////////////////////////////////////////////////////////////////////// // LibFile: common.scad // Common functions used in argument processing. // To use, include this line at the top of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Type handling helpers. // Function: typeof() // Usage: // typ = typeof(x); // Description: // Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid". // Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid". function typeof(x) = is_undef(x)? "undef" : is_bool(x)? "boolean" : is_num(x)? "number" : is_nan(x)? "nan" : is_string(x)? "string" : is_list(x)? "list" : is_range(x) ? "range" : "invalid"; // Function: is_type() // Usage: // b = is_type(x, types); // Description: // Returns true if the type of the value `x` is one of those given as strings in the list `types`. // Valid types are "undef", "boolean", "number", "nan", "string", "list", or "range" // Arguments: // x = The value to check the type of. // types = A list of types to check // Example: // is_str_or_list = is_type("foo", ["string","list"]); // Returns: true // is_str_or_list2 = is_type([1,2,3], ["string","list"]); // Returns: true // is_str_or_list3 = is_type(2, ["string","list"]); // Returns: false // is_str = is_type("foo", "string"); // Returns: true // is_str2 = is_type([3,4], "string"); // Returns: false // is_str3 = is_type(["foo"], "string"); // Returns: false // is_str4 = is_type(3, "string"); // Returns: false function is_type(x,types) = is_list(types)? in_list(typeof(x),types) : is_string(types)? typeof(x) == types : assert(is_list(types)||is_string(types)); // Function: is_def() // Usage: // is_def(x) // Description: // Returns true if `x` is not `undef`. False if `x==undef`. function is_def(x) = !is_undef(x); // Function: is_str() // Usage: // is_str(x) // Description: // Returns true if `x` is a string. A shortcut for `is_string()`. function is_str(x) = is_string(x); // Function: is_int() // Usage: // is_int(n) // Description: // Returns true if the given value is an integer (it is a number and it rounds to itself). function is_int(n) = is_finite(n) && n == round(n); function is_integer(n) = is_finite(n) && n == round(n); // Function: is_nan() // Usage: // is_nan(x); // Description: // Returns true if a given value `x` is nan, a floating point value representing "not a number". function is_nan(x) = (x!=x); // Function: is_finite() // Usage: // is_finite(x); // Description: // Returns true if a given value `x` is a finite number. function is_finite(v) = is_num(0*v); // Function: is_range() // Description: // Returns true if its argument is a range function is_range(x) = !is_list(x) && is_finite(x[0]+x[1]+x[2]) ; // Function: valid_range() // Description: // Returns true if its argument is a valid range (deprecated ranges excluded). function valid_range(x) = is_range(x) && ( x[1]>0 ? x[0]<=x[2] : ( x[1]<0 && x[0]>=x[2] ) ); // Function: is_list_of() // Usage: // is_list_of(list, pattern) // Description: // Tests whether the input is a list whose entries are all numeric lists that have the same // list shape as the pattern. // Example: // is_list_of([3,4,5], 0); // Returns true // is_list_of([3,4,undef], 0); // Returns false // is_list_of([[3,4],[4,5]], [1,1]); // Returns true // is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true // is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false // is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true // is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false // is_list_of([], [1,[2,3]]); // Returns true function is_list_of(list,pattern) = let(pattern = 0*pattern) is_list(list) && []==[for(entry=0*list) if (entry != pattern) entry]; function _list_pattern(list) = is_list(list) ? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0] : 0; // Function: is_consistent() // Usage: // is_consistent(list) // Description: // Tests whether input is a list of entries which all have the same list structure // and are filled with finite numerical data. It returns `true`for the empty list. // Example: // is_consistent([3,4,5]); // Returns true // is_consistent([[3,4],[4,5],[6,7]]); // Returns true // is_consistent([[3,4,5],[3,4]]); // Returns false // is_consistent([[3,[3,4,[5]]], [5,[2,9,[9]]]]); // Returns true // is_consistent([[3,[3,4,[5]]], [5,[2,9,9]]]); // Returns false function is_consistent(list) = is_list(list) && is_list_of(list, _list_pattern(list[0])); //Internal function //Creates a list with the same structure of `list` with each of its elements substituted by 0. function _list_pattern(list) = is_list(list) ? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0] : 0; // Function: same_shape() // Usage: // same_shape(a,b) // Description: // Tests whether the inputs `a` and `b` are both numeric and are the same shaped list. // Example: // same_shape([3,[4,5]],[7,[3,4]]); // Returns true // same_shape([3,4,5], [7,[3,4]]); // Returns false function same_shape(a,b) = _list_pattern(a) == b*0; // Section: Handling `undef`s. // Function: default() // Description: // Returns the value given as `v` if it is not `undef`. // Otherwise, returns the value of `dflt`. // Arguments: // v = Value to pass through if not `undef`. // dflt = Value to return if `v` *is* `undef`. function default(v,dflt=undef) = is_undef(v)? dflt : v; // Function: first_defined() // Description: // Returns the first item in the list that is not `undef`. // If all items are `undef`, or list is empty, returns `undef`. // Arguments: // v = The list whose items are being checked. // recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned. function first_defined(v,recursive=false,_i=0) = _i=len(v)? _cnt : num_defined(v,_i+1,_cnt+(is_undef(v[_i])? 0 : 1)); // Function: any_defined() // Description: // Returns true if any item in the given array is not `undef`. // Arguments: // v = The list whose items are being checked. // recursive = If true, any sublists are evaluated recursively. function any_defined(v,recursive=false) = first_defined(v,recursive=recursive) != undef; // Function: all_defined() // Description: // Returns true if all items in the given array are not `undef`. // Arguments: // v = The list whose items are being checked. // recursive = If true, any sublists are evaluated recursively. function all_defined(v,recursive=false) = max([for (x=v) is_undef(x)||(recursive&&is_list(x)&&!all_defined(x))? 1 : 0])==0; // Section: Argument Helpers // Function: get_anchor() // Usage: // get_anchor(anchor,center,[uncentered],[dflt]); // Description: // Calculated the correct anchor from `anchor` and `center`. In order: // - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned. // - Otherwise, if `center` is not `undef` and `center` evaluates as false, then the value of `uncentered` is returned. // - Otherwise, if `anchor` is not `undef`, then the value of `anchor` is returned. // - Otherwise, the value of `dflt` is returned. // This ordering ensures that `center` will override `anchor`. // Arguments: // anchor = The anchor name or vector. // center = If not `undef`, this overrides the value of `anchor`. // uncentered = The value to return if `center` is not `undef` and evaluates as false. Default: ALLNEG // dflt = The default value to return if both `anchor` and `center` are `undef`. Default: `CENTER` function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) = !is_undef(center)? (center? CENTER : uncentered) : !is_undef(anchor)? anchor : dflt; // Function: get_radius() // Usage: // get_radius([r1], [r2], [r], [d1], [d2], [d], [dflt]); // Description: // Given various radii and diameters, returns the most specific radius. // If a diameter is most specific, returns half its value, giving the radius. // If no radii or diameters are defined, returns the value of dflt. // Value specificity order is r1, r2, d1, d2, r, d, then dflt // Only one of `r1`, `r2`, `d1`, or `d2` can be defined at once, or else it // errors out, complaining about conflicting radius/diameter values. // Only one of `r` or `d` can be defined at once, or else it errors out, // complaining about conflicting radius/diameter values. // Arguments: // r1 = Most specific radius. // d1 = Most specific diameter. // r2 = Second most specific radius. // d2 = Second most specific diameter. // r = Most general radius. // d = Most general diameter. // dflt = Value to return if all other values given are `undef`. function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) = ( !is_undef(r1)? assert(is_undef(r2)&&is_undef(d1)&&is_undef(d2), "Conflicting or redundant radius/diameter arguments given.") r1 : !is_undef(r2)? assert(is_undef(d1)&&is_undef(d2), "Conflicting or redundant radius/diameter arguments given.") r2 : !is_undef(d1)? d1/2 : !is_undef(d2)? d2/2 : !is_undef(r)? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.") r : !is_undef(d)? d/2 : dflt ); // Function: get_height() // Usage: // get_height([h],[l],[height],[dflt]) // Description: // Given several different parameters for height check that height is not multiply defined // and return a single value. If the three values `l`, `h`, and `height` are all undefined // then return the value `dflt`, if given, or undef otherwise. // Arguments: // l = l. // h = h. // height = height. // dflt = Value to return if other values are `undef`. function get_height(h=undef,l=undef,height=undef,dflt=undef) = assert(num_defined([h,l,height])<=1,"You must specify only one of `l`, `h`, and `height`") first_defined([h,l,height,dflt]); // Function: scalar_vec3() // Usage: // scalar_vec3(v, [dflt]); // Description: // If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`. // If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`. // If `v` is a vector, returns the first 3 items, with any missing values replaced by `dflt`. // If `v` is `undef`, returns `undef`. // Arguments: // v = Value to return vector from. // dflt = Default value to set empty vector parts from. function scalar_vec3(v, dflt=undef) = is_undef(v)? undef : is_list(v)? [for (i=[0:2]) default(v[i], default(dflt, 0))] : !is_undef(dflt)? [v,dflt,dflt] : [v,v,v]; // Function: segs() // Usage: // sides = segs(r); // Description: // Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`. // Arguments: // r = Radius of circle to get the number of segments for. function segs(r) = $fn>0? ($fn>3? $fn : 3) : let( r = is_finite(r)? r: 0 ) ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs))) ; // Section: Testing Helpers function _valstr(x) = is_list(x)? str("[",str_join([for (xx=x) _valstr(xx)],","),"]") : is_finite(x)? fmt_float(x,12) : x; // Module: assert_approx() // Usage: // assert_approx(got, expected, [info]); // Description: // Tests if the value gotten is what was expected. If not, then // the expected and received values are printed to the console and // an assertion is thrown to stop execution. // Arguments: // got = The value actually received. // expected = The value that was expected. // info = Extra info to print out to make the error clearer. module assert_approx(got, expected, info) { if (!approx(got, expected)) { echo(); echo(str("EXPECT: ", _valstr(expected))); echo(str("GOT : ", _valstr(got))); if (same_shape(got, expected)) { echo(str("DELTA : ", _valstr(got - expected))); } if (is_def(info)) { echo(str("INFO : ", _valstr(info))); } assert(approx(got, expected)); } } // Module: assert_equal() // Usage: // assert_equal(got, expected, [info]); // Description: // Tests if the value gotten is what was expected. If not, then // the expected and received values are printed to the console and // an assertion is thrown to stop execution. // Arguments: // got = The value actually received. // expected = The value that was expected. // info = Extra info to print out to make the error clearer. module assert_equal(got, expected, info) { if (got != expected || (is_nan(got) && is_nan(expected))) { echo(); echo(str("EXPECT: ", _valstr(expected))); echo(str("GOT : ", _valstr(got))); if (same_shape(got, expected)) { echo(str("DELTA : ", _valstr(got - expected))); } if (is_def(info)) { echo(str("INFO : ", _valstr(info))); } assert(got == expected); } } // Module: shape_compare() // Usage: // shape_compare([eps]) {test_shape(); expected_shape();} // Description: // Compares two child shapes, returning empty geometry if they are very nearly the same shape and size. // Returns the differential geometry if they are not nearly the same shape and size. // Arguments: // eps = The surface of the two shapes must be within this size of each other. Default: 1/1024 module shape_compare(eps=1/1024) { union() { difference() { children(0); if (eps==0) { children(1); } else { minkowski() { children(1); cube(eps, center=true); } } } difference() { children(1); if (eps==0) { children(0); } else { minkowski() { children(0); cube(eps, center=true); } } } } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap