////////////////////////////////////////////////////////////////////// // LibFile: joiners.scad // Snap-together joiners. // Includes: // include // include // FileGroup: Parts // FileSummary: Joiner shapes for connecting separately printed objects. ////////////////////////////////////////////////////////////////////// include // Section: Half Joiners // Module: half_joiner_clear() // Description: // Creates a mask to clear an area so that a half_joiner can be placed there. // Usage: // half_joiner_clear(h, w, [a], [clearance], [overlap]) // Arguments: // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // half_joiner_clear(); module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); attachable(anchor,spin,orient, size=[w, guide_width, h]) { union() { ycopies(overlap, n=overlap>0? 2 : 1) { difference() { // Diamonds. scale([w+clearance, dmnd_width/2, dmnd_height/2]) { xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true); } // Blunt point of tab. ycopies(guide_width+4) { cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true); } } } if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true); } children(); } } // Module: half_joiner() // Usage: // half_joiner(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a half_joiner object that can be attached to half_joiner2 object. // Arguments: // h = Height of the half_joiner. // w = Width of the half_joiner. // l = Length of the backing to the half_joiner. // a = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples(FlatSpin,VPD=75): // half_joiner(screwsize=3); // half_joiner(h=20,w=10,l=10); module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); a2 = atan2(guide_width/2,h/3); render(convexity=12) attachable(anchor,spin,orient, size=[w, 2*l, h]) { difference() { union() { difference() { // Base cube fwd(l) cube([w, l+guide_width/2, h], anchor=FRONT); // Bevel top and bottom yrot_copies(n=2) down(h/2) xrot(-a2) down(0.1) cube([w+1, guide_width+1, h+1], anchor=FWD+BOT); // Clear sides xcopies(2*w*2/3-$slop*2) { cube([w, guide_width, h/3], center=true); fwd(guide_width/2) yrot_copies(n=2) down(h/6) xrot(a2) cube([w, guide_width, h/2], anchor=FWD+TOP); } } // Guide ridges. if (guides == true) { xcopies(w/3-$slop*2) { // Guide ridge. fwd(0.05/2) { scale([0.75, 1, 2]) yrot(45) cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true); } // Snap ridge. scale([0.25, 0.5, 1]) zrot(45) cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true); } } } // Make screwholes, if needed. if (screwsize != undef) { yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12); } } children(); } } // Module: half_joiner2() // Usage: // half_joiner2(h, w, l, [a], [screwsize], [guides]) // Description: // Creates a half_joiner2 object that can be attached to half_joiner object. // Arguments: // h = Height of the half_joiner. // w = Width of the half_joiner. // l = Length of the backing to the half_joiner. // a = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples(FlatSpin,VPD=75): // half_joiner2(screwsize=3); // half_joiner2(h=20,w=10,l=10); module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); render(convexity=12) attachable(anchor,spin,orient, size=[w, 2*l, h]) { difference() { union () { fwd(l/2) cube(size=[w, l, h], center=true); cube([w, guide_width, h], center=true); } // Subtract mated half_joiner. zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0); // Make screwholes, if needed. if (screwsize != undef) { xcyl(r=screwsize*1.1/2, l=w+1, $fn=12); } } children(); } } // Section: Full Joiners // Module: joiner_clear() // Description: // Creates a mask to clear an area so that a joiner can be placed there. // Usage: // joiner_clear(h, w, [a], [clearance], [overlap]) // Arguments: // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // joiner_clear(); module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*0.5; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); attachable(anchor,spin,orient, size=[w, guide_width, h]) { union() { up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance); down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01); } children(); } } // Module: joiner() // Usage: // joiner(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner object that can be attached to another joiner object. // Arguments: // h = Height of the joiner. // w = Width of the joiner. // l = Length of the backing to the joiner. // a = Overhang angle of the joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples(FlatSpin,VPD=125): // joiner(screwsize=3); // joiner(w=10, l=10, h=40); module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=[w, 2*l, h]) { union() { up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides); down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } children(); } } // Section: Full Joiners Pairs/Sets // Module: joiner_pair_clear() // Description: // Creates a mask to clear an area so that a pair of joiners can be placed there. // Usage: // joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap]) // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // n = Number of joiners (2 by default) to clear for. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_pair_clear(spacing=50, n=2); // joiner_pair_clear(spacing=50, n=3); module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*0.5; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); attachable(anchor,spin,orient, size=[spacing+w, guide_width, h]) { xcopies(spacing, n=n) { joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap); } children(); } } // Module: joiner_pair() // Usage: // joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner_pair object that can be attached to other joiner_pairs . // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiners. // w = Width of the joiners. // l = Length of the backing to the joiners. // a = Overhang angle of the joiners. // n = Number of joiners in a row. Default: 2 // alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Example(FlatSpin,VPD=200): // joiner_pair(spacing=50, l=10); // Examples: // joiner_pair(spacing=50, l=10, n=3, alternate=false); // joiner_pair(spacing=50, l=10, n=3, alternate=true); // joiner_pair(spacing=50, l=10, n=3, alternate="alt"); module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) { left((n-1)*spacing/2) { for (i=[0:1:n-1]) { right(i*spacing) { yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) { joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } } } } children(); } } // Section: Full Joiners Quads/Sets // Module: joiner_quad_clear() // Description: // Creates a mask to clear an area so that a pair of joiners can be placed there. // Usage: // joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap]) // Arguments: // spacing1 = Spacing between joiner centers. // spacing2 = Spacing between back-to-back pairs/sets of joiners. // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // n = Number of joiners in a row. Default: 2 // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_quad_clear(spacing1=50, spacing2=50, n=2); // joiner_quad_clear(spacing1=50, spacing2=50, n=3); module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { spacing1 = first_defined([spacing1, xspacing, 100]); spacing2 = first_defined([spacing2, yspacing, 50]); attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) { zrot_copies(n=2) { back(spacing2/2) { joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap); } } children(); } } // Module: joiner_quad() // Usage: // joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner_quad object that can be attached to other joiner_pairs . // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiners. // w = Width of the joiners. // l = Length of the backing to the joiners. // a = Overhang angle of the joiners. // n = Number of joiners in a row. Default: 2 // alternate = If true (default), joiners on each side alternate orientations. If alternate is "alt", do opposite alternating orientations. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // $slop = Printer specific slop value to make parts fit more closely. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example(FlatSpin,VPD=250): // joiner_quad(spacing1=50, spacing2=50, l=10); // Examples: // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt"); module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { spacing1 = first_defined([spacing1, xspacing, 100]); spacing2 = first_defined([spacing2, yspacing, 50]); attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) { zrot_copies(n=2) { back(spacing2/2) { joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides, alternate=alternate); } } children(); } } // Section: Dovetails // Module: dovetail() // // Usage: // dovetail(gender, w|width, h|height, slide, [slope|angle], [taper|back_width], [chamfer], [r|radius], [round], [extra], [$slop]) // // Description: // Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together. // The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until // it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better // printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears // parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation // in the positive Y direction. The gender determines whether the shape is meant to be added to your model or // differenced, and it also changes the anchor and orientation. The default anchor for dovetails is BOTTOM; // the default orientation depends on the gender, with male dovetails oriented UP and female ones DOWN. The dovetails by default // have extra extension of 0.01 for unions and differences. You should ensure that attachment is done with overlap=0 to ensure that // the sizing and positioning is correct. // // Arguments: // gender = A string, "male" or "female", to specify the gender of the dovetail. // w / width = Width (at the wider, top end) of the dovetail before tapering // h / height = Height of the dovetail (the amount it projects from its base) // slide = Distance the dovetail slides when you assemble it (length of sliding dovetails, thickness of regular dovetails) // --- // slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6. // angle = angle (in degrees) of the dovetail. Specify only one of slope and angle. // taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper // back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back. // chamfer = amount to chamfer the corners of the joint (Default: no chamfer) // r / radius = amount to round over the corners of the joint (Default: no rounding) // round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false. // extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01 // Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane) // dovetail("male", width=15, height=8, slide=30); // right(20) dovetail("female", width=15, height=8, slide=30); // Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.) // dovetail("male", w=15, h=8, slide=30, taper=6); // right(20) dovetail("female", 15, 8, 30, taper=6); // Same as above // Example: A block that can link to itself // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8); // attach(FRONT) dovetail("female", slide=10, width=15, height=8,$tags="remove"); // } // Example: Setting the dovetail angle. This is too extreme to be useful. // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8, angle=30); // attach(FRONT) dovetail("female", slide=10, width=15, height=8, angle=30,$tags="remove"); // } // Example: Adding a chamfer helps printed parts fit together without problems at the corners // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8, chamfer=1); // attach(FRONT) dovetail("female", slide=10, width=15, height=8,chamfer=1,$tags="remove"); // } // Example: Rounding the outside corners is another option // diff("remove") // cuboid([50,30,10]) { // attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1, $fn=32); // attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1, $tags="remove", $fn=32); // } // Example: Or you can make a fully rounded joint // $fn=32; // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1.5, round=true); // attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1.5, round=true, $tags="remove"); // } // Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle. // cuboid([50,30,10]) // attach(TOP) dovetail("male", slide=50, width=18, height=4, back_width=15, spin=90); // fwd(35) // diff("remove") // cuboid([50,30,10]) // attach(TOP) dovetail("female", slide=50, width=18, height=4, back_width=15, spin=90, $tags="remove"); // Example: A series of dovetails forming a tail board, with the inside of the joint up. A standard wood joint would have a zero taper. // cuboid([50,30,10]) // attach(BACK) xcopies(10,5) dovetail("male", slide=10, width=7, taper=4, height=4); // Example: Mating pin board for a half-blind right angle joint, where the joint only shows on the side but not the front. Note that the anchor method and use of `spin` ensures that the joint works even with a taper. // diff("remove") // cuboid([50,30,10]) // position(TOP+BACK) xcopies(10,5) dovetail("female", slide=10, width=7, taper=4, height=4, $tags="remove",anchor=BOTTOM+FRONT,spin=180); module dovetail(gender, width, height, slide, h, w, angle, slope, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) { radius = get_radius(r1=radius,r2=r); hcount = num_defined([h,height]); wcount = num_defined([w,width]); assert(is_def(slide), "Must define slide"); assert(hcount==1, "Must define exactly one of h and height"); assert(wcount==1, "Must define exactly one of w and width"); h = first_defined([h,height]); w = first_defined([w,width]); orient = is_def(orient) ? orient : gender == "female" ? DOWN : UP; count = num_defined([angle,slope]); assert(count<=1, "Do not specify both angle and slope"); count2 = num_defined([taper,back_width]); assert(count2<=1, "Do not specify both taper and back_width"); count3 = num_defined([chamfer, radius]); assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius"); slope = is_def(slope) ? slope : is_def(angle) ? 1/tan(angle) : 6; extra_slop = gender == "female" ? 2*$slop : 0; width = w + extra_slop; height = h + extra_slop; back_width = u_add(back_width, extra_slop); front_offset = is_def(taper) ? -extra * tan(taper) : is_def(back_width) ? extra * (back_width-width)/slide/2 : 0; size = is_def(chamfer) && chamfer>0 ? chamfer : is_def(radius) && radius>0 ? radius : 0; type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle"; fullsize = round ? [size,size] : gender == "male" ? [size,0] : [0,size]; smallend_half = round_corners( move( [0,-slide/2-extra,0], p=[ [0 , 0, height], [width/2-front_offset , 0, height], [width/2 - height/slope - front_offset, 0, 0 ], [width/2 - front_offset + height, 0, 0] ] ), method=type, cut = fullsize, closed=false ); smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]); offset = is_def(taper) ? -(slide+extra) * tan(taper) : is_def(back_width) ? (back_width-width) / 2 : 0; bigend_points = move([offset,slide+2*extra,0], p=smallend_points); //adjustment = $overlap * (gender == "male" ? -1 : 1); // Adjustment for default overlap in attach() adjustment = 0; // Default overlap is assumed to be zero attachable(anchor,spin,orient, size=[width+2*offset, slide, height]) { down(height/2+adjustment) { skin( [ reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))), reverse(concat(bigend_points, xflip(p=reverse(bigend_points)))) ], slices=0, convexity=4 ); } children(); } } // Section: Tension Clips // h is total height above 0 of the nub // nub extends below xy plane by distance nub/2 module _pin_nub(r, nub, h) { L = h / 4; rotate_extrude(){ polygon( [[ 0,-nub/2], [-r,-nub/2], [-r-nub, nub/2], [-r-nub, nub/2+L], [-r, h], [0, h]]); } } module _pin_slot(l, r, t, d, nub, depth, stretch) { yscale(4) intersection() { translate([t, 0, d + t / 4]) _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4)); translate([-t, 0, d + t / 4]) _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4)); } cube([2 * r, depth, 2 * l], center = true); up(l) zscale(stretch) ycyl(r = r, h = depth); } module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed) { extra = 0.02; // This sets the extra extension below the socket bottom // so that difference() works without issues rPoint = r / sqrt(2); down(extra) cylinder(r = r, h = lStraight + extra); up(lStraight) { zscale(stretch) { sphere(r = r); if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint); } } up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d); } function _pin_size(size) = is_undef(size) ? [] : let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"])) assert(sizeok,"Pin size must be one of \"tiny\", \"small\", or \"standard\"") size=="standard" || size=="large" ? struct_set([], ["length", 10.8, "diameter", 7, "snap", 0.5, "nub_depth", 1.8, "thickness", 1.8, "preload", 0.2]): size=="medium" ? struct_set([], ["length", 8, "diameter", 4.6, "snap", 0.45, "nub_depth", 1.5, "thickness", 1.4, "preload", 0.2]) : size=="small" ? struct_set([], ["length", 6, "diameter", 3.2, "snap", 0.4, "nub_depth", 1.2, "thickness", 1.0, "preload", 0.16]) : size=="tiny" ? struct_set([], ["length", 4, "diameter", 2.5, "snap", 0.25, "nub_depth", 0.9, "thickness", 0.8, "preload", 0.1]): undef; // Module: snap_pin() // Usage: // snap_pin(size, [pointed], [anchor], [spin], [orient]) // snap_pin(r|radius|d|diameter, l|length, nub_depth, snap, thickness, [clearance], [preload], [pointed], [anchor], [spin], [orient]) // Description: // Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard // pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can // override the standard parameters by specifying other ones. The pins have flat sides so they can // be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default // orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane. // The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`. // . // The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin // has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5. // . // This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe // and a modified version at https://www.thingiverse.com/thing:3218332 by acwest // and distributed under the Creative Commons - Attribution - Share Alike License // Arguments: // size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny". // pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true // r|radius = radius of the pin // d|diameter = diameter of the pin // l|length = length of the pin // nub_depth = the distance of the nub from the base of the pin // snap = how much snap the pin provides (the nub projection) // thickness = thickness of the pin walls // pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true // clearance = how far to shrink the pin away from the socket walls. Default: 0.2 // preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2 // Example: Pin in native orientation // snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40); // Example: Pins oriented for printing // xcopies(spacing=10, n=4) snap_pin("standard", $fn=40); module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) { preload_default = 0.2; sizedat = _pin_size(size); radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2); length = first_defined([l,length,struct_val(sizedat,"length")]); snap = first_defined([snap, struct_val(sizedat,"snap")]); thickness = first_defined([thickness, struct_val(sizedat,"thickness")]); nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]); preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]); nubscale = 0.9; // Mysterious arbitrary parameter // The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight. // If the point is enabled the cap length is instead 2*r // preload shrinks the length, bringing the nubs closer together rInner = radius - clearance; stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced. lStraight = length - sqrt(2) * radius - clearance; lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius); attachable(anchor=anchor,spin=spin, orient=orient, size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){ zflip_copy() difference() { intersection() { cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true); _pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed); } _pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch); } children(); } } // Module: snap_pin_socket() // Usage: // snap_pin_socket(size, [fixed], [fins], [pointed], [anchor], [spin], [orient]); // snap_pin_socket(r|radius|d|diameter, l|length, nub_depth, snap, [fixed], [pointed], [fins], [anchor], [spin], [orient]) // Description: // Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the // pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well // if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and // will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up, // especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object. // The socket extends 0.02 extra below its bottom anchor point so that differences will work correctly. (You must have $overlap smaller than 0.02 in // attach or the socket will be beneath the surface of the parent object.) // . // The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin // has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5. // Arguments: // size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny". // pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true // r|radius = radius of the pin // d|diameter = diameter of the pin // l|length = length of the pin // nub_depth = the distance of the nub from the base of the pin // snap = how much snap the pin provides (the nub projection) // fixed = if true the pin cannot rotate, if false it can. Default: true // pointed = if true the socket has a pointed tip. Default: true // fins = if true supporting fins are included. Default: false // Example: The socket shape itself in native orientation. // snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40); // Example: A spinning socket with fins: // snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40); // Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside: // $fn=40; // diff("socket") cuboid([20,20,20]) { // attach(TOP) snap_pin_socket("standard", $tags="socket"); // position(TOP+FRONT)snap_pin_socket("standard", $tags="socket"); // } module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) { sizedat = _pin_size(size); radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2); length = first_defined([l,length,struct_val(sizedat,"length")]); snap = first_defined([snap, struct_val(sizedat,"snap")]); nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]); tip = pointed ? sqrt(2) * radius : radius; lPin = length + (pointed?(2-sqrt(2))*radius:0); lStraight = lPin - (pointed?sqrt(2)*radius:radius); attachable(anchor=anchor,spin=spin,orient=orient, size=[2*(radius+snap),radius*sqrt(2),lPin]) { down(lPin/2) intersection() { cube([3 * (radius + snap), fixed ? radius * sqrt(2) : 3*(radius+snap), 3 * lPin + 3 * radius], center = true); union() { _pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed); if (fins) up(lStraight){ cube([2 * radius, 0.01, 2 * tip], center = true); cube([0.01, 2 * radius, 2 * tip], center = true); } } } children(); } } // Module: rabbit_clip() // Usage: // rabbit_clip(type, length, width, snap, thickness, depth, [compression], [clearance], [lock], [lock_clearance], [splineteps], [anchor], [orient], [spin]) // Description: // Creates a clip with two flexible ears to lock into a mating socket, or create a mask to produce the appropriate // mating socket. The clip can be made to insert and release easily, or to hold much better, or it can be // created with locking flanges that will make it very hard or impossible to remove. Unlike the snap pin, this clip // is rectangular and can be made at any height, so a suitable clip could be very thin. It's also possible to get a // solid connection with a short pin. // . // The type parameters specifies whether to make a clip, a socket mask, or a double clip. The length is the // total nominal length of the clip. (The actual length will be very close, but not equal to this.) The width // gives the nominal width of the clip, which is the actual width of the clip at its base. The snap parameter // gives the depth of the clip sides, which controls how easy the clip is to insert and remove. The clip "ears" are // made over-wide by the compression value. A nonzero compression helps make the clip secure in its socket. // The socket's width and length are increased by the clearance value which creates some space and can compensate // for printing inaccuracy. The socket will be slightly longer than the nominal width. The thickness is the thickness // curved line that forms the clip. The clip depth is the amount the basic clip shape is extruded. Be sure that you // make the socket with a larger depth than the clip (try 0.4 mm) to allow ease of insertion of the clip. The clearance // value does not apply to the depth. The splinesteps parameter increases the sampling of the clip curves. // . // By default clips appear with orient=UP and sockets with orient=DOWN. The clips and sockets extend 0.02 units below // their base so that unions and differences will work without trouble, but be sure that the attach overlap is smaller // than 0.02. // . // The first figure shows the dimensions of the rabbit clip. The second figure shows the clip in red overlayed on // its socket in yellow. The left clip has a nonzero clearance, so its socket is bigger than the clip all around. // The right hand locking clip has no clearance, but it has a lock clearance, which provides some space behind // the lock to allow the clip to fit. (Note that depending on your printer, this can be set to zero.) // Figure(2DMed): // snap=1.5; // comp=0.75; // mid = 8.053; // computed in rabbit_clip // tip = [-4.58,18.03]; // translate([9,3]){ // back_half() // rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK); // color("blue"){ // stroke([[6,0],[6,18]],width=0.1); // stroke([[6+comp, 12], [6+comp, 18]], width=.1); // } // color("red"){ // stroke([[6-snap,mid], [6,mid]], endcaps="arrow2",width=0.15); // translate([6+.4,mid-.15])text("snap",size=1,valign="center"); // translate([6+comp/2,19.5])text("compression", size=1, halign="center"); // stroke([[6+comp/2,19.3], [6+comp/2,17.7]], endcap2="arrow2", width=.15); // fwd(1.1)text("width",size=1,halign="center"); // xflip_copy()stroke([[2,-.7], [6,-.7]], endcap2="arrow2", width=.15); // move([-6.7,mid])rot(90)text("length", size=1, halign="center"); // stroke([[-7,10.3], [-7,18]], width=.15, endcap2="arrow2"); // stroke([[-7,0], [-7,5.8]], width=.15,endcap1="arrow2"); // stroke([tip, tip-[0,1]], width=.15); // move([tip.x+2,19.5])text("thickness", halign="center",size=1); // stroke([[tip.x+2, 19.3], tip+[.1,.1]], width=.15, endcap2="arrow2"); // } // } // // Figure(2DMed): // snap=1.5; // comp=0; // translate([29,3]){ // back_half() // rabbit_clip("socket", width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK,lock=true); // color("red")back_half() // rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, // orient=BACK,lock=true,lock_clearance=1); // } // translate([9,3]){ // back_half() // rabbit_clip("socket", clearance=.5,width=12, length=18, depth=1, thickness = 1, // compression=comp, snap=snap, orient=BACK,lock=false); // color("red")back_half() // rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, // orient=BACK,lock=false,lock_clearance=1); // } // Arguments: // type = One of "pin", "socket", "male", "female" or "double" to specify what to make. // length = nominal clip length // width = nominal clip width // snap = depth of hollow on the side of the clip // thickness = thickness of the clip "line" // depth = amount to extrude clip (give extra room for the socket, about 0.4mm) // compression = excess width at the "ears" to lock more tightly. Default: 0.1 // clearance = extra space in the socket for easier insertion. Default: 0.1 // lock = set to true to make a locking clip that may be irreversible. Default: false // lock_clearance = give clearance for the lock. Default: 0 // splinesteps = number of samples in the curves of the clip. Default: 8 // anchor = anchor point for clip // orient = clip orientation. Default: UP for pins, DOWN for sockets // spin = spin the clip. Default: 0 // // Example: Here are several sizes that work printed in PLA on a Prusa MK3, with default clearance of 0.1 and a depth of 5 // module test_pair(length, width, snap, thickness, compression, lock=false) // { // depth = 5; // extra_depth = 10;// Change this to 0.4 for closed sockets // cuboid([max(width+5,12),12, depth], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM) // attach(BACK) // rabbit_clip(type="pin",length=length, width=width,snap=snap,thickness=thickness,depth=depth, // compression=compression,lock=lock); // right(width+13) // diff("remove") // cuboid([width+8,max(12,length+2),depth+3], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM) // attach(BACK) // rabbit_clip(type="socket",length=length, width=width,snap=snap,thickness=thickness,depth=depth+extra_depth, // lock=lock,compression=0,$tags="remove"); // } // left(37)ydistribute(spacing=28){ // test_pair(length=6, width=7, snap=0.25, thickness=0.8, compression=0.1); // test_pair(length=3.5, width=7, snap=0.1, thickness=0.8, compression=0.1); // snap = 0.2 gives a firmer connection // test_pair(length=3.5, width=5, snap=0.1, thickness=0.8, compression=0.1); // hard to take apart // } // right(17)ydistribute(spacing=28){ // test_pair(length=12, width=10, snap=1, thickness=1.2, compression=0.2); // test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible // test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible // } // Example: Double clip to connect two sockets // rabbit_clip("double",length=8, width=7, snap=0.75, thickness=0.8, compression=0.2,depth=5); // Example: A modified version of the clip that acts like a backpack strap clip, where it locks tightly but you can squeeze to release. // cuboid([25,15,5],anchor=BOTTOM) // attach(BACK)rabbit_clip("pin", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5, lock_clearance=3); // left(32) // diff("remove") // cuboid([30,30,11],orient=BACK,anchor=BACK){ // attach(BACK)rabbit_clip("socket", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5.5, lock_clearance=3,$tags="remove"); // xflip_copy() // position(FRONT+LEFT) // xscale(0.8) // zcyl(l=20,r=13.5, $tags="remove",$fn=64); // } module rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0, splinesteps=8, anchor, orient, spin=0) { assert(is_num(width) && width>0,"Width must be a positive value"); assert(is_num(length) && length>0, "Length must be a positive value"); assert(is_num(thickness) && thickness>0, "Thickness must be a positive value"); assert(is_num(snap) && snap>=0, "Snap must be a non-negative value"); assert(is_num(depth) && depth>0, "Depth must be a positive value"); assert(is_num(compression) && compression >= 0, "Compression must be a nonnegative value"); assert(is_bool(lock)); assert(is_num(lock_clearance)); legal_types = ["pin","socket","male","female","double"]; assert(in_list(type,legal_types),str("type must be one of ",legal_types)); if (type=="double") { attachable(size=[width+2*compression, depth, 2*length], anchor=default(anchor,BACK), spin=spin, orient=default(orient,BACK)){ union(){ rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression, lock=lock, anchor=BOTTOM, orient=UP); rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression, lock=lock, anchor=BOTTOM, orient=DOWN); cuboid([width-thickness, depth, thickness]); } children(); } } else { anchor = default(anchor,BOTTOM); is_pin = in_list(type,["pin","male"]); //default_overlap = 0.01 * (is_pin?1:-1); // Shift by this much to undo default overlap default_overlap = 0; extra = 0.02; // Amount of extension below nominal based position for the socket, must exceed default overlap of 0.01 clearance = is_pin ? 0 : clearance; compression = is_pin ? compression : 0; orient = is_def(orient) ? orient : is_pin ? UP : DOWN; earwidth = 2*thickness+snap; point_length = earwidth/2.15; // The adjustment is using cos(theta)*earwidth/2 and sin(theta)*point_length, but the computation // is obscured because theta is atan(length/2/snap) scaled_len = length - 0.5 * (earwidth * snap + point_length * length) / sqrt(sqr(snap)+sqr(length/2)); bottom_pt = [0,max(scaled_len*0.15+thickness, 2*thickness)]; ctr = [width/2,scaled_len] + line_normal([width/2-snap, scaled_len/2], [width/2, scaled_len]) * earwidth/2; inside_pt = circle_circle_tangents(bottom_pt, 0, ctr, earwidth/2)[0][1]; sidepath =[ [width/2,0], [width/2-snap,scaled_len/2], [width/2+(is_pin?compression:0), scaled_len], ctr - point_length * line_normal([width/2,scaled_len], inside_pt), inside_pt ]; fullpath = concat( sidepath, [bottom_pt], reverse(apply(xflip(),sidepath)) ); assert(fullpath[4].y < fullpath[3].y, "Pin is too wide for its length"); snapmargin = -snap + last(sidepath).x;// - compression; if (is_pin){ if (snapmargin<0) echo("WARNING: The snap is too large for the clip to squeeze to fit its socket") echo(snapmargin=snapmargin); } // Force tangent to be vertical at the outer edge of the clip to avoid overshoot fulltangent = list_set(path_tangents(fullpath, uniform=false),[2,8], [[0,1],[0,-1]]); subset = is_pin ? [0:10] : [0,1,2,3, 7,8,9,10]; // Remove internal points from the socket tangent = select(fulltangent, subset); path = select(fullpath, subset); socket_smooth = .04; pin_smooth = [.075, .075, .15, .12, .06]; smoothing = is_pin ? concat(pin_smooth, reverse(pin_smooth)) : let(side_smooth=select(pin_smooth, 0, 2)) concat(side_smooth, [socket_smooth], reverse(side_smooth)); bez = path_to_bezier(path,relsize=smoothing,tangents=tangent); rounded = bezier_path(bez,splinesteps=splinesteps); bounds = pointlist_bounds(rounded); extrapt = is_pin ? [] : [rounded[0] - [0,extra]]; finalpath = is_pin ? rounded : let(withclearance=offset(rounded, r=-clearance)) concat( [[withclearance[0].x,-extra]], withclearance, [[-withclearance[0].x,-extra]]); attachable(size=[bounds[1].x-bounds[0].x, depth, bounds[1].y-bounds[0].y], anchor=anchor, spin=spin, orient=orient){ xrot(90) translate([0,-(bounds[1].y-bounds[0].y)/2+default_overlap,-depth/2]) linear_extrude(height=depth, convexity=10) { if (lock) xflip_copy() right(clearance) polygon([sidepath[1]+[-thickness/10,lock_clearance], sidepath[2]-[thickness*.75,0], sidepath[2], [sidepath[2].x,sidepath[1].y+lock_clearance]]); if (is_pin) offset_stroke(finalpath, width=[thickness,0]); else polygon(finalpath); } children(); } } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap