////////////////////////////////////////////////////////////////////// // LibFile: affine.scad // Matrix math and affine transformation matrices. // Includes: // include ////////////////////////////////////////////////////////////////////// // Section: Matrix Manipulation // Function: ident() // Usage: // mat = ident(n); // Description: // Create an `n` by `n` square identity matrix. // Arguments: // n = The size of the identity matrix square, `n` by `n`. // Example: // mat = ident(3); // // Returns: // // [ // // [1, 0, 0], // // [0, 1, 0], // // [0, 0, 1] // // ] // Example: // mat = ident(4); // // Returns: // // [ // // [1, 0, 0, 0], // // [0, 1, 0, 0], // // [0, 0, 1, 0], // // [0, 0, 0, 1] // // ] function ident(n) = [ for (i = [0:1:n-1]) [ for (j = [0:1:n-1]) (i==j)? 1 : 0 ] ]; // Function: is_affine() // Usage: // bool = is_affine(x,); // Description: // Tests if the given value is an affine matrix, possibly also checking it's dimenstion. // Arguments: // x = The value to test for being an affine matrix. // dim = The number of dimensions the given affine is required to be for. Generally 2 for 2D or 3 for 3D. If given as a list of integers, allows any of the given dimensions. Default: `[2,3]` // Examples: // bool = is_affine(affine2d_scale([2,3])); // Returns true // bool = is_affine(affine3d_scale([2,3,4])); // Returns true // bool = is_affine(affine3d_scale([2,3,4]),2); // Returns false // bool = is_affine(affine3d_scale([2,3]),2); // Returns true // bool = is_affine(affine3d_scale([2,3,4]),3); // Returns true // bool = is_affine(affine3d_scale([2,3]),3); // Returns false function is_affine(x,dim=[2,3]) = is_finite(dim)? is_affine(x,[dim]) : let( ll = len(x) ) is_list(x) && in_list(ll-1,dim) && [for (r=x) if(!is_list(r) || len(r)!=ll) 1] == []; // Function: is_2d_transform() // Usage: // x = is_2d_transform(t); // Description: // Checks if the input is a 3D transform that does not act on the z coordinate, except possibly // for a simple scaling of z. Note that an input which is only a zscale returns false. // Arguments: // t = The transformation matrix to check. // Examples: // b = is_2d_transform(zrot(45)); // Returns: true // b = is_2d_transform(yrot(45)); // Returns: false // b = is_2d_transform(xrot(45)); // Returns: false // b = is_2d_transform(move([10,20,0])); // Returns: true // b = is_2d_transform(move([10,20,30])); // Returns: false // b = is_2d_transform(scale([2,3,4])); // Returns: true function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && (t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale() // Function: affine2d_to_3d() // Usage: // mat = affine2d_to_3d(m); // Description: // Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent. // Example: // mat = affine2d_to_3d(affine2d_translate([10,20])); // // Returns: // // [ // // [1, 0, 0, 10], // // [0, 1, 0, 20], // // [0, 0, 1, 0], // // [0, 0, 0, 1], // // ] function affine2d_to_3d(m) = [ [ m[0][0], m[0][1], 0, m[0][2] ], [ m[1][0], m[1][1], 0, m[1][2] ], [ 0, 0, 1, 0 ], [ m[2][0], m[2][1], 0, m[2][2] ] ]; // Function: affine3d_to_2d() // Usage: // mat = affine3d_to_2d(m); // Description: // Takes a 4x4 affine3d matrix and returns its 3x3 affine2d equivalent. 3D transforms that would alter the Z coordinate are disallowed. function affine3d_to_2d(m) = assert(is_2d_transform(m)) [ for (r=[0:3]) if (r!=2) [ for (c=[0:3]) if (c!=2) m[r][c] ] ]; // Function: apply() // Usage: // pts = apply(transform, points); // Description: // Applies the specified transformation matrix to a point, pointlist, bezier patch or VNF. // Both inputs can be 2D or 3D, and it is also allowed to supply 3D transformations with 2D // data as long as the the only action on the z coordinate is a simple scaling. // Arguments: // transform = The 2D or 3D transformation matrix to apply to the point/points. // points = The point, pointlist, bezier patch, or VNF to apply the transformation to. // Example(3D): // path1 = path3d(circle(r=40)); // tmat = xrot(45); // path2 = apply(tmat, path1); // #stroke(path1,closed=true); // stroke(path2,closed=true); // Example(2D): // path1 = circle(r=40); // tmat = translate([10,5]); // path2 = apply(tmat, path1); // #stroke(path1,closed=true); // stroke(path2,closed=true); // Example(2D): // path1 = circle(r=40); // tmat = rot(30) * back(15) * scale([1.5,0.5,1]); // path2 = apply(tmat, path1); // #stroke(path1,closed=true); // stroke(path2,closed=true); function apply(transform,points) = points==[] ? [] : is_vector(points) ? /* Point */ apply(transform, [points])[0] : is_list(points) && len(points)==2 && is_path(points[0],3) && is_list(points[1]) && is_vector(points[1][0]) ? /* VNF */ [apply(transform, points[0]), points[1]] : is_list(points) && is_list(points[0]) && is_vector(points[0][0]) ? /* BezPatch */ [for (x=points) apply(transform,x)] : let( tdim = len(transform[0])-1, datadim = len(points[0]) ) tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] : tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] : tdim == 3 && datadim == 2 ? assert(is_2d_transform(transform), str("Transforms is 3d but points are 2d")) [for(p=points) point2d(transform*concat(p,[0,1]))] : assert(false, str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); // Function: rot_decode() // Usage: // info = rot_decode(rotation); // Returns: [angle,axis,cp,translation] // Description: // Given an input 3D rigid transformation operator (one composed of just rotations and translations) represented // as a 4x4 matrix, compute the rotation and translation parameters of the operator. Returns a list of the // four parameters, the angle, in the interval [0,180], the rotation axis as a unit vector, a centerpoint for // the rotation, and a translation. If you set `parms=rot_decode(rotation)` then the transformation can be // reconstructed from parms as `move(parms[3])*rot(a=parms[0],v=parms[1],cp=parms[2])`. This decomposition // makes it possible to perform interpolation. If you construct a transformation using `rot` the decoding // may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector, and // the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different // than the centerpoint you used to construct the transformation. // Example: // rot_decode(rot(45)); // Returns [45,[0,0,1], [0,0,0], [0,0,0]] // rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7]))); // Returns [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]] // rot_decode(left(12)*xrot(-33)); // Returns [33, [-1,0,0], [0,0,0], [-12,0,0]] // rot_decode(translate([3,4,5])); // Returns [0, [0,0,1], [0,0,0], [3,4,5]] function rot_decode(M) = assert(is_matrix(M,4,4) && approx(M[3],[0,0,0,1]), "Input matrix must be a 4x4 matrix representing a 3d transformation") let(R = submatrix(M,[0:2],[0:2])) assert(approx(det3(R),1) && approx(norm_fro(R * transpose(R)-ident(3)),0),"Input matrix is not a rotation") let( translation = [for(row=[0:2]) M[row][3]], // translation vector largest = max_index([R[0][0], R[1][1], R[2][2]]), axis_matrix = R + transpose(R) - (matrix_trace(R)-1)*ident(3), // Each row is on the rotational axis // Construct quaternion q = c * [x sin(theta/2), y sin(theta/2), z sin(theta/2), cos(theta/2)] q_im = axis_matrix[largest], q_re = R[(largest+2)%3][(largest+1)%3] - R[(largest+1)%3][(largest+2)%3], c_sin = norm(q_im), // c * sin(theta/2) for some c c_cos = abs(q_re) // c * cos(theta/2) ) approx(c_sin,0) ? [0,[0,0,1],[0,0,0],translation] : let( angle = 2*atan2(c_sin, c_cos), // This is supposed to be more accurate than acos or asin axis = (q_re>=0 ? 1:-1)*q_im/c_sin, tproj = translation - (translation*axis)*axis, // Translation perpendicular to axis determines centerpoint cp = (tproj + cross(axis,tproj)*c_cos/c_sin)/2 ) [angle, axis, cp, (translation*axis)*axis]; // Section: Affine2d 3x3 Transformation Matrices // Function: affine2d_identity() // Usage: // mat = affine2d_identify(); // Description: Create a 3x3 affine2d identity matrix. function affine2d_identity() = ident(3); // Function: affine2d_translate() // Usage: // mat = affine2d_translate(v); // Description: // Returns the 3x3 affine2d matrix to perform a 2D translation. // Arguments: // v = 2D Offset to translate by. [X,Y] function affine2d_translate(v=[0,0]) = assert(is_vector(v),2) [ [1, 0, v.x], [0, 1, v.y], [0 ,0, 1] ]; // Function: affine2d_scale() // Usage: // mat = affine2d_scale(v); // Description: // Returns the 3x3 affine2d matrix to perform a 2D scaling transformation. // Arguments: // v = 2D vector of scaling factors. [X,Y] function affine2d_scale(v=[1,1]) = assert(is_vector(v,2)) [ [v.x, 0, 0], [ 0, v.y, 0], [ 0, 0, 1] ]; // Function: affine2d_zrot() // Usage: // mat = affine2d_zrot(ang); // Description: // Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis. // Arguments: // ang = Number of degrees to rotate. function affine2d_zrot(ang=0) = assert(is_finite(ang)) [ [cos(ang), -sin(ang), 0], [sin(ang), cos(ang), 0], [ 0, 0, 1] ]; // Function: affine2d_mirror() // Usage: // mat = affine2d_mirror(v); // Description: // Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector. // Arguments: // v = The normal vector of the line to reflect across. function affine2d_mirror(v) = assert(is_vector(v,2)) let(v=unit(point2d(v)), a=v.x, b=v.y) [ [1-2*a*a, 0-2*a*b, 0], [0-2*a*b, 1-2*b*b, 0], [ 0, 0, 1] ]; // Function: affine2d_skew() // Usage: // mat = affine2d_skew(xa); // mat = affine2d_skew(ya=); // mat = affine2d_skew(xa, ya); // Description: // Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. Default: 0 // ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0 function affine2d_skew(xa=0, ya=0) = assert(is_finite(xa)) assert(is_finite(ya)) [ [1, tan(xa), 0], [tan(ya), 1, 0], [0, 0, 1] ]; // Section: Affine3d 4x4 Transformation Matrices // Function: affine3d_identity() // Usage: // mat = affine3d_identity(); // Description: Create a 4x4 affine3d identity matrix. function affine3d_identity() = ident(4); // Function: affine3d_translate() // Usage: // mat = affine3d_translate(v); // Description: // Returns the 4x4 affine3d matrix to perform a 3D translation. // Arguments: // v = 3D offset to translate by. [X,Y,Z] function affine3d_translate(v=[0,0,0]) = assert(is_list(v)) let( v = [for (i=[0:2]) default(v[i],0)] ) [ [1, 0, 0, v.x], [0, 1, 0, v.y], [0, 0, 1, v.z], [0 ,0, 0, 1] ]; // Function: affine3d_scale() // Usage: // mat = affine3d_scale(v); // Description: // Returns the 4x4 affine3d matrix to perform a 3D scaling transformation. // Arguments: // v = 3D vector of scaling factors. [X,Y,Z] function affine3d_scale(v=[1,1,1]) = assert(is_list(v)) let( v = [for (i=[0:2]) default(v[i],1)] ) [ [v.x, 0, 0, 0], [ 0, v.y, 0, 0], [ 0, 0, v.z, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_xrot() // Usage: // mat = affine3d_xrot(ang); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis. // Arguments: // ang = number of degrees to rotate. function affine3d_xrot(ang=0) = assert(is_finite(ang)) [ [1, 0, 0, 0], [0, cos(ang), -sin(ang), 0], [0, sin(ang), cos(ang), 0], [0, 0, 0, 1] ]; // Function: affine3d_yrot() // Usage: // mat = affine3d_yrot(ang); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis. // Arguments: // ang = Number of degrees to rotate. function affine3d_yrot(ang=0) = assert(is_finite(ang)) [ [ cos(ang), 0, sin(ang), 0], [ 0, 1, 0, 0], [-sin(ang), 0, cos(ang), 0], [ 0, 0, 0, 1] ]; // Function: affine3d_zrot() // Usage: // mat = affine3d_zrot(ang); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis. // Arguments: // ang = number of degrees to rotate. function affine3d_zrot(ang=0) = assert(is_finite(ang)) [ [cos(ang), -sin(ang), 0, 0], [sin(ang), cos(ang), 0, 0], [ 0, 0, 1, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_rot_by_axis() // Usage: // mat = affine3d_rot_by_axis(u, ang); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis. // Arguments: // u = 3D axis vector to rotate around. // ang = number of degrees to rotate. function affine3d_rot_by_axis(u=UP, ang=0) = assert(is_finite(ang)) assert(is_vector(u,3)) approx(ang,0)? affine3d_identity() : let( u = unit(u), c = cos(ang), c2 = 1-c, s = sin(ang) ) [ [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0], [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0], [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0], [ 0, 0, 0, 1] ]; // Function: affine3d_rot_from_to() // Usage: // mat = affine3d_rot_from_to(from, to); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another. // Arguments: // from = 3D axis vector to rotate from. // to = 3D axis vector to rotate to. function affine3d_rot_from_to(from, to) = assert(is_vector(from)) assert(is_vector(to)) assert(len(from)==len(to)) let( from = unit(point3d(from)), to = unit(point3d(to)) ) approx(from,to)? affine3d_identity() : let( u = vector_axis(from,to), ang = vector_angle(from,to), c = cos(ang), c2 = 1-c, s = sin(ang) ) [ [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0], [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0], [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0], [ 0, 0, 0, 1] ]; // Function: affine3d_frame_map() // Usage: // map = affine3d_frame_map(v1, v2, v3, ); // map = affine3d_frame_map(x=VECTOR1, y=VECTOR2, ); // map = affine3d_frame_map(x=VECTOR1, z=VECTOR2, ); // map = affine3d_frame_map(y=VECTOR1, z=VECTOR2, ); // Description: // Returns a transformation that maps one coordinate frame to another. You must specify two or // three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied. If you // give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand // coordinate system. If the vectors you give are orthogonal the result will be a rotation and the // `reverse` parameter will supply the inverse map, which enables you to map two arbitrary // coordinate systems to each other by using the canonical coordinate system as an intermediary. // You cannot use the `reverse` option with non-orthogonal inputs. // Arguments: // x = Destination 3D vector for x axis. // y = Destination 3D vector for y axis. // z = Destination 3D vector for z axis. // reverse = reverse direction of the map for orthogonal inputs. Default: false // Example: // T = affine3d_frame_map(x=[1,1,0], y=[-1,1,0]); // This map is just a rotation around the z axis // Example: // T = affine3d_frame_map(x=[1,0,0], y=[1,1,0]); // This map is not a rotation because x and y aren't orthogonal // Example: // // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1] // T = affine3d_frame_map(x=[0,1,1], y=[0,-1,1]) * affine3d_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true); function affine3d_frame_map(x,y,z, reverse=false) = assert(num_defined([x,y,z])>=2, "Must define at least two inputs") let( xvalid = is_undef(x) || (is_vector(x) && len(x)==3), yvalid = is_undef(y) || (is_vector(y) && len(y)==3), zvalid = is_undef(z) || (is_vector(z) && len(z)==3) ) assert(xvalid,"Input x must be a length 3 vector") assert(yvalid,"Input y must be a length 3 vector") assert(zvalid,"Input z must be a length 3 vector") let( x = is_undef(x)? undef : unit(x,RIGHT), y = is_undef(y)? undef : unit(y,BACK), z = is_undef(z)? undef : unit(z,UP), map = is_undef(x)? [cross(y,z), y, z] : is_undef(y)? [x, cross(z,x), z] : is_undef(z)? [x, y, cross(x,y)] : [x, y, z] ) reverse? ( let( ocheck = ( approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0) ) ) assert(ocheck, "Inputs must be orthogonal when reverse==true") [for (r=map) [for (c=r) c, 0], [0,0,0,1]] ) : [for (r=transpose(map)) [for (c=r) c, 0], [0,0,0,1]]; // Function: affine3d_mirror() // Usage: // mat = affine3d_mirror(v); // Description: // Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector. // Arguments: // v = The normal vector of the plane to reflect across. function affine3d_mirror(v) = assert(is_vector(v)) let( v=unit(point3d(v)), a=v.x, b=v.y, c=v.z ) [ [1-2*a*a, -2*a*b, -2*a*c, 0], [ -2*b*a, 1-2*b*b, -2*b*c, 0], [ -2*c*a, -2*c*b, 1-2*c*c, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_skew() // Usage: // mat = affine3d_skew(, , , , , ); // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation. // Arguments: // sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0 // sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0 // syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0 // syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0 // szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0 // szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0 function affine3d_skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) = [ [ 1, sxy, sxz, 0], [syx, 1, syz, 0], [szx, szy, 1, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_skew_xy() // Usage: // mat = affine3d_skew_xy(xa); // mat = affine3d_skew_xy(ya=); // mat = affine3d_skew_xy(xa, ya); // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. Default: 0 // ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0 function affine3d_skew_xy(xa=0, ya=0) = assert(is_finite(xa)) assert(is_finite(ya)) [ [1, 0, tan(xa), 0], [0, 1, tan(ya), 0], [0, 0, 1, 0], [0, 0, 0, 1] ]; // Function: affine3d_skew_xz() // Usage: // mat = affine3d_skew_xz(xa); // mat = affine3d_skew_xz(za=); // mat = affine3d_skew_xz(xa, za); // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. Default: 0 // za = Skew angle, in degrees, in the direction of the Z axis. Default: 0 function affine3d_skew_xz(xa=0, za=0) = assert(is_finite(xa)) assert(is_finite(za)) [ [1, tan(xa), 0, 0], [0, 1, 0, 0], [0, tan(za), 1, 0], [0, 0, 0, 1] ]; // Function: affine3d_skew_yz() // Usage: // mat = affine3d_skew_yz(ya); // mat = affine3d_skew_yz(za=); // mat = affine3d_skew_yz(ya, za); // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane. // Arguments: // ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0 // za = Skew angle, in degrees, in the direction of the Z axis. Default: 0 function affine3d_skew_yz(ya=0, za=0) = assert(is_finite(ya)) assert(is_finite(za)) [ [ 1, 0, 0, 0], [tan(ya), 1, 0, 0], [tan(za), 0, 1, 0], [ 0, 0, 0, 1] ]; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap