . // An anchor can be referred to in one of two ways; as a directional vector, or as a named anchor string. // . // When given as a vector, it points, in a general way, towards the face, edge, or corner of the // object that you want the anchor for, relative to the center of the object. There are directional // constants named `TOP`, `BOTTOM`, `FRONT`, `BACK`, `LEFT`, and `RIGHT` that you can add together // to specify an anchor point. // . // For example: // - `[0,0,1]` is the same as `TOP` and refers to the center of the top face. // - `[-1,0,1]` is the same as `TOP+LEFT`, and refers to the center of the top-left edge. // - `[1,1,-1]` is the same as `BOTTOM+BACK+RIGHT`, and refers to the bottom-back-right corner. // . // When the object is cylindrical, conical, or spherical in nature, the anchors will be located // around the surface of the cylinder, cone, or sphere, relative to the center. The direction of a // face anchor will be perpendicular to the face, pointing outward. The direction of a edge anchor // will be the average of the anchor directions of the two faces the edge is between. The direction // of a corner anchor will be the average of the anchor directions of the three faces the corner is // on. The spin of all standard anchors is 0. // . // Some more complex objects, like screws and stepper motors, have named anchors to refer to places // on the object that are not at one of the standard faces, edges or corners. For example, stepper // motors have anchors for `"screw1"`, `"screw2"`, etc. to refer to the various screwholes on the // stepper motor shape. The names, positions, directions, and spins of these anchors will be // specific to the object, and will be documented when they exist. // . // ## Spin // Spin is specified with the `spin` argume// nt in most shape modules. Specifying a scalar `spin` // when creating an object will rotate the object counter-clockwise around the Z axis by the given // number of degrees. If given as a 3D vector, the object will be rotated around each of the X, Y, Z // axes by the number of degrees in each component of the vector. Spin is always applied after // anchoring, and before orientation. // . // ## Orient // Orientation is specified with the `orient` argument in most shape modules. Specifying `orient` // when creating an object will rotate the object such that the top of the object will be pointed // at the vector direction given in the `orient` argument. Orientation is always applied after // anchoring and spin. The constants `UP`, `DOWN`, `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be // added together to form the directional vector for this. ie: `LEFT+BACK` // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Section: Attachment Positioning // Module: position() // Usage: // position(from) {...} // // Topics: Attachments // See Also: attachable(), attach(), orient() // // Description: // Attaches children to a parent object at an anchor point. For a more step-by-step explanation // of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // from = The vector, or name of the parent anchor point to attach to. // Example: // spheroid(d=20) { // position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); // position(RIGHT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); // position(FRONT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); // } module position(from) { assert($parent_geom != undef, "No object to attach to!"); anchors = (is_vector(from)||is_string(from))? [from] : from; for (anchr = anchors) { anch = _find_anchor(anchr, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; translate(anch[1]) children(); } } // Module: orient() // Usage: // orient(dir, ) ... // orient(anchor=, ) ... // Topics: Attachments // Description: // Orients children such that their top is tilted towards the given direction, or towards the // direction of a given anchor point on the parent. For a more step-by-step explanation of // attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // dir = The direction to orient towards. // --- // anchor = The anchor on the parent which you want to match the orientation of. Use instead of `dir`. // spin = The spin to add to the children. (Overrides anchor spin.) // See Also: attachable(), attach(), orient() // Example: Orienting by Vector // prismoid([50,50],[30,30],h=40) { // position(TOP+RIGHT) // orient(RIGHT) // prismoid([30,30],[0,5],h=20,anchor=BOT+LEFT); // } // Example: When orienting to an anchor, the spin of the anchor may cause confusion: // prismoid([50,50],[30,30],h=40) { // position(TOP+RIGHT) // orient(anchor=RIGHT) // prismoid([30,30],[0,5],h=20,anchor=BOT+LEFT); // } // Example: You can override anchor spin with `spin=`. // prismoid([50,50],[30,30],h=40) { // position(TOP+RIGHT) // orient(anchor=RIGHT,spin=0) // prismoid([30,30],[0,5],h=20,anchor=BOT+LEFT); // } // Example: Or you can anchor the child from the back // prismoid([50,50],[30,30],h=40) { // position(TOP+RIGHT) // orient(anchor=RIGHT) // prismoid([30,30],[0,5],h=20,anchor=BOT+BACK); // } module orient(dir, anchor, spin) { if (!is_undef(dir)) { assert(anchor==undef, "Only one of dir= or anchor= may be given to orient()"); assert(is_vector(dir)); spin = default(spin, 0); assert(is_finite(spin)); rot(spin, from=UP, to=dir) children(); } else { assert(dir==undef, "Only one of dir= or anchor= may be given to orient()"); assert($parent_geom != undef, "No parent to orient from!"); assert(is_string(anchor) || is_vector(anchor)); anch = _find_anchor(anchor, $parent_geom); two_d = _attach_geom_2d($parent_geom); fromvec = two_d? BACK : UP; $attach_to = undef; $attach_anchor = anch; $attach_norot = true; spin = default(spin, anch[3]); assert(is_finite(spin)); rot(spin, from=fromvec, to=anch[2]) children(); } } // Module: attach() // Usage: // attach(from, [overlap=], [norot=]) {...} // attach(from, to, [overlap=], [norot=]) {...} // Topics: Attachments // See Also: attachable(), position(), face_profile(), edge_profile(), corner_profile() // Description: // Attaches children to a parent object at an anchor point and orientation. Attached objects will // be overlapped into the parent object by a little bit, as specified by the `$overlap` // value (0 by default), or by the overriding `overlap=` argument. This is to prevent OpenSCAD // from making non-manifold objects. You can define `$overlap=` as an argument in a parent // module to set the default for all attachments to it. For a more step-by-step explanation of // attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // from = The vector, or name of the parent anchor point to attach to. // to = Optional name of the child anchor point. If given, orients the child such that the named anchors align together rotationally. // --- // overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0` by default. // norot = If true, don't rotate children when attaching to the anchor point. Only translate to the anchor point. // Example: // spheroid(d=20) { // attach(TOP) down(1.5) cyl(l=11.5, d1=10, d2=5, anchor=BOTTOM); // attach(RIGHT, BOTTOM) down(1.5) cyl(l=11.5, d1=10, d2=5); // attach(FRONT, BOTTOM, overlap=1.5) cyl(l=11.5, d1=10, d2=5); // } module attach(from, to, overlap, norot=false) { assert($parent_geom != undef, "No object to attach to!"); overlap = (overlap!=undef)? overlap : $overlap; anchors = (is_vector(from)||is_string(from))? [from] : from; for (anchr = anchors) { anch = _find_anchor(anchr, $parent_geom); two_d = _attach_geom_2d($parent_geom); $attach_to = to; $attach_anchor = anch; $attach_norot = norot; olap = two_d? [0,-overlap,0] : [0,0,-overlap]; if (norot || (norm(anch[2]-UP)<1e-9 && anch[3]==0)) { translate(anch[1]) translate(olap) children(); } else { fromvec = two_d? BACK : UP; translate(anch[1]) rot(anch[3],from=fromvec,to=anch[2]) translate(olap) children(); } } } // Section: Attachment Modifiers // Module: tags() // Usage: // tags(tags) {...} // Topics: Attachments // See Also: recolor(), hide(), show(), diff(), intersect() // Description: // Marks all children with the given tags, so that they will `hide()`/`show()`/`diff()` correctly. // This is especially useful for working with children that are not attachment enhanced, such as: // - `square()` (or use [`rect()`](shapes2d.scad#rect)) // - `circle()` (or use [`oval()`](shapes2d.scad#oval)) // - `polygon()` // - `text()` // - `projection()` // - `polyhedron()` (or use [`vnf_polyhedron()`](vnf.scad#vnf_polyhedron)) // - `linear_extrude()` (or use [`linear_sweep()`](regions.scad#linear_sweep)) // - `rotate_extrude()` // - `surface()` // - `import()` // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // tags = String containing space delimited set of tags to apply. module tags(tags) { $tags = tags; if(_attachment_is_shown(tags)) { children(); } } // Module: recolor() // Usage: // recolor(c) {...} // Topics: Attachments // See Also: tags(), hide(), show(), diff(), intersect() // Description: // Sets the color for children that can use the $color special variable. For a more step-by-step // explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // c = Color name or RGBA vector. // Example: // recolor("red") cyl(l=20, d=10); module recolor(c) { $color = c; children(); } // Module: hide() // Usage: // hide(tags) {...} // Topics: Attachments // See Also: tags(), recolor(), show(), diff(), intersect() // Description: // Hides all children with the given tags. Overrides any previous `hide()` or `show()` calls. // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Example: // hide("A") cube(50, anchor=CENTER, $tags="Main") { // attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A"); // attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B"); // } module hide(tags="") { $tags_hidden = tags==""? [] : str_split(tags, " "); $tags_shown = []; children(); } // Module: show() // Usage: // show(tags) {...} // Topics: Attachments // See Also: tags(), recolor(), hide(), diff(), intersect() // Description: // Shows only children with the given tags. Overrides any previous `hide()` or `show()` calls. // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Example: // show("A B") cube(50, anchor=CENTER, $tags="Main") { // attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A"); // attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B"); // } module show(tags="") { $tags_shown = tags==""? [] : str_split(tags, " "); $tags_hidden = []; children(); } // Module: diff() // Usage: // diff(neg, [keep]) {...} // diff(neg, pos, [keep]) {...} // Topics: Attachments // See Also: tags(), recolor(), show(), hide(), intersect() // Description: // If `neg` is given, takes the union of all children with tags that are in `neg`, and differences // them from the union of all children with tags in `pos`. If `pos` is not given, then all items in // `neg` are differenced from all items not in `neg`. If `keep` is given, all children with tags in // `keep` are then unioned with the result. If `keep` is not given, all children without tags in // `pos` or `neg` are then unioned with the result. // Cannot be used in conjunction with `intersect()` or `hulling()` on the same parent object. // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // neg = String containing space delimited set of tag names of children to difference away. // pos = String containing space delimited set of tag names of children to be differenced away from. // keep = String containing space delimited set of tag names of children to keep whole. // Example: // diff("neg", "pos", keep="axle") // sphere(d=100, $tags="pos") { // attach(CENTER) xcyl(d=40, l=120, $tags="axle"); // attach(CENTER) cube([40,120,100], anchor=CENTER, $tags="neg"); // } // Example: Masking // diff("mask") // cube([80,90,100], center=true) { // edge_mask(FWD) // rounding_edge_mask(l=max($parent_size)*1.01, r=25); // } // Example: Working with Non-Attachables Like rotate_extrude() // back_half() // diff("remove") // cuboid(40) { // attach(TOP) // recolor("lightgreen") // cyl(l=10,d=30); // position(TOP+RIGHT) // tags("remove") // xrot(90) // rotate_extrude() // right(20) // circle(5); // } module diff(neg, pos, keep) { // Don't perform the operation if the current tags are hidden if (_attachment_is_shown($tags)) { difference() { if (pos != undef) { show(pos) children(); } else { if (keep == undef) { hide(neg) children(); } else { hide(str(neg," ",keep)) children(); } } show(neg) children(); } } if (keep!=undef) { show(keep) children(); } else if (pos!=undef) { hide(str(pos," ",neg)) children(); } } // Module: intersect() // Usage: // intersect(a, [keep=]) {...} // intersect(a, b, [keep=]) {...} // Topics: Attachments // See Also: tags(), recolor(), show(), hide(), diff() // Description: // If `a` is given, takes the union of all children with tags that are in `a`, and `intersection()`s // them with the union of all children with tags in `b`. If `b` is not given, then the union of all // items with tags in `a` are intersection()ed with the union of all items without tags in `a`. If // `keep` is given, then the result is unioned with all the children with tags in `keep`. If `keep` // is not given, all children without tags in `a` or `b` are unioned with the result. // Cannot be used in conjunction with `diff()` or `hulling()` on the same parent object. // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // a = String containing space delimited set of tag names of children. // b = String containing space delimited set of tag names of children. // --- // keep = String containing space delimited set of tag names of children to keep whole. // Example: // intersect("wheel", "mask", keep="axle") // sphere(d=100, $tags="wheel") { // attach(CENTER) cube([40,100,100], anchor=CENTER, $tags="mask"); // attach(CENTER) xcyl(d=40, l=100, $tags="axle"); // } // Example: Working with Non-Attachables // intersect("A", "B") // cuboid(50, $tags="A") { // tags("B") // hull() { // down(25) // linear_extrude(height=0.01) // square(55,center=true); // up(25) // linear_extrude(height=0.01) // circle(d=45); // } // } module intersect(a, b=undef, keep=undef) { // Don't perform the operation if the current tags are hidden if (_attachment_is_shown($tags)) { intersection() { if (b != undef) { show(b) children(); } else { if (keep == undef) { hide(a) children(); } else { hide(str(a," ",keep)) children(); } } show(a) children(); } } if (keep!=undef) { show(keep) children(); } else if (b!=undef) { hide(str(a," ",b)) children(); } } // Module: hulling() // Usage: // hulling(a) {...} // Topics: Attachments // See Also: tags(), recolor(), show(), hide(), diff(), intersect() // Description: // If `a` is not given, then all children are `hull()`ed together. // If `a` is given as a string, then all children with `$tags` that are in `a` are // `hull()`ed together and the result is then unioned with all the remaining children. // Cannot be used in conjunction with `diff()` or `intersect()` on the same parent object. // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // a = String containing space delimited set of tag names of children to hull. // Example: // hulling("body") // sphere(d=100, $tags="body") { // attach(CENTER) cube([40,90,90], anchor=CENTER, $tags="body"); // attach(CENTER) xcyl(d=40, l=120, $tags="other"); // } module hulling(a) { if (is_undef(a)) { hull() children(); } else { hull() show(a) children(); children(); } } // Section: Attachable Masks // Module: edge_mask() // Usage: // edge_mask([edges], [except]) {...} // Topics: Attachments // See Also: attachable(), position(), attach(), face_profile(), edge_profile(), corner_mask() // Description: // Takes a 3D mask shape, and attaches it to the given edges, with the appropriate orientation to be // `diff()`ed away. The mask shape should be vertically oriented (Z-aligned) with the back-right // quadrant (X+Y+) shaped to be diffed away from the edge of parent attachable shape. // For details on specifying the edges to mask see [Specifying Edges](edges.scad#section-specifying-edges). // For a step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Figure: A Typical Edge Rounding Mask // module roundit(l,r) difference() { // translate([-1,-1,-l/2]) // cube([r+1,r+1,l]); // translate([r,r]) // cylinder(h=l+1,r=r,center=true, $fn=quantup(segs(r),4)); // } // roundit(l=30,r=10); // Arguments: // edges = Edges to mask. See [Specifying Edges](edges.scad#section-specifying-edges). Default: All edges. // except = Edges to explicitly NOT mask. See [Specifying Edges](edges.scad#section-specifying-edges). Default: No edges. // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube([50,60,70],center=true) // edge_mask([TOP,"Z"],except=[BACK,TOP+LEFT]) // rounding_edge_mask(l=71,r=10); module edge_mask(edges=EDGES_ALL, except=[]) { assert($parent_geom != undef, "No object to attach to!"); edges = _edges(edges, except=except); vecs = [ for (i = [0:3], axis=[0:2]) if (edges[axis][i]>0) EDGE_OFFSETS[axis][i] ]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 2, "Not an edge vector!"); anch = _find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; rotang = vec.z<0? [90,0,180+v_theta(vec)] : vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) : vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+v_theta(vec)] : [-90,0,180+v_theta(vec)]; translate(anch[1]) rot(rotang) children(); } } // Module: corner_mask() // Usage: // corner_mask([corners], [except]) {...} // Topics: Attachments // See Also: attachable(), position(), attach(), face_profile(), edge_profile(), edge_mask() // Description: // Takes a 3D mask shape, and attaches it to the specified corners, with the appropriate orientation to // be `diff()`ed away. The 3D corner mask shape should be designed to mask away the X+Y+Z+ octant. // See [Specifying Corners](edges.scad#section-specifying-corners) for information on how to specify corner sets. // For a step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // corners = Corners to mask. See [Specifying Corners](edges.scad#section-specifying-corners). Default: All corners. // except = Corners to explicitly NOT mask. See [Specifying Corners](edges.scad#section-specifying-corners). Default: No corners. // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube(100, center=true) // corner_mask([TOP,FRONT],LEFT+FRONT+TOP) // difference() { // translate(-0.01*[1,1,1]) cube(20); // translate([20,20,20]) sphere(r=20); // } module corner_mask(corners=CORNERS_ALL, except=[]) { assert($parent_geom != undef, "No object to attach to!"); corners = _corners(corners, except=except); vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 3, "Not an edge vector!"); anch = _find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; rotang = vec.z<0? [ 0,0,180+v_theta(vec)-45] : [180,0,-90+v_theta(vec)-45]; translate(anch[1]) rot(rotang) children(); } } // Module: face_profile() // Usage: // face_profile(faces, r|d=, [convexity=]) {...} // Topics: Attachments // See Also: attachable(), position(), attach(), edge_profile(), corner_profile() // Description: // Given a 2D edge profile, extrudes it into a mask for all edges and corners bounding each given face. // See [Specifying Faces](edges.scad#section-specifying-faces) for information on specifying faces. // For a step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // faces = Faces to mask edges and corners of. // r = Radius of corner mask. // --- // d = Diameter of corner mask. // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube([50,60,70],center=true) // face_profile(TOP,r=10) // mask2d_roundover(r=10); module face_profile(faces=[], r, d, convexity=10) { faces = is_vector(faces)? [faces] : faces; assert(all([for (face=faces) is_vector(face) && sum([for (x=face) x!=0? 1 : 0])==1]), "Vector in faces doesn't point at a face."); r = get_radius(r=r, d=d, dflt=undef); assert(is_num(r) && r>0); edge_profile(faces) children(); corner_profile(faces, convexity=convexity, r=r) children(); } // Module: edge_profile() // Usage: // edge_profile([edges], [except], [convexity]) {...} // Topics: Attachments // See Also: attachable(), position(), attach(), face_profile(), corner_profile() // Description: // Takes a 2D mask shape and attaches it to the selected edges, with the appropriate orientation and // extruded length to be `diff()`ed away, to give the edge a matching profile. // For details on specifying the edges to mask see [Specifying Edges](edges.scad#section-specifying-edges). // For a step-by-step // explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // edges = Edges to mask. See [Specifying Edges](edges.scad#section-specifying-edges). Default: All edges. // except = Edges to explicitly NOT mask. See [Specifying Edges](edges.scad#section-specifying-edges). Default: No edges. // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_roundover(r=10, inset=2); module edge_profile(edges=EDGES_ALL, except=[], convexity=10) { assert($parent_geom != undef, "No object to attach to!"); edges = _edges(edges, except=except); vecs = [ for (i = [0:3], axis=[0:2]) if (edges[axis][i]>0) EDGE_OFFSETS[axis][i] ]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 2, "Not an edge vector!"); anch = _find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; psize = point3d($parent_size); length = [for (i=[0:2]) if(!vec[i]) psize[i]][0]+0.1; rotang = vec.z<0? [90,0,180+v_theta(vec)] : vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) : vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+v_theta(vec)] : [-90,0,180+v_theta(vec)]; translate(anch[1]) { rot(rotang) { linear_extrude(height=length, center=true, convexity=convexity) { children(); } } } } } // Module: corner_profile() // Usage: // corner_profile([corners], [except], , [convexity=]) {...} // Topics: Attachments // See Also: attachable(), position(), attach(), face_profile(), edge_profile() // Description: // Takes a 2D mask shape, rotationally extrudes and converts it into a corner mask, and attaches it // to the selected corners with the appropriate orientation. Tags it as a "mask" to allow it to be // `diff()`ed away, to give the corner a matching profile. // See [Specifying Corners](edges.scad#section-specifying-corners) for information on how to specify corner sets. // For a step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // corners = Corners to mask. See [Specifying Corners](edges.scad#section-specifying-corners). Default: All corners. // except = Corners to explicitly NOT mask. See [Specifying Corners](edges.scad#section-specifying-corners). Default: No corners. // --- // r = Radius of corner mask. // d = Diameter of corner mask. // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cuboid([50,60,70],rounding=10,edges="Z",anchor=CENTER) { // corner_profile(BOT,r=10) // mask2d_teardrop(r=10, angle=40); // } module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) { assert($parent_geom != undef, "No object to attach to!"); r = get_radius(r=r, d=d, dflt=undef); assert(is_num(r)); corners = _corners(corners, except=except); vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 3, "Not an edge vector!"); anch = _find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; rotang = vec.z<0? [ 0,0,180+v_theta(vec)-45] : [180,0,-90+v_theta(vec)-45]; translate(anch[1]) { rot(rotang) { render(convexity=convexity) difference() { translate(-0.1*[1,1,1]) cube(r+0.1, center=false); right(r) back(r) zrot(180) { rotate_extrude(angle=90, convexity=convexity) { xflip() left(r) { difference() { square(r,center=false); children(); } } } } } } } } } // Section: Making your objects attachable // Module: attachable() // // Usage: Square/Trapezoid Geometry // attachable(anchor, spin, two_d=true, size=, [size2=], [shift=], ...) {...} // Usage: Circle/Oval Geometry // attachable(anchor, spin, two_d=true, r=|d=, ...) {...} // Usage: 2D Path/Polygon Geometry // attachable(anchor, spin, two_d=true, path=, [extent=], ...) {...} // Usage: 2D Region Geometry // attachable(anchor, spin, two_d=true, region=, [extent=], ...) {...} // Usage: Cubical/Prismoidal Geometry // attachable(anchor, spin, [orient], size=, [size2=], [shift=], ...) {...} // Usage: Cylindrical Geometry // attachable(anchor, spin, [orient], r=|d=, l=, [axis=], ...) {...} // Usage: Conical Geometry // attachable(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...) {...} // Usage: Spheroid/Ovoid Geometry // attachable(anchor, spin, [orient], r=|d=, ...) {...} // Usage: Extruded Path/Polygon Geometry // attachable(anchor, spin, path=, l=|h=, [extent=], ...) {...} // Usage: Extruded Region Geometry // attachable(anchor, spin, region=, l=|h=, [extent=], ...) {...} // Usage: VNF Geometry // attachable(anchor, spin, [orient], vnf=, [extent=], ...) {...} // // Topics: Attachments // See Also: reorient() // // Description: // Manages the anchoring, spin, orientation, and attachments for a 3D volume or 2D area. // A managed 3D volume is assumed to be vertically (Z-axis) oriented, and centered. // A managed 2D area is just assumed to be centered. The shape to be managed is given // as the first child to this module, and the second child should be given as `children()`. // For example, to manage a conical shape: // ```openscad // attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) { // cyl(r1=r1, r2=r2, l=h); // children(); // } // ``` // . // If this is *not* run as a child of `attach()` with the `to` argument // given, then the following transformations are performed in order: // * Translates so the `anchor` point is at the origin (0,0,0). // * Rotates around the Z axis by `spin` degrees counter-clockwise. // * Rotates so the top of the part points towards the vector `orient`. // . // If this is called as a child of `attach(from,to)`, then the info // for the anchor points referred to by `from` and `to` are fetched, // which will include position, direction, and spin. With that info, // the following transformations are performed: // * Translates this part so it's anchor position matches the parent's anchor position. // * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector. // * Rotates this part so it's anchor spin matches the parent's anchor spin. // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // // Arguments: // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // --- // size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length. // size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape. // shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift. // r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // l/h = Length of the cylindrical, conical, or extruded path volume along axis. // vnf = The [VNF](vnf.scad) of the volume. // path = The path to generate a polygon from. // region = The region to generate a shape from. // extent = If true, calculate anchors by extents, rather than intersection, for VNFs and paths. Default: true. // cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]` // offset = If given, offsets the perimeter of the volume around the centerpoint. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // axis = The vector pointing along the axis of a cylinder geometry. Default: UP // // Side Effects: // `$parent_anchor` is set to the parent object's `anchor` value. // `$parent_spin` is set to the parent object's `spin` value. // `$parent_orient` is set to the parent object's `orient` value. // `$parent_geom` is set to the parent object's `geom` value. // `$parent_size` is set to the parent object's cubical `[X,Y,Z]` volume size. // // Example(NORENDER): Cubical Shape // attachable(anchor, spin, orient, size=size) { // cube(size, center=true); // children(); // } // // Example(NORENDER): Prismoidal Shape // attachable( // anchor, spin, orient, // size=point3d(botsize,h), // size2=topsize, // shift=shift // ) { // prismoid(botsize, topsize, h=h, shift=shift); // children(); // } // // Example(NORENDER): Cylindrical Shape, Z-Axis Aligned // attachable(anchor, spin, orient, r=r, l=h) { // cyl(r=r, l=h); // children(); // } // // Example(NORENDER): Cylindrical Shape, Y-Axis Aligned // attachable(anchor, spin, orient, r=r, l=h, axis=BACK) { // cyl(r=r, l=h); // children(); // } // // Example(NORENDER): Cylindrical Shape, X-Axis Aligned // attachable(anchor, spin, orient, r=r, l=h, axis=RIGHT) { // cyl(r=r, l=h); // children(); // } // // Example(NORENDER): Conical Shape, Z-Axis Aligned // attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) { // cyl(r1=r1, r2=r2, l=h); // children(); // } // // Example(NORENDER): Conical Shape, Y-Axis Aligned // attachable(anchor, spin, orient, r1=r1, r2=r2, l=h, axis=BACK) { // cyl(r1=r1, r2=r2, l=h); // children(); // } // // Example(NORENDER): Conical Shape, X-Axis Aligned // attachable(anchor, spin, orient, r1=r1, r2=r2, l=h, axis=RIGHT) { // cyl(r1=r1, r2=r2, l=h); // children(); // } // // Example(NORENDER): Spherical Shape // attachable(anchor, spin, orient, r=r) { // sphere(r=r); // children(); // } // // Example(NORENDER): Extruded Polygon Shape, by Extents // attachable(anchor, spin, orient, path=path, l=length) { // linear_extrude(height=length, center=true) // polygon(path); // children(); // } // // Example(NORENDER): Extruded Polygon Shape, by Intersection // attachable(anchor, spin, orient, path=path, l=length, extent=false) { // linear_extrude(height=length, center=true) // polygon(path); // children(); // } // // Example(NORENDER): Arbitrary VNF Shape, by Extents // attachable(anchor, spin, orient, vnf=vnf) { // vnf_polyhedron(vnf); // children(); // } // // Example(NORENDER): Arbitrary VNF Shape, by Intersection // attachable(anchor, spin, orient, vnf=vnf, extent=false) { // vnf_polyhedron(vnf); // children(); // } // // Example(NORENDER): 2D Rectangular Shape // attachable(anchor, spin, orient, two_d=true, size=size) { // square(size, center=true); // children(); // } // // Example(NORENDER): 2D Trapezoidal Shape // attachable( // anchor, spin, orient, // two_d=true, // size=[x1,y], // size2=x2, // shift=shift // ) { // trapezoid(w1=x1, w2=x2, h=y, shift=shift); // children(); // } // // Example(NORENDER): 2D Circular Shape // attachable(anchor, spin, orient, two_d=true, r=r) { // circle(r=r); // children(); // } // // Example(NORENDER): Arbitrary 2D Polygon Shape, by Extents // attachable(anchor, spin, orient, two_d=true, path=path) { // polygon(path); // children(); // } // // Example(NORENDER): Arbitrary 2D Polygon Shape, by Intersection // attachable(anchor, spin, orient, two_d=true, path=path, extent=false) { // polygon(path); // children(); // } module attachable( anchor, spin, orient, size, size2, shift, r,r1,r2, d,d1,d2, l,h, vnf, path, region, extent=true, cp=[0,0,0], offset=[0,0,0], anchors=[], two_d=false, axis=UP ) { dummy1 = assert($children==2, "attachable() expects exactly two children; the shape to manage, and the union of all attachment candidates.") assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor)) assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin)) assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient)); anchor = default(anchor, CENTER); spin = default(spin, 0); orient = default(orient, UP); region = !is_undef(region)? region : !is_undef(path)? [path] : undef; geom = _attach_geom( size=size, size2=size2, shift=shift, r=r, r1=r1, r2=r2, h=h, d=d, d1=d1, d2=d2, l=l, vnf=vnf, region=region, extent=extent, cp=cp, offset=offset, anchors=anchors, two_d=two_d, axis=axis ); m = _attach_transform(anchor,spin,orient,geom); multmatrix(m) { $parent_anchor = anchor; $parent_spin = spin; $parent_orient = orient; $parent_geom = geom; $parent_size = _attach_geom_size(geom); $attach_to = undef; do_show = _attachment_is_shown($tags); if (do_show) { if (is_undef($color)) { children(0); } else color($color) { $color = undef; children(0); } } children(1); } } // Function: named_anchor() // Usage: // a = named_anchor(name, pos, [orient], [spin]); // Topics: Attachments // See Also: reorient(), attachable() // Description: // Creates an anchor data structure. For a more step-by-step explanation of attachments, // see the [[Attachments Tutorial|Tutorial-Attachments]]. // Arguments: // name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces. // pos = The [X,Y,Z] position of the anchor. // orient = A vector pointing in the direction parts should project from the anchor position. // spin = If needed, the angle to rotate the part around the direction vector. function named_anchor(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, spin]; // Function: reorient() // // Usage: Square/Trapezoid Geometry // mat = reorient(anchor, spin, [orient], two_d=true, size=, [size2=], [shift=], ...); // pts = reorient(anchor, spin, [orient], two_d=true, size=, [size2=], [shift=], p=, ...); // Usage: Circle/Oval Geometry // mat = reorient(anchor, spin, [orient], two_d=true, r=|d=, ...); // pts = reorient(anchor, spin, [orient], two_d=true, r=|d=, p=, ...); // Usage: 2D Path/Polygon Geometry // mat = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], ...); // pts = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], p=, ...); // Usage: 2D Region/Polygon Geometry // mat = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], ...); // pts = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], p=, ...); // Usage: Cubical/Prismoidal Geometry // mat = reorient(anchor, spin, [orient], size=, [size2=], [shift=], ...); // pts = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...); // Usage: Cylindrical Geometry // mat = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], ...); // pts = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], p=, ...); // Usage: Conical Geometry // mat = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...); // pts = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], p=, ...); // Usage: Spheroid/Ovoid Geometry // mat = reorient(anchor, spin, [orient], r|d=, ...); // pts = reorient(anchor, spin, [orient], r|d=, p=, ...); // Usage: Extruded Path/Polygon Geometry // mat = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], ...); // pts = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], p=, ...); // Usage: Extruded Region Geometry // mat = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], ...); // pts = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], p=, ...); // Usage: VNF Geometry // mat = reorient(anchor, spin, [orient], vnf, [extent], ...); // pts = reorient(anchor, spin, [orient], vnf, [extent], p=, ...); // // Topics: Attachments // See Also: reorient(), attachable() // // Description: // Given anchor, spin, orient, and general geometry info for a managed volume, this calculates // the transformation matrix needed to be applied to the contents of that volume. A managed 3D // volume is assumed to be vertically (Z-axis) oriented, and centered. A managed 2D area is just // assumed to be centered. // . // If `p` is not given, then the transformation matrix will be returned. // If `p` contains a VNF, a new VNF will be returned with the vertices transformed by the matrix. // If `p` contains a path, a new path will be returned with the vertices transformed by the matrix. // If `p` contains a point, a new point will be returned, transformed by the matrix. // . // If `$attach_to` is not defined, then the following transformations are performed in order: // * Translates so the `anchor` point is at the origin (0,0,0). // * Rotates around the Z axis by `spin` degrees counter-clockwise. // * Rotates so the top of the part points towards the vector `orient`. // . // If `$attach_to` is defined, as a consequence of `attach(from,to)`, then // the following transformations are performed in order: // * Translates this part so it's anchor position matches the parent's anchor position. // * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector. // * Rotates this part so it's anchor spin matches the parent's anchor spin. // . // For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]]. // // Arguments: // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // --- // size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length. // size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape. // shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift. // r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // l/h = Length of the cylindrical, conical, or extruded path volume along axis. // vnf = The [VNF](vnf.scad) of the volume. // path = The path to generate a polygon from. // region = The region to generate a shape from. // extent = If true, calculate anchors by extents, rather than intersection. Default: false. // cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]` // offset = If given, offsets the perimeter of the volume around the centerpoint. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // axis = The vector pointing along the axis of a cylinder geometry. Default: UP // p = The VNF, path, or point to transform. function reorient( anchor, spin, orient, size, size2, shift, r,r1,r2, d,d1,d2, l,h, vnf, path, region, extent=true, offset=[0,0,0], cp=[0,0,0], anchors=[], two_d=false, axis=UP, p=undef ) = assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor)) assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin)) assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient)) let( anchor = default(anchor, CENTER), spin = default(spin, 0), orient = default(orient, UP), region = !is_undef(region)? region : !is_undef(path)? [path] : undef ) (anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let( geom = _attach_geom( size=size, size2=size2, shift=shift, r=r, r1=r1, r2=r2, h=h, d=d, d1=d1, d2=d2, l=l, vnf=vnf, region=region, extent=extent, cp=cp, offset=offset, anchors=anchors, two_d=two_d, axis=axis ), $attach_to = undef ) _attach_transform(anchor,spin,orient,geom,p); ////////////////////////////////////////////////////////////////////////////////////////////////////////////// // // Attachment internal functions /// Internal Function: _attach_geom() // // Usage: Square/Trapezoid Geometry // geom = _attach_geom(two_d=true, size=, [size2=], [shift=], ...); // Usage: Circle/Oval Geometry // geom = _attach_geom(two_d=true, r=|d=, ...); // Usage: 2D Path/Polygon/Region Geometry // geom = _attach_geom(two_d=true, region=, [extent=], ...); // Usage: Cubical/Prismoidal Geometry // geom = _attach_geom(size=, [size2=], [shift=], ...); // Usage: Cylindrical Geometry // geom = _attach_geom(r=|d=, l=|h=, [axis=], ...); // Usage: Conical Geometry // geom = _attach_geom(r1|d1=, r2=|d2=, l=, [axis=], ...); // Usage: Spheroid/Ovoid Geometry // geom = _attach_geom(r=|d=, ...); // Usage: Extruded 2D Path/Polygon/Region Geometry // geom = _attach_geom(region=, l=|h=, [extent=], ...); // Usage: VNF Geometry // geom = _attach_geom(vnf=, [extent=], ...); // /// Topics: Attachments /// See Also: reorient(), attachable() // // Description: // Given arguments that describe the geometry of an attachable object, returns the internal geometry description. // This will probably not not ever need to be called by the end user. // // Arguments: // --- // size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length. // size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape. // shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift. // r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // l/h = Length of the cylindrical, conical or extruded region volume along axis. // vnf = The [VNF](vnf.scad) of the volume. // region = The region to generate a shape from. // extent = If true, calculate anchors by extents, rather than intersection. Default: true. // cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]` // offset = If given, offsets the perimeter of the volume around the centerpoint. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // axis = The vector pointing along the axis of a cylinder geometry. Default: UP // // Example(NORENDER): Cubical Shape // geom = _attach_geom(size=size); // // Example(NORENDER): Prismoidal Shape // geom = _attach_geom( // size=point3d(botsize,h), // size2=topsize, shift=shift // ); // // Example(NORENDER): Cylindrical Shape, Z-Axis Aligned // geom = _attach_geom(r=r, h=h); // // Example(NORENDER): Cylindrical Shape, Y-Axis Aligned // geom = _attach_geom(r=r, h=h, axis=BACK); // // Example(NORENDER): Cylindrical Shape, X-Axis Aligned // geom = _attach_geom(r=r, h=h, axis=RIGHT); // // Example(NORENDER): Conical Shape, Z-Axis Aligned // geom = _attach_geom(r1=r1, r2=r2, h=h); // // Example(NORENDER): Conical Shape, Y-Axis Aligned // geom = _attach_geom(r1=r1, r2=r2, h=h, axis=BACK); // // Example(NORENDER): Conical Shape, X-Axis Aligned // geom = _attach_geom(r1=r1, r2=r2, h=h, axis=RIGHT); // // Example(NORENDER): Spherical Shape // geom = _attach_geom(r=r); // // Example(NORENDER): Ovoid Shape // geom = _attach_geom(r=[r_x, r_y, r_z]); // // Example(NORENDER): Arbitrary VNF Shape, Anchored by Extents // geom = _attach_geom(vnf=vnf); // // Example(NORENDER): Arbitrary VNF Shape, Anchored by Intersection // geom = _attach_geom(vnf=vnf, extent=false); // // Example(NORENDER): 2D Rectangular Shape // geom = _attach_geom(two_d=true, size=size); // // Example(NORENDER): 2D Trapezoidal Shape // geom = _attach_geom(two_d=true, size=[x1,y], size2=x2, shift=shift); // // Example(NORENDER): 2D Circular Shape // geom = _attach_geom(two_d=true, r=r); // // Example(NORENDER): 2D Oval Shape // geom = _attach_geom(two_d=true, r=[r_x, r_y]); // // Example(NORENDER): Arbitrary 2D Region Shape, Anchored by Extents // geom = _attach_geom(two_d=true, region=region); // // Example(NORENDER): Arbitrary 2D Region Shape, Anchored by Intersection // geom = _attach_geom(two_d=true, region=region, extent=false); // // Example(NORENDER): Extruded Region, Anchored by Extents // geom = _attach_geom(region=region, l=height); // // Example(NORENDER): Extruded Region, Anchored by Intersection // geom = _attach_geom(region=region, l=length, extent=false); // function _attach_geom( size, size2, shift, r,r1,r2, d,d1,d2, l,h, vnf, region, extent=true, cp=[0,0,0], offset=[0,0,0], anchors=[], two_d=false, axis=UP ) = assert(is_bool(extent)) assert(is_vector(cp) || is_string(cp)) assert(is_vector(offset)) assert(is_list(anchors)) assert(is_bool(two_d)) assert(is_vector(axis)) !is_undef(size)? ( two_d? ( let( size2 = default(size2, size.x), shift = default(shift, 0) ) assert(is_vector(size,2)) assert(is_num(size2)) assert(is_num(shift)) ["rect", point2d(size), size2, shift, cp, offset, anchors] ) : ( let( size2 = default(size2, point2d(size)), shift = default(shift, [0,0]) ) assert(is_vector(size,3)) assert(is_vector(size2,2)) assert(is_vector(shift,2)) ["cuboid", size, size2, shift, axis, cp, offset, anchors] ) ) : !is_undef(vnf)? ( assert(is_vnf(vnf)) assert(two_d == false) extent? ["vnf_extent", vnf, cp, offset, anchors] : ["vnf_isect", vnf, cp, offset, anchors] ) : !is_undef(region)? ( assert(is_region(region),2) let( l = default(l, h) ) two_d==true ? assert(is_undef(l)) extent==true ? ["rgn_extent", region, cp, offset, anchors] : ["rgn_isect", region, cp, offset, anchors] : assert(is_finite(l)) extent==true ? ["xrgn_extent", region, l, cp, offset, anchors] : ["xrgn_isect", region, l, cp, offset, anchors] ) : let( r1 = get_radius(r1=r1,d1=d1,r=r,d=d,dflt=undef) ) !is_undef(r1)? ( let( l = default(l, h) ) !is_undef(l)? ( let( shift = default(shift, [0,0]), r2 = get_radius(r1=r2,d1=d2,r=r,d=d,dflt=undef) ) assert(is_num(r1) || is_vector(r1,2)) assert(is_num(r2) || is_vector(r2,2)) assert(is_num(l)) assert(is_vector(shift,2)) ["cyl", r1, r2, l, shift, axis, cp, offset, anchors] ) : ( two_d? ( assert(is_num(r1) || is_vector(r1,2)) ["circle", r1, cp, offset, anchors] ) : ( assert(is_num(r1) || is_vector(r1,3)) ["spheroid", r1, cp, offset, anchors] ) ) ) : assert(false, "Unrecognizable geometry description."); /// Internal Function: _attach_geom_2d() // Usage: // bool = _attach_geom_2d(geom); /// Topics: Attachments /// See Also: reorient(), attachable() // Description: // Returns true if the given attachment geometry description is for a 2D shape. function _attach_geom_2d(geom) = let( type = geom[0] ) type == "rect" || type == "circle" || type == "rgn_isect" || type == "rgn_extent"; /// Internal Function: _attach_geom_size() // Usage: // bounds = _attach_geom_size(geom); /// Topics: Attachments /// See Also: reorient(), attachable() // Description: // Returns the `[X,Y,Z]` bounding size for the given attachment geometry description. function _attach_geom_size(geom) = let( type = geom[0] ) type == "cuboid"? ( //size, size2, shift let( size=geom[1], size2=geom[2], shift=point2d(geom[3]), maxx = max(size.x,size2.x), maxy = max(size.y,size2.y), z = size.z ) [maxx, maxy, z] ) : type == "cyl"? ( //r1, r2, l, shift let( r1=geom[1], r2=geom[2], l=geom[3], shift=point2d(geom[4]), axis=point3d(geom[5]), rx1 = default(r1[0],r1), ry1 = default(r1[1],r1), rx2 = default(r2[0],r2), ry2 = default(r2[1],r2), maxxr = max(rx1,rx2), maxyr = max(ry1,ry2) ) approx(axis,UP)? [2*maxxr,2*maxyr,l] : approx(axis,RIGHT)? [l,2*maxyr,2*maxxr] : approx(axis,BACK)? [2*maxxr,l,2*maxyr] : [2*maxxr, 2*maxyr, l] ) : type == "spheroid"? ( //r let( r=geom[1] ) is_num(r)? [2,2,2]*r : v_mul([2,2,2],point3d(r)) ) : type == "vnf_extent" || type=="vnf_isect"? ( //vnf let( vnf = geom[1] ) vnf==EMPTY_VNF? [0,0,0] : let( mm = pointlist_bounds(geom[1][0]), delt = mm[1]-mm[0] ) delt ) : type == "xrgn_isect" || type == "xrgn_extent"? ( //path, l let( mm = pointlist_bounds(flatten(geom[1])), delt = mm[1]-mm[0] ) [delt.x, delt.y, geom[2]] ) : type == "rect"? ( //size, size2 let( size=geom[1], size2=geom[2], shift=geom[3], maxx = max(size.x,size2+abs(shift)) ) [maxx, size.y] ) : type == "circle"? ( //r let( r=geom[1] ) is_num(r)? [2,2]*r : v_mul([2,2],point2d(r)) ) : type == "rgn_isect" || type == "rgn_extent"? ( //path let( mm = pointlist_bounds(flatten(geom[1])), delt = mm[1]-mm[0] ) [delt.x, delt.y] ) : assert(false, "Unknown attachment geometry type."); /// Internal Function: _attach_transform() // Usage: To Get a Transformation Matrix // mat = _attach_transform(anchor, spin, orient, geom); // Usage: To Transform Points, Paths, Patches, or VNFs // new_p = _attach_transform(anchor, spin, orient, geom, p); /// Topics: Attachments /// See Also: reorient(), attachable() // Description: // Returns the affine3d transformation matrix needed to `anchor`, `spin`, and `orient` // the given geometry `geom` shape into position. // Arguments: // anchor = Anchor point to translate to the origin `[0,0,0]`. See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // geom = The geometry description of the shape. // p = If given as a VNF, path, or point, applies the affine3d transformation matrix to it and returns the result. function _attach_transform(anchor, spin, orient, geom, p) = assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor)) assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin)) assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient)) let( anchor = default(anchor, CENTER), spin = default(spin, 0), orient = default(orient, UP), two_d = _attach_geom_2d(geom), m = ($attach_to != undef)? ( let( anch = _find_anchor($attach_to, geom), pos = anch[1] ) two_d? ( assert(two_d && is_num(spin)) affine3d_zrot(spin) * rot(to=FWD, from=point3d(anch[2])) * affine3d_translate(point3d(-pos)) ) : ( assert(is_num(spin) || is_vector(spin,3)) let( ang = vector_angle(anch[2], DOWN), axis = vector_axis(anch[2], DOWN), ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3], axis2 = rot(p=axis,[0,0,ang2]) ) affine3d_rot_by_axis(axis2,ang) * ( is_num(spin)? affine3d_zrot(ang2+spin) : ( affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x) * affine3d_zrot(ang2) ) ) * affine3d_translate(point3d(-pos)) ) ) : ( let( pos = _find_anchor(anchor, geom)[1] ) two_d? ( assert(two_d && is_num(spin)) affine3d_zrot(spin) * affine3d_translate(point3d(-pos)) ) : ( assert(is_num(spin) || is_vector(spin,3)) let( axis = vector_axis(UP,orient), ang = vector_angle(UP,orient) ) affine3d_rot_by_axis(axis,ang) * ( is_num(spin)? affine3d_zrot(spin) : ( affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x) ) ) * affine3d_translate(point3d(-pos)) ) ) ) is_undef(p)? m : is_vnf(p)? [(p==EMPTY_VNF? p : apply(m, p[0])), p[1]] : apply(m, p); function _get_cp(geom) = let(cp=select(geom,-3)) is_vector(cp) ? cp : let( f=echo(type=geom[0]), type = in_list(geom[0],["vnf_extent","vnf_isect"]) ? "vnf" : in_list(geom[0],["rgn_extent","rgn_isect"]) ? "path" : in_list(geom[0],["xrgn_extent","xrgn_isect"]) ? "xpath" : "other" ) assert(type!="other", "Invalid cp value") cp=="centroid" ? ( type=="vnf" && (len(geom[1][0])==0 || len(geom[1][1])==0) ? [0,0,0] : [each centroid(geom[1]), if (type=="xpath") geom[2]/2] ) : let(points = type=="vnf"?geom[1][0]:flatten(force_region(geom[1]))) cp=="mean" ? [each mean(points), if (type=="xpath") geom[2]/2] : cp=="box" ?[each mean(pointlist_bounds(points)), if (type=="xpath") geom[2]/2] : assert(false,"Invalid cp specification"); /// Internal Function: _find_anchor() // Usage: // anchorinfo = _find_anchor(anchor, geom); /// Topics: Attachments /// See Also: reorient(), attachable() // Description: // Calculates the anchor data for the given `anchor` vector or name, in the given attachment // geometry. Returns `[ANCHOR, POS, VEC, ANG]` where `ANCHOR` is the requested anchorname // or vector, `POS` is the anchor position, `VEC` is the direction vector of the anchor, and // `ANG` is the angle to align with around the rotation axis of th anchor direction vector. // Arguments: // anchor = Vector or named anchor string. // geom = The geometry description of the shape. function _find_anchor(anchor, geom) = let( cp = _get_cp(geom), offset_raw = select(geom,-2), offset = [for (i=[0:2]) anchor[i]==0? 0 : offset_raw[i]], // prevents bad centering. anchors = last(geom), type = geom[0] ) is_string(anchor)? ( anchor=="origin"? [anchor, CENTER, UP, 0] : let(found = search([anchor], anchors, num_returns_per_match=1)[0]) assert(found!=[], str("Unknown anchor: ",anchor)) anchors[found] ) : assert(is_vector(anchor),str("anchor=",anchor)) let(anchor = point3d(anchor)) anchor==CENTER? [anchor, cp, UP, 0] : let( oang = ( approx(point2d(anchor), [0,0])? 0 : atan2(anchor.y, anchor.x)+90 ) ) type == "cuboid"? ( //size, size2, shift let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[]) assert(all_comps_good, "All components of an anchor for a cuboid/prismoid must be -1, 0, or 1") let( size=geom[1], size2=geom[2], shift=point2d(geom[3]), axis=point3d(geom[4]), anch = rot(from=axis, to=UP, p=anchor), h = size.z, u = (anch.z+1)/2, // u is one of 0, 0.5, or 1 axy = point2d(anch), bot = point3d(v_mul(point2d(size)/2,axy),-h/2), top = point3d(v_mul(point2d(size2)/2,axy)+shift,h/2), pos = point3d(cp) + lerp(bot,top,u) + offset, vecs = [ if (anchor.x!=0) unit(rot(from=UP, to=unit([(top-bot).x,0,h]), p=[axy.x,0,0]), UP), if (anchor.y!=0) unit(rot(from=UP, to=unit([0,(top-bot).y,h]), p=[0,axy.y,0]), UP), if (anchor.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP) ], vec = unit(sum(vecs) / len(vecs)), pos2 = rot(from=UP, to=axis, p=pos), vec2 = rot(from=UP, to=axis, p=vec) ) [anchor, pos2, vec2, oang] ) : type == "cyl"? ( //r1, r2, l, shift assert(anchor.z == sign(anchor.z), "The Z component of an anchor for a cylinder/cone must be -1, 0, or 1") let( rr1=geom[1], rr2=geom[2], l=geom[3], shift=point2d(geom[4]), axis=point3d(geom[5]), r1 = is_num(rr1)? [rr1,rr1] : point2d(rr1), r2 = is_num(rr2)? [rr2,rr2] : point2d(rr2), anch = rot(from=axis, to=UP, p=anchor), u = (anch.z+1)/2, axy = unit(point2d(anch),[0,0]), bot = point3d(v_mul(r1,axy), -l/2), top = point3d(v_mul(r2,axy)+shift, l/2), pos = point3d(cp) + lerp(bot,top,u) + offset, sidevec = rot(from=UP, to=top-bot, p=point3d(axy)), vvec = anch==CENTER? UP : unit([0,0,anch.z],UP), vec = anch==CENTER? UP : approx(axy,[0,0])? unit(anch,UP) : approx(anch.z,0)? sidevec : unit((sidevec+vvec)/2,UP), pos2 = rot(from=UP, to=axis, p=pos), vec2 = rot(from=UP, to=axis, p=vec) ) [anchor, pos2, vec2, oang] ) : type == "spheroid"? ( //r let( rr = geom[1], r = is_num(rr)? [rr,rr,rr] : point3d(rr), anchor = unit(point3d(anchor),CENTER), pos = point3d(cp) + v_mul(r,anchor) + point3d(offset), vec = unit(v_mul(r,anchor),UP) ) [anchor, pos, vec, oang] ) : type == "vnf_isect"? ( //vnf let( vnf=geom[1] ) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : let( eps = 1/2048, points = vnf[0], faces = vnf[1], rpts = apply(rot(from=anchor, to=RIGHT) * move(-cp), points), hits = [ for (face = faces) let( verts = select(rpts, face), ys = column(verts,1), zs = column(verts,2) ) if (max(ys) >= -eps && max(zs) >= -eps && min(ys) <= eps && min(zs) <= eps) let( poly = select(points, face), isect = polygon_line_intersection(poly, [cp,cp+anchor], eps=eps), ptlist = is_undef(isect) ? [] : is_vector(isect) ? [isect] : flatten(isect), // parallel to a face n = len(ptlist)>0 ? polygon_normal(poly) : undef ) for(pt=ptlist) [anchor * (pt-cp), n, pt] ] ) assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.") let( furthest = max_index(column(hits,0)), dist = hits[furthest][0], pos = hits[furthest][2], hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]], unorms = [ for (i = idx(hitnorms)) let( thisnorm = hitnorms[i], isdup = [ for (j = [i+1:1:len(hitnorms)-1]) if (approx(thisnorm, hitnorms[j])) 1 ] != [] ) if (!isdup) thisnorm ], n = unit(sum(unorms)), oang = approx(point2d(n), [0,0])? 0 : atan2(n.y, n.x) + 90 ) [anchor, pos, n, oang] ) : type == "vnf_extent"? ( //vnf let( vnf=geom[1] ) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : let( rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]), maxx = max(column(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], avep = sum(select(rpts,idxs))/len(idxs), mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep, pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt) ) [anchor, pos, anchor, oang] ) : type == "rect"? ( //size, size2, shift assert(anchor.z==0, "The Z component of an anchor for a 2D shape must be 0.") let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[]) assert(all_comps_good, "All components of an anchor for a rectangle/trapezoid must be -1, 0, or 1") let( size=geom[1], size2=geom[2], shift=geom[3], u = (anchor.y+1)/2, // 0<=u<=1 frpt = [size.x/2*anchor.x, -size.y/2], bkpt = [size2/2*anchor.x+shift, size.y/2], pos = point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset), svec = point3d(line_normal(bkpt,frpt)*anchor.x), vec = anchor.y < 0? ( anchor.x == 0? FWD : size.x == 0? unit(-[shift,size.y], FWD) : unit((point3d(svec) + FWD) / 2, FWD) ) : anchor.y == 0? ( anchor.x == 0? BACK : svec ) : ( // anchor.y > 0 anchor.x == 0? BACK : size2 == 0? unit([shift,size.y], BACK) : unit((point3d(svec) + BACK) / 2, BACK) ) ) [anchor, pos, vec, 0] ) : type == "circle"? ( //r assert(anchor.z==0, "The Z component of an anchor for a 2D shape must be 0.") let( rr = geom[1], r = is_num(rr)? [rr,rr] : point2d(rr), pos = approx(anchor.x,0) ? [0,sign(anchor.y)*r.y] : let( m = anchor.y/anchor.x, px = sign(anchor.x) * sqrt(1/(1/sqr(r.x) + m*m/sqr(r.y))) ) [px,m*px], anchor = unit(point2d(anchor),[0,0]), vec = unit([r.y/r.x*pos.x, r.x/r.y*pos.y]) ) [anchor, point2d(cp+offset)+pos, vec, 0] ) : type == "rgn_isect"? ( //region assert(anchor.z==0, "The Z component of an anchor for a 2D shape must be 0.") let( rgn_raw = move(-point2d(cp), p=geom[1]), rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw], anchor = point2d(anchor), isects = [ for (path=rgn, t=triplet(path,true)) let( seg1 = [t[0],t[1]], seg2 = [t[1],t[2]], isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT), n = is_undef(isect)? [0,1] : !approx(isect, t[1])? line_normal(seg1) : unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]), n2 = vector_angle(anchor,n)>90? -n : n ) if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2] ] ) assert(len(isects)>0, "Anchor vector does not intersect with the shape. Attachment failed.") let( maxidx = max_index(column(isects,0)), isect = isects[maxidx], pos = point2d(cp) + isect[1], vec = unit(isect[2],[0,1]) ) [anchor, pos, vec, 0] ) : type == "rgn_extent"? ( //region assert(anchor.z==0, "The Z component of an anchor for a 2D shape must be 0.") let( rgn = force_region(geom[1]), anchor = point2d(anchor), m = rot(from=anchor, to=RIGHT) * move(-[cp.x, cp.y, 0]), rpts = apply(m, flatten(rgn)), maxx = max(column(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], miny = min([for (i=idxs) rpts[i].y]), maxy = max([for (i=idxs) rpts[i].y]), midy = (miny+maxy)/2, pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,midy]) ) [anchor, pos, anchor, 0] ) : type == "xrgn_isect"? ( //region assert(in_list(anchor.z,[-1,0,1]), "The Z component of an anchor for an extruded 2D shape must be -1, 0, or 1.") let( rgn_raw = move(-point2d(cp), p=geom[1]), l = geom[2], rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw], anchor = point3d(anchor), xyanch = point2d(anchor) ) approx(xyanch,[0,0])? [anchor, [0,0,anchor.z*l/2], unit(anchor,UP), 0] : let( isects = [ for (path=rgn, t=triplet(path,true)) let( seg1 = [t[0],t[1]], seg2 = [t[1],t[2]], isect = line_intersection([[0,0],xyanch], seg1, RAY, SEGMENT), n = is_undef(isect)? [0,1] : !approx(isect, t[1])? line_normal(seg1) : unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]), n2 = vector_angle(xyanch,n)>90? -n : n ) if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2] ], maxidx = max_index(column(isects,0)), isect = isects[maxidx], pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2, xyvec = unit(isect[2],[0,1]), vec = unit((point3d(xyvec)+UP*anchor.z)/2,UP), oang = approx(xyvec, [0,0])? 0 : atan2(xyvec.y, xyvec.x) + 90 ) [anchor, pos, vec, oang] ) : type == "xrgn_extent"? ( //region assert(in_list(anchor.z,[-1,0,1]), "The Z component of an anchor for an extruded 2D shape must be -1, 0, or 1.") let( rgn = force_region(geom[1]), l = geom[2], anchor = point3d(anchor), xyanch = point2d(anchor), m = ( approx(xyanch,[0,0])? [[1,0,0],[0,1,0],[0,0,1]] : rot(from=xyanch, to=RIGHT, planar=true) ) * move(-[cp.x, cp.y]), rpts = apply(m, flatten(rgn)), maxx = max(column(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], ys = [for (i=idxs) rpts[i].y], midy = (min(ys)+max(ys))/2, xypos = point2d(cp) + ( approx(xyanch,[0,0])? [0,0] : rot(from=RIGHT, to=xyanch, p=[maxx,midy]) ), pos = point3d(xypos) + unit([0,0,anchor.z],CENTER)*l/2, vec = unit((point3d(xyanch)+UP*anchor.z)/2,UP) ) [anchor, pos, vec, oang] ) : assert(false, "Unknown attachment geometry type."); /// Internal Function: _attachment_is_shown() // Usage: // bool = _attachment_is_shown(tags); /// Topics: Attachments /// See Also: reorient(), attachable() // Description: // Returns true if shapes tagged with any of the given space-delimited string of tag names should currently be shown. function _attachment_is_shown(tags) = assert(!is_undef($tags_shown)) assert(!is_undef($tags_hidden)) let( tags = str_split(tags, " "), shown = !$tags_shown || any([for (tag=tags) in_list(tag, $tags_shown)]), hidden = any([for (tag=tags) in_list(tag, $tags_hidden)]) ) shown && !hidden; // Section: Visualizing Anchors /// Internal Function: _standard_anchors() /// Usage: /// anchs = _standard_anchors([two_d]); /// Description: /// Return the vectors for all standard anchors. /// Arguments: /// two_d = If true, returns only the anchors where the Z component is 0. Default: false function _standard_anchors(two_d=false) = [ for ( zv = [ if (!two_d) TOP, CENTER, if (!two_d) BOTTOM ], yv = [FRONT, CENTER, BACK], xv = [LEFT, CENTER, RIGHT] ) xv+yv+zv ]; // Module: show_anchors() // Usage: // ... show_anchors([s], [std=], [custom=]); // Description: // Show all standard anchors for the parent object. // Arguments: // s = Length of anchor arrows. // --- // std = If true (default), show standard anchors. // custom = If true (default), show custom anchors. // Example(FlatSpin,VPD=333): // cube(50, center=true) show_anchors(); module show_anchors(s=10, std=true, custom=true) { check = assert($parent_geom != undef) 1; two_d = _attach_geom_2d($parent_geom); if (std) { for (anchor=_standard_anchors(two_d=two_d)) { if(two_d) { attach(anchor) anchor_arrow2d(s); } else { attach(anchor) anchor_arrow(s); } } } if (custom) { for (anchor=last($parent_geom)) { attach(anchor[0]) { if(two_d) { anchor_arrow2d(s, color="cyan"); } else { anchor_arrow(s, color="cyan"); } color("black") tags("anchor-arrow") { xrot(two_d? 0 : 90) { back(s/3) { yrot_copies(n=2) up(s/30) { linear_extrude(height=0.01, convexity=12, center=true) { text(text=anchor[0], size=s/4, halign="center", valign="center"); } } } } } color([1, 1, 1, 1]) tags("anchor-arrow") { xrot(two_d? 0 : 90) { back(s/3) { cube([s/4.5*len(anchor[0]), s/3, 0.01], center=true); } } } } } } children(); } // Module: anchor_arrow() // Usage: // anchor_arrow([s], [color], [flag]); // Description: // Show an anchor orientation arrow. By default, tagged with the name "anchor-arrow". // Arguments: // s = Length of the arrows. Default: `10` // color = Color of the arrow. Default: `[0.333, 0.333, 1]` // flag = If true, draw the orientation flag on the arrowhead. Default: true // Example: // anchor_arrow(s=20); module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tags="anchor-arrow") { $fn=12; recolor("gray") spheroid(d=s/6) { attach(CENTER,BOT) recolor(color) cyl(h=s*2/3, d=s/15) { attach(TOP,BOT) cyl(h=s/3, d1=s/5, d2=0) { if(flag) { position(BOT) recolor([1,0.5,0.5]) cuboid([s/100, s/6, s/4], anchor=FRONT+BOT); } children(); } } } } // Module: anchor_arrow2d() // Usage: // anchor_arrow2d([s], [color], [flag]); // Description: // Show an anchor orientation arrow. // Arguments: // s = Length of the arrows. // color = Color of the arrow. // Example: // anchor_arrow2d(s=20); module anchor_arrow2d(s=15, color=[0.333,0.333,1], $tags="anchor-arrow") { color(color) stroke([[0,0],[0,s]], width=s/10, endcap1="butt", endcap2="arrow2"); } // Module: expose_anchors() // Usage: // expose_anchors(opacity) {child1() show_anchors(); child2() show_anchors(); ...} // Description: // Used in combination with show_anchors() to display an object in transparent gray with its anchors in solid color. // Children will appear transparent and any anchor arrows drawn with will appear in solid color. // Arguments: // opacity = The opacity of the children. 0.0 is invisible, 1.0 is opaque. Default: 0.2 // Example(FlatSpin,VPD=333): // expose_anchors() cube(50, center=true) show_anchors(); module expose_anchors(opacity=0.2) { show("anchor-arrow") children(); hide("anchor-arrow") color(is_undef($color)? [0,0,0] : is_string($color)? $color : point3d($color), opacity) children(); } // Module: frame_ref() // Usage: // frame_ref(s, opacity); // Description: // Displays X,Y,Z axis arrows in red, green, and blue respectively. // Arguments: // s = Length of the arrows. // opacity = The opacity of the arrows. 0.0 is invisible, 1.0 is opaque. Default: 1.0 // Examples: // frame_ref(25); // frame_ref(30, opacity=0.5); module frame_ref(s=15, opacity=1) { cube(0.01, center=true) { attach([1,0,0]) anchor_arrow(s=s, flag=false, color=[1.0, 0.3, 0.3, opacity]); attach([0,1,0]) anchor_arrow(s=s, flag=false, color=[0.3, 1.0, 0.3, opacity]); attach([0,0,1]) anchor_arrow(s=s, flag=false, color=[0.3, 0.3, 1.0, opacity]); children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap