////////////////////////////////////////////////////////////////////// // LibFile: geometry.scad // Perform calculations on lines, polygons, planes and circles, including // normals, intersections of objects, distance between objects, and tangent lines. // Throughout this library, lines can be treated as either unbounded lines, as rays with // a single endpoint or as segments, bounded by endpoints at both ends. // Includes: // include ////////////////////////////////////////////////////////////////////// // Section: Lines, Rays, and Segments // Function: is_point_on_line() // Usage: // pt = is_point_on_line(point, line, [bounded], [eps]); // Topics: Geometry, Points, Segments // Description: // Determine if the point is on the line segment, ray or segment defined by the two between two points. // Returns true if yes, and false if not. If bounded is set to true it specifies a segment, with // both lines bounded at the ends. Set bounded to `[true,false]` to get a ray. You can use // the shorthands RAY and SEGMENT to set bounded. // Arguments: // point = The point to test. // line = Array of two points defining the line, ray, or segment to test against. // bounded = boolean or list of two booleans defining endpoint conditions for the line. If false treat the line as an unbounded line. If true treat it as a segment. If [true,false] treat as a ray, based at the first endpoint. Default: false // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function is_point_on_line(point, line, bounded=false, eps=EPSILON) = assert(is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert(is_vector(point), "Point must be a vector") assert(_valid_line(line, len(point),eps),"Given line is not valid") _is_point_on_line(point, line, bounded,eps); function _is_point_on_line(point, line, bounded=false, eps=EPSILON) = let( v1 = (line[1]-line[0]), v0 = (point-line[0]), t = v0*v1/(v1*v1), bounded = force_list(bounded,2) ) abs(cross(v0,v1))=-eps) && (!bounded[1] || t<1+eps) ; function xis_point_on_line(point, line, bounded=false, eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) point_line_distance(point, line, bounded)eps*max(norm(line[1]),norm(line[0])); //Internal function _valid_plane(p, eps=EPSILON) = is_vector(p,4) && ! approx(norm(p),0,eps); /// Internal Function: point_left_of_line2d() /// Usage: /// pt = point_left_of_line2d(point, line); /// Topics: Geometry, Points, Lines /// Description: /// Return >0 if point is left of the line defined by `line`. /// Return =0 if point is on the line. /// Return <0 if point is right of the line. /// Arguments: /// point = The point to check position of. /// line = Array of two points forming the line segment to test against. function _point_left_of_line2d(point, line) = assert( is_vector(point,2) && is_vector(line*point, 2), "Improper input." ) cross(line[0]-point, line[1]-line[0]); // Function: is_collinear() // Usage: // test = is_collinear(a, [b, c], [eps]); // Topics: Geometry, Points, Collinearity // Description: // Returns true if the points `a`, `b` and `c` are co-linear or if the list of points `a` is collinear. // Arguments: // a = First point or list of points. // b = Second point or undef; it should be undef if `c` is undef // c = Third point or undef. // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function is_collinear(a, b, c, eps=EPSILON) = assert( is_path([a,b,c],dim=undef) || ( is_undef(b) && is_undef(c) && is_path(a,dim=undef) ), "Input should be 3 points or a list of points with same dimension.") assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( points = is_def(c) ? [a,b,c]: a ) len(points)<3 ? true : noncollinear_triple(points,error=false,eps=eps) == []; // Function: point_line_distance() // Usage: // pt = point_line_distance(line, pt, bounded); // Topics: Geometry, Points, Lines, Distance // Description: // Finds the shortest distance from the point `pt` to the specified line, segment or ray. // The bounded parameter specifies the whether the endpoints give a ray or segment. // By default assumes an unbounded line. // Arguments: // line = A list of two points defining a line. // pt = A point to find the distance of from the line. // bounded = a boolean or list of two booleans specifiying whether each end is bounded. Default: false // Example: // dist1 = point_line_distance([3,8], [[-10,0], [10,0]]); // Returns: 8 // dist2 = point_line_distance([3,8], [[-10,0], [10,0]],SEGMENT); // Returns: 8 // dist3 = point_line_distance([14,3], [[-10,0], [10,0]],SEGMENT); // Returns: 5 function point_line_distance(pt, line, bounded=false) = assert(is_bool(bounded) || is_bool_list(bounded,2), "\"bounded\" is invalid") assert( _valid_line(line) && is_vector(pt,len(line[0])), "Invalid line, invalid point or incompatible dimensions." ) bounded == LINE ? _dist2line(pt-line[0],unit(line[1]-line[0])) : norm(pt-line_closest_point(line,pt,bounded)); // Function: segment_distance() // Usage: // dist = segment_distance(seg1, seg2, [eps]); // Topics: Geometry, Segments, Distance // See Also: convex_collision(), convex_distance() // Description: // Returns the closest distance of the two given line segments. // Arguments: // seg1 = The list of two points representing the first line segment to check the distance of. // seg2 = The list of two points representing the second line segment to check the distance of. // eps = tolerance for point comparisons // Example: // dist = segment_distance([[-14,3], [-15,9]], [[-10,0], [10,0]]); // Returns: 5 // dist2 = segment_distance([[-5,5], [5,-5]], [[-10,3], [10,-3]]); // Returns: 0 function segment_distance(seg1, seg2,eps=EPSILON) = assert( is_matrix(concat(seg1,seg2),4), "Inputs should be two valid segments." ) convex_distance(seg1,seg2,eps); // Function: line_normal() // Usage: // vec = line_normal([P1,P2]) // vec = line_normal(p1,p2) // Topics: Geometry, Lines // Description: // Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray. // Arguments: // p1 = First point on 2D line. // p2 = Second point on 2D line. // Example(2D): // p1 = [10,10]; // p2 = [50,30]; // n = line_normal(p1,p2); // stroke([p1,p2], endcap2="arrow2"); // color("green") stroke([p1,p1+10*n], endcap2="arrow2"); // color("blue") move_copies([p1,p2]) circle(d=2, $fn=12); function line_normal(p1,p2) = is_undef(p2) ? assert( len(p1)==2 && !is_undef(p1[1]) , "Invalid input." ) line_normal(p1[0],p1[1]) : assert( _valid_line([p1,p2],dim=2), "Invalid line." ) unit([p1.y-p2.y,p2.x-p1.x]); // 2D Line intersection from two segments. // This function returns [p,t,u] where p is the intersection point of // the lines defined by the two segments, t is the proportional distance // of the intersection point along s1, and u is the proportional distance // of the intersection point along s2. The proportional values run over // the range of 0 to 1 for each segment, so if it is in this range, then // the intersection lies on the segment. Otherwise it lies somewhere on // the extension of the segment. If lines are parallel or coincident then // it returns undef. // This kludge of calling path2d is because vnf_bend passed 3d input. FIXME! function _general_line_intersection(s1,s2,eps=EPSILON) = len(s1[0])==3 ? _general_line_intersection(path2d(s1), path2d(s2),eps) : let( denominator = cross(s1[0]-s1[1],s2[0]-s2[1]) ) approx(denominator,0,eps=eps) ? undef : let( t = cross(s1[0]-s2[0],s2[0]-s2[1]) / denominator, u = cross(s1[0]-s2[0],s1[0]-s1[1]) / denominator ) [s1[0]+t*(s1[1]-s1[0]), t, u]; // Function: line_intersection() // Usage: // pt = line_intersection(line1, line2, [bounded1], [bounded2], [bounded=], [eps=]); // Description: // Returns the intersection point of any two 2D lines, segments or rays. Returns undef // if they do not intersect. You specify a line by giving two distinct points on the // line. You specify rays or segments by giving a pair of points and indicating // bounded[0]=true to bound the line at the first point, creating rays based at l1[0] and l2[0], // or bounded[1]=true to bound the line at the second point, creating the reverse rays bounded // at l1[1] and l2[1]. If bounded=[true, true] then you have segments defined by their two // endpoints. By using bounded1 and bounded2 you can mix segments, rays, and lines as needed. // You can set the bounds parameters to true as a shorthand for [true,true] to sepcify segments. // Arguments: // line1 = List of two points in 2D defining the first line, segment or ray // line2 = List of two points in 2D defining the second line, segment or ray // bounded1 = boolean or list of two booleans defining which ends are bounded for line1. Default: [false,false] // bounded2 = boolean or list of two booleans defining which ends are bounded for line2. Default: [false,false] // --- // bounded = boolean or list of two booleans defining which ends are bounded for both lines. The bounded1 and bounded2 parameters override this if both are given. // eps = tolerance for geometric comparisons. Default: `EPSILON` (1e-9) // Example(2D): The segments do not intersect but the lines do in this example. // line1 = 10*[[9, 4], [5, 7]]; // line2 = 10*[[2, 3], [6, 5]]; // stroke(line1, endcaps="arrow2"); // stroke(line2, endcaps="arrow2"); // isect = line_intersection(line1, line2); // color("red") translate(isect) circle(r=1,$fn=12); // Example(2D): Specifying a ray and segment using the shorthand variables. // line1 = 10*[[0, 2], [4, 7]]; // line2 = 10*[[10, 4], [3, 4]]; // stroke(line1); // stroke(line2, endcap2="arrow2"); // isect = line_intersection(line1, line2, SEGMENT, RAY); // color("red") translate(isect) circle(r=1,$fn=12); // Example(2D): Here we use the same example as above, but specify two segments using the bounded argument. // line1 = 10*[[0, 2], [4, 7]]; // line2 = 10*[[10, 4], [3, 4]]; // stroke(line1); // stroke(line2); // isect = line_intersection(line1, line2, bounded=true); // Returns undef function line_intersection(line1, line2, bounded1, bounded2, bounded, eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(line1,dim=2,eps=eps), "First line invalid") assert( _valid_line(line2,dim=2,eps=eps), "Second line invalid") assert( is_undef(bounded) || is_bool(bounded) || is_bool_list(bounded,2), "Invalid value for \"bounded\"") assert( is_undef(bounded1) || is_bool(bounded1) || is_bool_list(bounded1,2), "Invalid value for \"bounded1\"") assert( is_undef(bounded2) || is_bool(bounded2) || is_bool_list(bounded2,2), "Invalid value for \"bounded2\"") let(isect = _general_line_intersection(line1,line2,eps=eps)) is_undef(isect) ? undef : let( bounded1 = force_list(first_defined([bounded1,bounded,false]),2), bounded2 = force_list(first_defined([bounded2,bounded,false]),2), good = (!bounded1[0] || isect[1]>=0-eps) && (!bounded1[1] || isect[1]<=1+eps) && (!bounded2[0] || isect[2]>=0-eps) && (!bounded2[1] || isect[2]<=1+eps) ) good ? isect[0] : undef; // Function: line_closest_point() // Usage: // pt = line_closest_point(line, pt, [bounded]); // Topics: Geometry, Lines, Distance // Description: // Returns the point on the given 2D or 3D line, segment or ray that is closest to the given point `pt`. // The inputs `line` and `pt` args should either both be 2D or both 3D. The parameter bounded indicates // whether the points of `line` should be treated as endpoints. // Arguments: // line = A list of two points that are on the unbounded line. // pt = The point to find the closest point on the line to. // bounded = boolean or list of two booleans indicating that the line is bounded at that end. Default: [false,false] // Example(2D): // line = [[-30,0],[30,30]]; // pt = [-32,-10]; // p2 = line_closest_point(line,pt); // stroke(line, endcaps="arrow2"); // color("blue") translate(pt) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12); // Example(2D): If the line is bounded on the left you get the endpoint instead // line = [[-30,0],[30,30]]; // pt = [-32,-10]; // p2 = line_closest_point(line,pt,bounded=[true,false]); // stroke(line, endcap2="arrow2"); // color("blue") translate(pt) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12); // Example(2D): In this case it doesn't matter how bounded is set. Using SEGMENT is the most restrictive option. // line = [[-30,0],[30,30]]; // pt = [-5,0]; // p2 = line_closest_point(line,pt,SEGMENT); // stroke(line); // color("blue") translate(pt) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12); // Example(2D): The result here is the same for a line or a ray. // line = [[-30,0],[30,30]]; // pt = [40,25]; // p2 = line_closest_point(line,pt,RAY); // stroke(line, endcap2="arrow2"); // color("blue") translate(pt) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12); // Example(2D): But with a segment we get a different result // line = [[-30,0],[30,30]]; // pt = [40,25]; // p2 = line_closest_point(line,pt,SEGMENT); // stroke(line); // color("blue") translate(pt) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12); // Example(2D): The shorthand RAY uses the first point as the base of the ray. But you can specify a reversed ray directly, and in this case the result is the same as the result above for the segment. // line = [[-30,0],[30,30]]; // pt = [40,25]; // p2 = line_closest_point(line,pt,[false,true]); // stroke(line,endcap1="arrow2"); // color("blue") translate(pt) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12); // Example(FlatSpin,VPD=200,VPT=[0,0,15]): A 3D example // line = [[-30,-15,0],[30,15,30]]; // pt = [5,5,5]; // p2 = line_closest_point(line,pt); // stroke(line, endcaps="arrow2"); // color("blue") translate(pt) sphere(r=1,$fn=12); // color("red") translate(p2) sphere(r=1,$fn=12); function line_closest_point(line, pt, bounded=false) = assert(_valid_line(line), "Invalid line") assert(is_vector(pt, len(line[0])), "Invalid point or incompatible dimensions.") assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid value for \"bounded\"") let( bounded = force_list(bounded,2) ) bounded==[false,false] ? let( n = unit( line[0]- line[1]) ) line[1] + ((pt- line[1]) * n) * n : bounded == [true,true] ? pt + _closest_s1([line[0]-pt, line[1]-pt])[0] : let( ray = bounded==[true,false] ? line : reverse(line), seglen = norm(ray[1]-ray[0]), segvec = (ray[1]-ray[0])/seglen, projection = (pt-ray[0]) * segvec ) projection<=0 ? ray[0] : ray[0] + projection*segvec; // Function: line_from_points() // Usage: // line = line_from_points(points, [fast], [eps]); // Topics: Geometry, Lines, Points // Description: // Given a list of 2 or more collinear points, returns a line containing them. // If `fast` is false and the points are coincident or non-collinear, then `undef` is returned. // if `fast` is true, then the collinearity test is skipped and a line passing through 2 distinct arbitrary points is returned. // Arguments: // points = The list of points to find the line through. // fast = If true, don't verify that all points are collinear. Default: false // eps = How much variance is allowed in testing each point against the line. Default: `EPSILON` (1e-9) function line_from_points(points, fast=false, eps=EPSILON) = assert( is_path(points), "Invalid point list." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( pb = furthest_point(points[0],points) ) norm(points[pb]-points[0])=0, "The tolerance should be a non-negative value." ) len(points)<=2 ? false : let( ip = noncollinear_triple(points,error=false,eps=eps) ) ip == [] ? false : let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]) ) _pointlist_greatest_distance(points,plane) < eps; // Function: plane3pt() // Usage: // plane = plane3pt(p1, p2, p3); // Topics: Geometry, Planes // Description: // Generates the normalized cartesian equation of a plane from three 3d points. // Returns [A,B,C,D] where Ax + By + Cz = D is the equation of a plane. // Returns undef, if the points are collinear. // Arguments: // p1 = The first point on the plane. // p2 = The second point on the plane. // p3 = The third point on the plane. function plane3pt(p1, p2, p3) = assert( is_path([p1,p2,p3],dim=3) && len(p1)==3, "Invalid points or incompatible dimensions." ) let( crx = cross(p3-p1, p2-p1), nrm = norm(crx) ) approx(nrm,0) ? undef : concat(crx, crx*p1)/nrm; // Function: plane3pt_indexed() // Usage: // plane = plane3pt_indexed(points, i1, i2, i3); // Topics: Geometry, Planes // Description: // Given a list of 3d points, and the indices of three of those points, // generates the normalized cartesian equation of a plane that those points all // lie on. If the points are not collinear, returns [A,B,C,D] where Ax+By+Cz=D is the equation of a plane. // If they are collinear, returns []. // Arguments: // points = A list of points. // i1 = The index into `points` of the first point on the plane. // i2 = The index into `points` of the second point on the plane. // i3 = The index into `points` of the third point on the plane. function plane3pt_indexed(points, i1, i2, i3) = assert( is_vector([i1,i2,i3]) && min(i1,i2,i3)>=0 && is_list(points) && max(i1,i2,i3)=0), "The tolerance should be a non-negative value." ) len(points) == 3 ? plane3pt(points[0],points[1],points[2]) : let( covmix = _covariance_evec_eval(points), pm = covmix[0], evec = covmix[1], eval0 = covmix[2], plane = [ each evec, pm*evec] ) !fast && _pointlist_greatest_distance(points,plane)>eps*eval0 ? undef : plane ; // Function: plane_from_polygon() // Usage: // plane = plane_from_polygon(points, [fast], [eps]); // Topics: Geometry, Planes, Polygons // See Also: plane_from_points() // Description: // Given a 3D planar polygon, returns the normalized cartesian equation of its plane. // Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1. // If not all the points in the polygon are coplanar, then [] is returned. // If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned. // if `fast` is true, then the coplanarity test is skipped and a plane passing through 3 non-collinear arbitrary points is returned. // Arguments: // poly = The planar 3D polygon to find the plane of. // fast = If true, doesn't verify that all points in the polygon are coplanar. Default: false // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // Example(3D): // xyzpath = rot(45, v=[0,1,0], p=path3d(star(n=5,step=2,d=100), 70)); // plane = plane_from_polygon(xyzpath); // #stroke(xyzpath,closed=true,width=3); // cp = centroid(xyzpath); // move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow(45); function plane_from_polygon(poly, fast=false, eps=EPSILON) = assert( is_path(poly,dim=3), "Invalid polygon." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( poly_normal = polygon_normal(poly) ) is_undef(poly_normal) ? undef : let( plane = plane_from_normal(poly_normal, poly[0]) ) fast? plane: are_points_on_plane(poly, plane, eps=eps)? plane: undef; // Function: plane_normal() // Usage: // vec = plane_normal(plane); // Topics: Geometry, Planes // Description: // Returns the unit length normal vector for the given plane. // Arguments: // plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. function plane_normal(plane) = assert( _valid_plane(plane), "Invalid input plane." ) unit([plane.x, plane.y, plane.z]); // Function: plane_offset() // Usage: // d = plane_offset(plane); // Topics: Geometry, Planes // Description: // Returns coeficient D of the normalized plane equation `Ax+By+Cz=D`, or the scalar offset of the plane from the origin. // This value may be negative. // The absolute value of this coefficient is the distance of the plane from the origin. // Arguments: // plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. function plane_offset(plane) = assert( _valid_plane(plane), "Invalid input plane." ) plane[3]/norm([plane.x, plane.y, plane.z]); // Returns [POINT, U] if line intersects plane at one point, where U is zero at line[0] and 1 at line[1] // Returns [LINE, undef] if the line is on the plane. // Returns undef if line is parallel to, but not on the given plane. function _general_plane_line_intersection(plane, line, eps=EPSILON) = let( a = plane*[each line[0],-1], // evaluation of the plane expression at line[0] b = plane*[each(line[1]-line[0]),0] // difference between the plane expression evaluation at line[1] and at line[0] ) approx(b,0,eps) // is (line[1]-line[0]) "parallel" to the plane ? ? approx(a,0,eps) // is line[0] on the plane ? ? [line,undef] // line is on the plane : undef // line is parallel but not on the plane : [ line[0]-a/b*(line[1]-line[0]), -a/b ]; /// Internal Function: normalize_plane() // Usage: // nplane = normalize_plane(plane); /// Topics: Geometry, Planes // Description: // Returns a new representation [A,B,C,D] of `plane` where norm([A,B,C]) is equal to one. function _normalize_plane(plane) = assert( _valid_plane(plane), str("Invalid plane. ",plane ) ) plane/norm(point3d(plane)); // Function: plane_line_intersection() // Usage: // pt = plane_line_intersection(plane, line, [bounded], [eps]); // Topics: Geometry, Planes, Lines, Intersection // Description: // Takes a line, and a plane [A,B,C,D] where the equation of that plane is `Ax+By+Cz=D`. // If `line` intersects `plane` at one point, then that intersection point is returned. // If `line` lies on `plane`, then the original given `line` is returned. // If `line` is parallel to, but not on `plane`, then undef is returned. // Arguments: // plane = The [A,B,C,D] values for the equation of the plane. // line = A list of two distinct 3D points that are on the line. // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert(_valid_plane(plane,eps=eps) && _valid_line(line,dim=3,eps=eps), "Invalid plane and/or 3d line.") assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition.") let( bounded = is_list(bounded)? bounded : [bounded, bounded], res = _general_plane_line_intersection(plane, line, eps=eps) ) is_undef(res) ? undef : is_undef(res[1]) ? res[0] : bounded[0] && res[1]<0 ? undef : bounded[1] && res[1]>1 ? undef : res[0]; // Function: polygon_line_intersection() // Usage: // pt = polygon_line_intersection(poly, line, [bounded], [nonzero], [eps]); // Topics: Geometry, Polygons, Lines, Intersection // Description: // Takes a possibly bounded line, and a 2D or 3D planar polygon, and finds their intersection. // If the line does not intersect the polygon then `undef` returns `undef`. // In 3D if the line is not on the plane of the polygon but intersects it then you get a single intersection point. // Otherwise the polygon and line are in the same plane, or when your input is 2D, ou will get a list of segments and // single point lists. Use `is_vector` to distinguish these two cases. // . // In the 2D case, when single points are in the intersection they appear on the segment list as lists of a single point // (like single point segments) so a single point intersection in 2D has the form `[[[x,y,z]]]` as compared // to a single point intersection in 3D which has the form `[x,y,z]`. You can identify whether an entry in the // segment list is a true segment by checking its length, which will be 2 for a segment and 1 for a point. // Arguments: // poly = The 3D planar polygon to find the intersection with. // line = A list of two distinct 3D points on the line. // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) // nonzero = set to true to use the nonzero rule for determining it points are in a polygon. See point_in_polygon. Default: false. // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // Example(3D): The line intersects the 3d hexagon in a single point. // hex = zrot(140,p=rot([-45,40,20],p=path3d(hexagon(r=15)))); // line = [[5,0,-13],[-3,-5,13]]; // isect = polygon_line_intersection(hex,line); // stroke(hex,closed=true); // stroke(line); // color("red")move(isect)sphere(r=1,$fn=12); // Example(2D): In 2D things are more complicated. The output is a list of intersection parts, in the simplest case a single segment. // hex = hexagon(r=15); // line = [[-20,10],[25,-7]]; // isect = polygon_line_intersection(hex,line); // stroke(hex,closed=true); // stroke(line,endcaps="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) sphere(r=1); // else // stroke(part); // Example(2D): Here the line is treated as a ray. // hex = hexagon(r=15); // line = [[0,0],[25,-7]]; // isect = polygon_line_intersection(hex,line,RAY); // stroke(hex,closed=true); // stroke(line,endcap2="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); // Example(2D): Here the intersection is a single point, which is returned as a single point "path" on the path list. // hex = hexagon(r=15); // line = [[15,-10],[15,13]]; // isect = polygon_line_intersection(hex,line,RAY); // stroke(hex,closed=true); // stroke(line,endcap2="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); // Example(2D): Another way to get a single segment // hex = hexagon(r=15); // line = rot(30,p=[[15,-10],[15,25]],cp=[15,0]); // isect = polygon_line_intersection(hex,line,RAY); // stroke(hex,closed=true); // stroke(line,endcap2="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); // Example(2D): Single segment again // star = star(r=15,n=8,step=2); // line = [[20,-5],[-5,20]]; // isect = polygon_line_intersection(star,line,RAY); // stroke(star,closed=true); // stroke(line,endcap2="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); // Example(2D): Solution is two points // star = star(r=15,n=8,step=3); // line = rot(22.5,p=[[15,-10],[15,20]],cp=[15,0]); // isect = polygon_line_intersection(star,line,SEGMENT); // stroke(star,closed=true); // stroke(line); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); // Example(2D): Solution is list of three segments // star = star(r=25,ir=9,n=8); // line = [[-25,12],[25,12]]; // isect = polygon_line_intersection(star,line); // stroke(star,closed=true); // stroke(line,endcaps="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); // Example(2D): Solution is a mixture of segments and points // star = star(r=25,ir=9,n=7); // line = [left(10,p=star[8]), right(50,p=star[8])]; // isect = polygon_line_intersection(star,line); // stroke(star,closed=true); // stroke(line,endcaps="arrow2"); // color("red") // for(part=isect) // if(len(part)==1) // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); function polygon_line_intersection(poly, line, bounded=false, nonzero=false, eps=EPSILON) = assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert(is_path(poly,dim=[2,3]), "Invalid polygon." ) assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition.") assert(_valid_line(line,dim=len(poly[0]),eps=eps), "Line invalid or does not match polygon dimension." ) let( bounded = force_list(bounded,2), poly = deduplicate(poly) ) len(poly[0])==2 ? // planar case let( linevec = unit(line[1] - line[0]), bound = 100*max(v_abs(flatten(pointlist_bounds(poly)))), boundedline = [line[0] + (bounded[0]? 0 : -bound) * linevec, line[1] + (bounded[1]? 0 : bound) * linevec], parts = split_region_at_region_crossings(boundedline, [poly], closed1=false)[0][0], inside = [ if(point_in_polygon(parts[0][0], poly, nonzero=nonzero, eps=eps) == 0) [parts[0][0]], // Add starting point if it is on the polygon for(part = parts) if (point_in_polygon(mean(part), poly, nonzero=nonzero, eps=eps) >=0 ) part else if(len(part)==2 && point_in_polygon(part[1], poly, nonzero=nonzero, eps=eps) == 0) [part[1]] // Add segment end if it is on the polygon ] ) (len(inside)==0 ? undef : _merge_segments(inside, [inside[0]], eps)) : // 3d case let(indices = noncollinear_triple(poly)) indices==[] ? undef : // Polygon is collinear let( plane = plane3pt(poly[indices[0]], poly[indices[1]], poly[indices[2]]), plane_isect = plane_line_intersection(plane, line, bounded, eps) ) is_undef(plane_isect) ? undef : is_vector(plane_isect,3) ? let( poly2d = project_plane(plane,poly), pt2d = project_plane(plane, plane_isect) ) (point_in_polygon(pt2d, poly2d, nonzero=nonzero, eps=eps) < 0 ? undef : plane_isect) : // Case where line is on the polygon plane let( poly2d = project_plane(plane, poly), line2d = project_plane(plane, line), segments = polygon_line_intersection(poly2d, line2d, bounded=bounded, nonzero=nonzero, eps=eps) ) segments==undef ? undef : [for(seg=segments) len(seg)==2 ? lift_plane(plane,seg) : [lift_plane(plane,seg[0])]]; function _merge_segments(insegs,outsegs, eps, i=1) = i==len(insegs) ? outsegs : approx(last(last(outsegs)), insegs[i][0], eps) ? _merge_segments(insegs, [each list_head(outsegs),[last(outsegs)[0],last(insegs[i])]], eps, i+1) : _merge_segments(insegs, [each outsegs, insegs[i]], eps, i+1); // Function: plane_intersection() // Usage: // line = plane_intersection(plane1, plane2) // pt = plane_intersection(plane1, plane2, plane3) // Topics: Geometry, Planes, Intersection // Description: // Compute the point which is the intersection of the three planes, or the line intersection of two planes. // If you give three planes the intersection is returned as a point. If you give two planes the intersection // is returned as a list of two points on the line of intersection. If any two input planes are parallel // or coincident then returns undef. // Arguments: // plane1 = The [A,B,C,D] coefficients for the first plane equation `Ax+By+Cz=D`. // plane2 = The [A,B,C,D] coefficients for the second plane equation `Ax+By+Cz=D`. // plane3 = The [A,B,C,D] coefficients for the third plane equation `Ax+By+Cz=D`. function plane_intersection(plane1,plane2,plane3) = assert( _valid_plane(plane1) && _valid_plane(plane2) && (is_undef(plane3) ||_valid_plane(plane3)), "The input must be 2 or 3 planes." ) is_def(plane3) ? let( matrix = [for(p=[plane1,plane2,plane3]) point3d(p)], rhs = [for(p=[plane1,plane2,plane3]) p[3]] ) linear_solve(matrix,rhs) : let( normal = cross(plane_normal(plane1), plane_normal(plane2)) ) approx(norm(normal),0) ? undef : let( matrix = [for(p=[plane1,plane2]) point3d(p)], rhs = [plane1[3], plane2[3]], point = linear_solve(matrix,rhs) ) point==[]? undef: [point, point+normal]; // Function: plane_line_angle() // Usage: // angle = plane_line_angle(plane,line); // Topics: Geometry, Planes, Lines, Angle // Description: // Compute the angle between a plane [A, B, C, D] and a 3d line, specified as a pair of 3d points [p1,p2]. // The resulting angle is signed, with the sign positive if the vector p2-p1 lies above the plane, on // the same side of the plane as the plane's normal vector. function plane_line_angle(plane, line) = assert( _valid_plane(plane), "Invalid plane." ) assert( _valid_line(line,dim=3), "Invalid 3d line." ) let( linedir = unit(line[1]-line[0]), normal = plane_normal(plane), sin_angle = linedir*normal, cos_angle = norm(cross(linedir,normal)) ) atan2(sin_angle,cos_angle); // Function: plane_closest_point() // Usage: // pts = plane_closest_point(plane, points); // Topics: Geometry, Planes, Projection // Description: // Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or // 3d points, return the closest 3D orthogonal projection of the points on the plane. // In other words, for every point given, returns the closest point to it on the plane. // Arguments: // plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. // points = List of points to project // Example(FlatSpin,VPD=500,VPT=[2,20,10]): // points = move([10,20,30], p=yrot(25, p=path3d(circle(d=100, $fn=36)))); // plane = plane_from_normal([1,0,1]); // proj = plane_closest_point(plane,points); // color("red") move_copies(points) sphere(d=4,$fn=12); // color("blue") move_copies(proj) sphere(d=4,$fn=12); // move(centroid(proj)) { // rot(from=UP,to=plane_normal(plane)) { // anchor_arrow(50); // %cube([120,150,0.1],center=true); // } // } function plane_closest_point(plane, points) = is_vector(points,3) ? plane_closest_point(plane,[points])[0] : assert( _valid_plane(plane), "Invalid plane." ) assert( is_matrix(points,undef,3), "Must supply 3D points.") let( plane = _normalize_plane(plane), n = point3d(plane) ) [for(pi=points) pi - (pi*n - plane[3])*n]; // Function: point_plane_distance() // Usage: // dist = point_plane_distance(plane, point) // Topics: Geometry, Planes, Distance // Description: // Given a plane as [A,B,C,D] where the cartesian equation for that plane // is Ax+By+Cz=D, determines how far from that plane the given point is. // The returned distance will be positive if the point is above the // plane, meaning on the side where the plane normal points. // If the point is below the plane, then the distance returned // will be negative. The normal of the plane is [A,B,C]. // Arguments: // plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. // point = The distance evaluation point. function point_plane_distance(plane, point) = assert( _valid_plane(plane), "Invalid input plane." ) assert( is_vector(point,3), "The point should be a 3D point." ) let( plane = _normalize_plane(plane) ) point3d(plane)* point - plane[3]; // the maximum distance from points to the plane function _pointlist_greatest_distance(points,plane) = let( normal = [plane[0],plane[1],plane[2]], pt_nrm = points*normal ) max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3]) / norm(normal); // Function: are_points_on_plane() // Usage: // test = are_points_on_plane(points, plane, [eps]); // Topics: Geometry, Planes, Points // Description: // Returns true if the given 3D points are on the given plane. // Arguments: // plane = The plane to test the points on. // points = The list of 3D points to test. // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function are_points_on_plane(points, plane, eps=EPSILON) = assert( _valid_plane(plane), "Invalid plane." ) assert( is_matrix(points,undef,3) && len(points)>0, "Invalid pointlist." ) // using is_matrix it accepts len(points)==1 assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) _pointlist_greatest_distance(points,plane) < eps; /// Internal Function: is_point_above_plane() /// Usage: /// test = _is_point_above_plane(plane, point); /// Topics: Geometry, Planes // Description: /// Given a plane as [A,B,C,D] where the cartesian equation for that plane /// is Ax+By+Cz=D, determines if the given 3D point is on the side of that /// plane that the normal points towards. The normal of the plane is the /// same as [A,B,C]. /// Arguments: /// plane = The [A,B,C,D] coefficients for the first plane equation `Ax+By+Cz=D`. /// point = The 3D point to test. function _is_point_above_plane(plane, point) = point_plane_distance(plane, point) > EPSILON; // Section: Circle Calculations // Function: circle_line_intersection() // Usage: // isect = circle_line_intersection(c,,[line],[bounded],[eps]); // Topics: Geometry, Circles, Lines, Intersection // Description: // Find intersection points between a 2d circle and a line, ray or segment specified by two points. // By default the line is unbounded. // Arguments: // c = center of circle // r = radius of circle // --- // d = diameter of circle // line = two points defining the unbounded line // bounded = false for unbounded line, true for a segment, or a vector [false,true] or [true,false] to specify a ray with the first or second end unbounded. Default: false // eps = epsilon used for identifying the case with one solution. Default: 1e-9 function circle_line_intersection(c,r,d,line,bounded=false,eps=EPSILON) = let(r=get_radius(r=r,d=d,dflt=undef)) assert(_valid_line(line,2), "Invalid 2d line.") assert(is_vector(c,2), "Circle center must be a 2-vector") assert(is_num(r) && r>0, "Radius must be positive") assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition") let( bounded = force_list(bounded,2), closest = line_closest_point(line,c), d = norm(closest-c) ) d > r ? [] : let( isect = approx(d,r,eps) ? [closest] : let( offset = sqrt(r*r-d*d), uvec=unit(line[1]-line[0]) ) [closest-offset*uvec, closest+offset*uvec] ) [for(p=isect) if ((!bounded[0] || (p-line[0])*(line[1]-line[0])>=0) && (!bounded[1] || (p-line[1])*(line[0]-line[1])>=0)) p]; // Function&Module: circle_2tangents() // Usage: As Function // circ = circle_2tangents(pt1, pt2, pt3, r|d, [tangents]); // Topics: Geometry, Circles, Tangents // Usage: As Module // circle_2tangents(pt1, pt2, pt3, r|d, [h], [center]); // Description: // Given a pair of rays with a common origin, and a known circle radius/diameter, finds // the centerpoint for the circle of that size that touches both rays tangentally. // Both rays start at `pt2`, one passing through `pt1`, and the other through `pt3`. // . // When called as a module with an `h` height argument, creates a 3D cylinder of `h` // length at the found centerpoint, aligned with the found normal. // . // When called as a module with 2D data and no `h` argument, creates a 2D circle of // the given radius/diameter, tangentially touching both rays. // . // When called as a function with collinear rays, returns `undef`. // Otherwise, when called as a function with `tangents=false`, returns `[CP,NORMAL]`. // Otherwise, when called as a function with `tangents=true`, returns `[CP,NORMAL,TANPT1,TANPT2,ANG1,ANG2]`. // - CP is the centerpoint of the circle. // - NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D). // - TANPT1 is the point where the circle is tangent to the ray `[pt2,pt1]`. // - TANPT2 is the point where the circle is tangent to the ray `[pt2,pt3]`. // - ANG1 is the angle from the ray `[CP,pt2]` to the ray `[CP,TANPT1]` // - ANG2 is the angle from the ray `[CP,pt2]` to the ray `[CP,TANPT2]` // Arguments: // pt1 = A point that the first ray passes though. // pt2 = The starting point of both rays. // pt3 = A point that the second ray passes though. // r = The radius of the circle to find. // d = The diameter of the circle to find. // h = Height of the cylinder to create, when called as a module. // center = When called as a module, center the cylinder if true, Default: false // tangents = If true, extended information about the tangent points is calculated and returned. Default: false // Example(2D): // pts = [[60,40], [10,10], [65,5]]; // rad = 10; // stroke([pts[1],pts[0]], endcap2="arrow2"); // stroke([pts[1],pts[2]], endcap2="arrow2"); // circ = circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad); // translate(circ[0]) { // color("green") { // stroke(circle(r=rad),closed=true); // stroke([[0,0],rad*[cos(315),sin(315)]]); // } // } // move_copies(pts) color("blue") circle(d=2, $fn=12); // translate(circ[0]) color("red") circle(d=2, $fn=12); // labels = [[pts[0], "pt1"], [pts[1],"pt2"], [pts[2],"pt3"], [circ[0], "CP"], [circ[0]+[cos(315),sin(315)]*rad*0.7, "r"]]; // for(l=labels) translate(l[0]+[0,2]) color("black") text(text=l[1], size=2.5, halign="center"); // Example(2D): // pts = [[-5,25], [5,-25], [45,15]]; // rad = 12; // color("blue") stroke(pts, width=0.75, endcaps="arrow2"); // circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad); // Example: Non-centered Cylinder // pts = [[45,15,10], [5,-25,5], [-5,25,20]]; // rad = 12; // color("blue") stroke(pts, width=0.75, endcaps="arrow2"); // circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad, h=10, center=false); // Example: Non-centered Cylinder // pts = [[45,15,10], [5,-25,5], [-5,25,20]]; // rad = 12; // color("blue") stroke(pts, width=0.75, endcaps="arrow2"); // circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad, h=10, center=true); function circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) = let(r = get_radius(r=r, d=d, dflt=undef)) assert(r!=undef, "Must specify either r or d.") assert( ( is_path(pt1) && len(pt1)==3 && is_undef(pt2) && is_undef(pt3)) || (is_matrix([pt1,pt2,pt3]) && (len(pt1)==2 || len(pt1)==3) ), "Invalid input points." ) is_undef(pt2) ? circle_2tangents(pt1[0], pt1[1], pt1[2], r=r, tangents=tangents) : is_collinear(pt1, pt2, pt3)? undef : let( v1 = unit(pt1 - pt2), v2 = unit(pt3 - pt2), vmid = unit(mean([v1, v2])), n = vector_axis(v1, v2), a = vector_angle(v1, v2), hyp = r / sin(a/2), cp = pt2 + hyp * vmid ) !tangents ? [cp, n] : let( x = hyp * cos(a/2), tp1 = pt2 + x * v1, tp2 = pt2 + x * v2, dang1 = vector_angle(tp1-cp,pt2-cp), dang2 = vector_angle(tp2-cp,pt2-cp) ) [cp, n, tp1, tp2, dang1, dang2]; module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) { c = circle_2tangents(pt1=pt1, pt2=pt2, pt3=pt3, r=r, d=d); assert(!is_undef(c), "Cannot find circle when both rays are collinear."); cp = c[0]; n = c[1]; if (approx(point3d(cp).z,0) && approx(point2d(n),[0,0]) && is_undef(h)) { translate(cp) circle(r=r, d=d); } else { assert(is_finite(h), "h argument required when result is not flat on the XY plane."); translate(cp) { rot(from=UP, to=n) { cylinder(r=r, d=d, h=h, center=center); } } } } // Function&Module: circle_3points() // Usage: As Function // circ = circle_3points(pt1, pt2, pt3); // circ = circle_3points([pt1, pt2, pt3]); // Topics: Geometry, Circles // Usage: As Module // circle_3points(pt1, pt2, pt3, [h], [center]); // circle_3points([pt1, pt2, pt3], [h], [center]); // Description: // Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear // points where NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D). // The centerpoint will be a 2D or 3D vector, depending on the points input. If all three // points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]). // If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are // collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D // vector with a non-negative Z axis. // Instead of 3 arguments, it is acceptable to input the 3 points in a list `pt1`, leaving `pt2`and `pt3` as undef. // Arguments: // pt1 = The first point. // pt2 = The second point. // pt3 = The third point. // h = Height of the cylinder to create, when called as a module. // center = When called as a module, center the cylinder if true, Default: false // Example(2D): // pts = [[60,40], [10,10], [65,5]]; // circ = circle_3points(pts[0], pts[1], pts[2]); // translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72); // translate(circ[0]) color("red") circle(d=3, $fn=12); // move_copies(pts) color("blue") circle(d=3, $fn=12); // Example(2D): // pts = [[30,40], [10,20], [55,30]]; // circle_3points(pts[0], pts[1], pts[2]); // move_copies(pts) color("blue") circle(d=3, $fn=12); // Example: Non-Centered Cylinder // pts = [[30,15,30], [10,20,15], [55,25,25]]; // circle_3points(pts[0], pts[1], pts[2], h=10, center=false); // move_copies(pts) color("cyan") sphere(d=3, $fn=12); // Example: Centered Cylinder // pts = [[30,15,30], [10,20,15], [55,25,25]]; // circle_3points(pts[0], pts[1], pts[2], h=10, center=true); // move_copies(pts) color("cyan") sphere(d=3, $fn=12); function circle_3points(pt1, pt2, pt3) = (is_undef(pt2) && is_undef(pt3) && is_list(pt1)) ? circle_3points(pt1[0], pt1[1], pt1[2]) : assert( is_vector(pt1) && is_vector(pt2) && is_vector(pt3) && max(len(pt1),len(pt2),len(pt3))<=3 && min(len(pt1),len(pt2),len(pt3))>=2, "Invalid point(s)." ) is_collinear(pt1,pt2,pt3)? [undef,undef,undef] : let( v = [ point3d(pt1), point3d(pt2), point3d(pt3) ], // triangle vertices ed = [for(i=[0:2]) v[(i+1)%3]-v[i] ], // triangle edge vectors pm = [for(i=[0:2]) v[(i+1)%3]+v[i] ]/2, // edge mean points es = sortidx( [for(di=ed) norm(di) ] ), e1 = ed[es[1]], // take the 2 longest edges e2 = ed[es[2]], n0 = vector_axis(e1,e2), // normal standardization n = n0.z<0? -n0 : n0, sc = plane_intersection( [ each e1, e1*pm[es[1]] ], // planes orthogonal to 2 edges [ each e2, e2*pm[es[2]] ], [ each n, n*v[0] ] ), // triangle plane cp = len(pt1)+len(pt2)+len(pt3)>6 ? sc : [sc.x, sc.y], r = norm(sc-v[0]) ) [ cp, r, n ]; module circle_3points(pt1, pt2, pt3, h, center=false) { c = circle_3points(pt1, pt2, pt3); assert(!is_undef(c[0]), "Points cannot be collinear."); cp = c[0]; r = c[1]; n = c[2]; if (approx(point3d(cp).z,0) && approx(point2d(n),[0,0]) && is_undef(h)) { translate(cp) circle(r=r); } else { assert(is_finite(h)); translate(cp) rot(from=UP,to=n) cylinder(r=r, h=h, center=center); } } // Function: circle_point_tangents() // Usage: // tangents = circle_point_tangents(r|d, cp, pt); // Topics: Geometry, Circles, Tangents // Description: // Given a 2d circle and a 2d point outside that circle, finds the 2d tangent point(s) on the circle for a // line passing through the point. Returns a list of zero or more 2D tangent points. // Arguments: // r = Radius of the circle. // d = Diameter of the circle. // cp = The coordinates of the 2d circle centerpoint. // pt = The coordinates of the 2d external point. // Example(3D): // cp = [-10,-10]; r = 30; pt = [30,10]; // tanpts = circle_point_tangents(r=r, cp=cp, pt=pt); // color("yellow") translate(cp) circle(r=r); // color("cyan") for(tp=tanpts) {stroke([tp,pt]); stroke([tp,cp]);} // color("red") move_copies(tanpts) circle(d=3,$fn=12); // color("blue") move_copies([cp,pt]) circle(d=3,$fn=12); function circle_point_tangents(r, d, cp, pt) = assert(is_finite(r) || is_finite(d), "Invalid radius or diameter." ) assert(is_path([cp, pt],dim=2), "Invalid center point or external point.") let( r = get_radius(r=r, d=d, dflt=1), delta = pt - cp, dist = norm(delta), baseang = atan2(delta.y,delta.x) ) dist < r? [] : approx(dist,r)? [pt] : let( relang = acos(r/dist), angs = [baseang + relang, baseang - relang] ) [for (ang=angs) cp + r*[cos(ang),sin(ang)]]; // Function: circle_circle_tangents() // Usage: // segs = circle_circle_tangents(c1, r1|d1, c2, r2|d2); // Topics: Geometry, Circles, Tangents // Description: // Computes 2d lines tangents to a pair of circles in 2d. Returns a list of line endpoints [p1,p2] where // p2 is the tangent point on circle 1 and p2 is the tangent point on circle 2. // If four tangents exist then the first one the left hand exterior tangent as regarded looking from // circle 1 toward circle 2. The second value is the right hand exterior tangent. The third entry // gives the interior tangent that starts on the left of circle 1 and crosses to the right side of // circle 2. And the fourth entry is the last interior tangent that starts on the right side of // circle 1. If the circles intersect then the interior tangents don't exist and the function // returns only two entries. If one circle is inside the other one then no tangents exist // so the function returns the empty set. When the circles are tangent a degenerate tangent line // passes through the point of tangency of the two circles: this degenerate line is NOT returned. // Arguments: // c1 = Center of the first circle. // r1 = Radius of the first circle. // c2 = Center of the second circle. // r2 = Radius of the second circle. // d1 = Diameter of the first circle. // d2 = Diameter of the second circle. // Example(2D,NoAxes): Four tangents, first in green, second in black, third in blue, last in red. // $fn=32; // c1 = [3,4]; r1 = 2; // c2 = [7,10]; r2 = 3; // pts = circle_circle_tangents(c1,r1,c2,r2); // move(c1) stroke(circle(r=r1), width=0.2, closed=true); // move(c2) stroke(circle(r=r2), width=0.2, closed=true); // colors = ["green","black","blue","red"]; // for(i=[0:len(pts)-1]) color(colors[i]) stroke(pts[i],width=0.2); // Example(2D,NoAxes): Circles overlap so only exterior tangents exist. // $fn=32; // c1 = [4,4]; r1 = 3; // c2 = [7,7]; r2 = 2; // pts = circle_circle_tangents(c1,r1,c2,r2); // move(c1) stroke(circle(r=r1), width=0.2, closed=true); // move(c2) stroke(circle(r=r2), width=0.2, closed=true); // colors = ["green","black","blue","red"]; // for(i=[0:len(pts)-1]) color(colors[i]) stroke(pts[i],width=0.2); // Example(2D,NoAxes): Circles are tangent. Only exterior tangents are returned. The degenerate internal tangent is not returned. // $fn=32; // c1 = [4,4]; r1 = 4; // c2 = [4,10]; r2 = 2; // pts = circle_circle_tangents(c1,r1,c2,r2); // move(c1) stroke(circle(r=r1), width=0.2, closed=true); // move(c2) stroke(circle(r=r2), width=0.2, closed=true); // colors = ["green","black","blue","red"]; // for(i=[0:1:len(pts)-1]) color(colors[i]) stroke(pts[i],width=0.2); // Example(2D,NoAxes): One circle is inside the other: no tangents exist. If the interior circle is tangent the single degenerate tangent will not be returned. // $fn=32; // c1 = [4,4]; r1 = 4; // c2 = [5,5]; r2 = 2; // pts = circle_circle_tangents(c1,r1,c2,r2); // move(c1) stroke(circle(r=r1), width=0.2, closed=true); // move(c2) stroke(circle(r=r2), width=0.2, closed=true); // echo(pts); // Returns [] function circle_circle_tangents(c1,r1,c2,r2,d1,d2) = assert( is_path([c1,c2],dim=2), "Invalid center point(s)." ) let( r1 = get_radius(r1=r1,d1=d1), r2 = get_radius(r1=r2,d1=d2), Rvals = [r2-r1, r2-r1, -r2-r1, -r2-r1]/norm(c1-c2), kvals = [-1,1,-1,1], ext = [1,1,-1,-1], N = 1-sqr(Rvals[2])>=0 ? 4 : 1-sqr(Rvals[0])>=0 ? 2 : 0, coef= [ for(i=[0:1:N-1]) [ [Rvals[i], -kvals[i]*sqrt(1-sqr(Rvals[i]))], [kvals[i]*sqrt(1-sqr(Rvals[i])), Rvals[i]] ] * unit(c2-c1) ] ) [ for(i=[0:1:N-1]) let( pt = [ c1-r1*coef[i], c2-ext[i]*r2*coef[i] ] ) if (pt[0]!=pt[1]) pt ]; // Section: Pointlists // Function: noncollinear_triple() // Usage: // test = noncollinear_triple(points); // Topics: Geometry, Noncollinearity // Description: // Finds the indices of three non-collinear points from the pointlist `points`. // It selects two well separated points to define a line and chooses the third point // to be the point farthest off the line. The points do not necessarily having the // same winding direction as the polygon so they cannot be used to determine the // winding direction or the direction of the normal. // If all points are collinear returns [] when `error=true` or an error otherwise . // Arguments: // points = List of input points. // error = Defines the behaviour for collinear input points. When `true`, produces an error, otherwise returns []. Default: `true`. // eps = Tolerance for collinearity test. Default: EPSILON. function noncollinear_triple(points,error=true,eps=EPSILON) = assert( is_path(points), "Invalid input points." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) len(points)<3 ? [] : let( pa = points[0], b = furthest_point(pa, points), pb = points[b], nrm = norm(pa-pb) ) nrm <= eps ? assert(!error, "Cannot find three noncollinear points in pointlist.") [] : let( n = (pb-pa)/nrm, distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)] ) max(distlist) < eps*nrm ? assert(!error, "Cannot find three noncollinear points in pointlist.") [] : [0, b, max_index(distlist)]; // Section: Polygons // Function: polygon_area() // Usage: // area = polygon_area(poly); // Topics: Geometry, Polygons, Area // Description: // Given a 2D or 3D simple planar polygon, returns the area of that polygon. // If the polygon is non-planar the result is `undef.` If the polygon is self-intersecting // then the return will be a meaningless number. // When `signed` is true and the polygon is 2d, a signed area is returned: a positive area indicates a counter-clockwise polygon. // The area of 3d polygons is always nonnegative. // Arguments: // poly = Polygon to compute the area of. // signed = If true, a signed area is returned. Default: false. function polygon_area(poly, signed=false) = assert(is_path(poly), "Invalid polygon." ) len(poly)<3 ? 0 : len(poly[0])==2 ? let( total = sum([for(i=[1:1:len(poly)-2]) cross(poly[i]-poly[0],poly[i+1]-poly[0]) ])/2 ) signed ? total : abs(total) : let( plane = plane_from_polygon(poly) ) is_undef(plane) ? undef : let( n = plane_normal(plane), total = -sum([ for(i=[1:1:len(poly)-2]) cross(poly[i]-poly[0], poly[i+1]-poly[0]) ]) * n/2 ) signed ? total : abs(total); // Function: centroid() // Usage: // c = centroid(object); // Topics: Geometry, Polygons, Centroid // Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid. // Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid. // If you provide a non-planar or collinear polygon you will get an error. For self-intersecting // polygons you may get an error or you may get meaningless results. // . // If object is a manifold VNF then returns the 3d centroid of the polyhedron. The VNF must // describe a valid polyhedron with consistent face direction and no holes in the mesh; otherwise // the results are undefined. function centroid(object,eps=EPSILON) = assert(is_finite(eps) && (eps>=0), "The tolerance should a non-negative value." ) is_vnf(object) ? _vnf_centroid(object,eps) : is_path(object,[2,3]) ? _polygon_centroid(object,eps) : is_region(object) ? (len(object)==1 ? _polygon_centroid(object[0],eps) : _region_centroid(object,eps)) : assert(false, "Input must be a VNF, a region, or a 2D or 3D polygon"); // Internal Function: _region_centroid() // Compute centroid of region function _region_centroid(region,eps=EPSILON) = let( region=force_region(region), parts = region_parts(region), // Rely on region_parts returning all outside polygons clockwise // and inside (hole) polygons counterclockwise, so areas have reversed sign cent_area = [for(R=parts, p=R) let(A=polygon_area(p,signed=true)) [A*_polygon_centroid(p),A]], total = sum(cent_area) ) total[0]/total[1]; /// Function: _polygon_centroid() /// Usage: /// cpt = _polygon_centroid(poly); /// Topics: Geometry, Polygons, Centroid /// Description: /// Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid. /// Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid. /// Collinear points produce an error. The results are meaningless for self-intersecting /// polygons or an error is produced. /// Arguments: /// poly = Points of the polygon from which the centroid is calculated. /// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function _polygon_centroid(poly, eps=EPSILON) = assert( is_path(poly,dim=[2,3]), "The input must be a 2D or 3D polygon." ) let( n = len(poly[0])==2 ? 1 : let( plane = plane_from_points(poly, fast=false)) assert(!is_undef(plane), "The polygon must be planar." ) plane_normal(plane), v0 = poly[0] , val = sum([ for(i=[1:len(poly)-2]) let( v1 = poly[i], v2 = poly[i+1], area = cross(v2-v0,v1-v0)*n ) [ area, (v0+v1+v2)*area ] ]) ) assert(!approx(val[0],0, eps), "The polygon is self-intersecting or its points are collinear.") val[1]/val[0]/3; // Function: polygon_normal() // Usage: // vec = polygon_normal(poly); // Topics: Geometry, Polygons // Description: // Given a 3D simple planar polygon, returns a unit normal vector for the polygon. The vector // is oriented so that if the normal points towards the viewer, the polygon winds in the clockwise // direction. If the polygon has zero area, returns `undef`. If the polygon is self-intersecting // the the result is undefined. It doesn't check for coplanarity. // Arguments: // poly = The list of 3D path points for the perimeter of the polygon. function polygon_normal(poly) = assert(is_path(poly,dim=3), "Invalid 3D polygon." ) let( area_vec = sum([for(i=[1:len(poly)-2]) cross(poly[i]-poly[0], poly[i+1]-poly[i])]) ) unit(-area_vec, error=undef); // Function: point_in_polygon() // Usage: // test = point_in_polygon(point, poly, [nonzero], [eps]) // Topics: Geometry, Polygons // Description: // This function tests whether the given 2D point is inside, outside or on the boundary of // the specified 2D polygon. // The polygon is given as a list of 2D points, not including the repeated end point. // Returns -1 if the point is outside the polygon. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies in the interior. // The polygon does not need to be simple: it may have self-intersections. // But the polygon cannot have holes (it must be simply connected). // Rounding errors may give mixed results for points on or near the boundary. // . // When polygons intersect themselves different definitions exist for determining which points // are inside the polygon. The figure below shows the difference. // OpenSCAD uses the Even-Odd rule when creating polygons, where membership in overlapping regions // depends on how many times they overlap. The Nonzero rule considers point inside the polygon if // the polygon overlaps them any number of times. For more information see // https://en.wikipedia.org/wiki/Nonzero-rule and https://en.wikipedia.org/wiki/Even–odd_rule. // Figure(2D,Med,NoAxes): // a=20; // b=30; // ofs = 17; // curve = [for(theta=[0:10:140]) [a * theta/360*2*PI - b*sin(theta), a-b*cos(theta)-20]]; // path = deduplicate(concat( reverse(offset(curve,r=ofs)), // xflip(offset(curve,r=ofs)), // xflip(reverse(curve)), // curve // )); // left(40){ // polygon(path); // color("red")stroke(path, width=1, closed=true); // color("red")back(28/(2/3))text("Even-Odd", size=5/(2/3), halign="center"); // } // right(40){ // dp = polygon_parts(path,nonzero=true); // region(dp); // color("red"){stroke(path,width=1,closed=true); // back(28/(2/3))text("Nonzero", size=5/(2/3), halign="center"); // } // } // Arguments: // point = The 2D point to check // poly = The list of 2D points forming the perimeter of the polygon. // nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd". Default: false (Even-Odd) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // Example(2D): With nonzero set to false (the default), we get this result. Green dots are inside the polygon and red are outside: // a=20*2/3; // b=30*2/3; // ofs = 17*2/3; // curve = [for(theta=[0:10:140]) [a * theta/360*2*PI - b*sin(theta), a-b*cos(theta)]]; // path = deduplicate(concat( reverse(offset(curve,r=ofs)), // xflip(offset(curve,r=ofs)), // xflip(reverse(curve)), // curve // )); // stroke(path,closed=true); // pts = [[0,0],[10,0],[0,20]]; // for(p=pts){ // color(point_in_polygon(p,path)==1 ? "green" : "red") // move(p)circle(r=1.5, $fn=12); // } // Example(2D): With nonzero set to true, one dot changes color: // a=20*2/3; // b=30*2/3; // ofs = 17*2/3; // curve = [for(theta=[0:10:140]) [a * theta/360*2*PI - b*sin(theta), a-b*cos(theta)]]; // path = deduplicate(concat( reverse(offset(curve,r=ofs)), // xflip(offset(curve,r=ofs)), // xflip(reverse(curve)), // curve // )); // stroke(path,closed=true); // pts = [[0,0],[10,0],[0,20]]; // for(p=pts){ // color(point_in_polygon(p,path,nonzero=true)==1 ? "green" : "red") // move(p)circle(r=1.5, $fn=12); // } // Internal function for point_in_polygon function _point_above_below_segment(point, edge) = let( edge = edge - [point, point] ) edge[0].y <= 0 ? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0 : (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0; function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) = // Original algorithms from http://geomalgorithms.com/a03-_inclusion.html assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2, "The point and polygon should be in 2D. The polygon should have more that 2 points." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) // Check bounding box let( box = pointlist_bounds(poly) ) point.xbox[1].x+eps || point.ybox[1].y+eps ? -1 : // Does the point lie on any edges? If so return 0. let( on_brd = [ for (i = [0:1:len(poly)-1]) let( seg = select(poly,i,i+1) ) if (!approx(seg[0],seg[1],eps) ) _is_point_on_line(point, seg, SEGMENT, eps=eps)? 1:0 ] ) sum(on_brd) > 0? 0 : nonzero ? // Compute winding number and return 1 for interior, -1 for exterior let( windchk = [ for(i=[0:1:len(poly)-1]) let( seg=select(poly,i,i+1) ) if (!approx(seg[0],seg[1],eps=eps)) _point_above_below_segment(point, seg) ] ) sum(windchk) != 0 ? 1 : -1 : // or compute the crossings with the ray [point, point+[1,0]] let( n = len(poly), cross = [ for(i=[0:n-1]) let( p0 = poly[i]-point, p1 = poly[(i+1)%n]-point ) if ( ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) ) && -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) ) 1 ] ) 2*(len(cross)%2)-1; // Function: polygon_triangulate() // Usage: // triangles = polygon_triangulate(poly, [ind], [eps]) // Description: // Given a simple polygon in 2D or 3D, triangulates it and returns a list // of triples indexing into the polygon vertices. When the optional argument `ind` is // given, it is used as an index list into `poly` to define the polygon. In that case, // `poly` may have a length greater than `ind`. When `ind` is undefined, all points in `poly` // are considered as vertices of the polygon. // . // For 2d polygons, the output triangles will have the same winding (CW or CCW) of // the input polygon. For 3d polygons, the triangle windings will induce a normal // vector with the same direction of the polygon normal. // . // The function produce correct triangulations for some non-twisted non-simple polygons. // A polygon is non-twisted iff it is simple or there is a partition of it in // simple polygons with the same winding. These polygons may have "touching" vertices // (two vertices having the same coordinates, but distinct adjacencies) and "contact" edges // (edges whose vertex pairs have the same pairwise coordinates but are in reversed order) but has // no self-crossing. See examples bellow. If all polygon edges are contact edges, // it returns an empty list for 2d polygons and issues an error for 3d polygons. // . // Self-crossing polygons have no consistent winding and usually produce an error but // when an error is not issued the outputs are not correct triangulations. The function // can work for 3d non-planar polygons if they are close enough to planar but may otherwise // issue an error for this case. // Arguments: // poly = Array of vertices for the polygon. // ind = A list indexing the vertices of the polygon in `poly`. // eps = A maximum tolerance in geometrical tests. Default: EPSILON // Example(2D,NoAxes): // poly = star(id=10, od=15,n=11); // tris = polygon_triangulate(poly); // color("lightblue") for(tri=tris) polygon(select(poly,tri)); // color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); } // color("magenta") up(2) stroke(poly,.25,closed=true); // color("black") up(3) vnf_debug([poly,[]],faces=false,size=1); // Example(2D,NoAxes): a polygon with a hole and one "contact" edge // poly = [ [-10,0], [10,0], [0,10], [-10,0], [-4,4], [4,4], [0,2], [-4,4] ]; // tris = polygon_triangulate(poly); // color("lightblue") for(tri=tris) polygon(select(poly,tri)); // color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); } // color("magenta") up(2) stroke(poly,.25,closed=true); // color("black") up(3) vnf_debug([poly,[]],faces=false,size=1); // Example(2D,NoAxes): a polygon with "touching" vertices and no holes // poly = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ]; // tris = polygon_triangulate(poly); // color("lightblue") for(tri=tris) polygon(select(poly,tri)); // color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); } // color("magenta") up(2) stroke(poly,.25,closed=true); // color("black") up(3) vnf_debug([poly,[]],faces=false,size=1); // Example(2D,NoAxes): a polygon with "contact" edges and no holes // poly = [ [0,0], [10,0], [10,10], [0,10], [0,0], [3,3], [7,3], // [7,7], [7,3], [3,3] ]; // tris = polygon_triangulate(poly); // see from the top // color("lightblue") for(tri=tris) polygon(select(poly,tri)); // color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); } // color("magenta") up(2) stroke(poly,.25,closed=true); // color("black") up(3) vnf_debug([poly,[]],faces=false,size=1); // Example(3D): // include // vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf"); // vnf_polyhedron(vnf); // vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulate(vnf[0], face) ] ]; // color("blue") // vnf_wireframe(vnf_tri, width=.15); function polygon_triangulate(poly, ind, eps=EPSILON) = assert(is_path(poly) && len(poly)>=3, "Polygon `poly` should be a list of at least three 2d or 3d points") assert(is_undef(ind) || (is_vector(ind) && min(ind)>=0 && max(ind) 2*eps, "The polygon vertices are collinear.") [ind] : len(poly[ind[0]]) == 3 ? // represents the polygon projection on its plane as a 2d polygon let( ind = deduplicate_indexed(poly, ind, eps) ) len(ind)<3 ? [] : let( pts = select(poly,ind), nrm = polygon_normal(pts) ) assert( nrm!=undef, "The polygon has self-intersections or its vertices are collinear or non coplanar.") let( imax = max_index([for(p=pts) norm(p-pts[0]) ]), v1 = unit( pts[imax] - pts[0] ), v2 = cross(v1,nrm), prpts = pts*transpose([v1,v2]) ) [for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ] : let( cw = is_polygon_clockwise(select(poly, ind)) ) cw ? [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ] : _triangulate( poly, ind, eps ); function _triangulate(poly, ind, eps=EPSILON, tris=[]) = len(ind)==3 ? _is_degenerate(select(poly,ind),eps) ? tris // last 3 pts perform a degenerate triangle, ignore it : concat(tris,[ind]) // otherwise, include it : let( ear = _get_ear(poly,ind,eps) ) assert( ear!=undef, "The polygon has self-intersections or its vertices are collinear or non coplanar.") is_list(ear) // degenerate ear ? _triangulate(poly, select(ind,ear[0]+2, ear[0]), eps, tris) // discard it : let( ear_tri = select(ind,ear,ear+2), indr = select(ind,ear+2, ear) // remaining point indices ) _triangulate(poly, indr, eps, concat(tris,[ear_tri])); // a returned ear will be: // 1. a CCW (non-degenerate) triangle, made of subsequent vertices, without other // points inside except possibly at its vertices // 2. or a degenerate triangle where two vertices are coincident // the returned ear is specified by the index of `ind` of its first vertex function _get_ear(poly, ind, eps, _i=0) = _i>=len(ind) ? undef : // poly has no ears let( // the _i-th ear candidate p0 = poly[ind[_i]], p1 = poly[ind[(_i+1)%len(ind)]], p2 = poly[ind[(_i+2)%len(ind)]] ) // degenerate triangles are returned codified _is_degenerate([p0,p1,p2],eps) ? [_i] : // if it is not a convex vertex, check the next one _is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) : let( // vertex p1 is convex // check if the triangle contains any other point // except possibly its own vertices to_tst = select(ind,_i+3, _i-1), q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right r = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p2,p1] pointing right s = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right inside = [for(p=select(poly,to_tst)) // for vertices other than p0, p1 and p2 if( (p-p0)*q<=0 && (p-p2)*r<=0 && (p-p1)*s<=0 // p is on the triangle && norm(p-p0)>eps // but not on any vertex of it && norm(p-p1)>eps && norm(p-p2)>eps ) p ] ) inside==[] ? _i : // found an ear // check the next ear candidate _get_ear(poly, ind, eps, _i=_i+1); // true for some specific kinds of degeneracy function _is_degenerate(tri,eps) = norm(tri[0]-tri[1])0) || valid_range(angles), "The `angle` parameter must be a range or a non void list of numbers.") [for(angle=angles) zrot(angle,cp=cp)] ) assert(is_path(reference,dim=2) && is_path(poly,dim=2), "Invalid polygon(s). " ) assert(len(reference)==len(poly), "The polygons must have the same length.") let( // alignments is a vector of entries of the form: [polygon, error] alignments = [ for(T=trans) reindex_polygon( reference, apply(T,poly), return_error=true ) ], scores = columns(alignments,1), minscore = min(scores), minind = [for(i=idx(scores)) if (scores[i]= len(polys)? false : are_polygons_equal(poly, polys[i])? true : __is_polygon_in_list(poly, polys, i+1); // Section: Convex Sets // Function: is_polygon_convex() // Usage: // test = is_polygon_convex(poly); // Topics: Geometry, Convexity, Test // Description: // Returns true if the given 2D or 3D polygon is convex. // The result is meaningless if the polygon is not simple (self-crossing) or non coplanar. // If the points are collinear or not coplanar an error may be generated. // Arguments: // poly = Polygon to check. // eps = Tolerance for the collinearity and coplanarity tests. Default: EPSILON. // Example: // test1 = is_polygon_convex(circle(d=50)); // Returns: true // test2 = is_polygon_convex(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true // spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]]; // test = is_polygon_convex(spiral); // Returns: false function is_polygon_convex(poly,eps=EPSILON) = assert(is_path(poly), "The input should be a 2D or 3D polygon." ) let( lp = len(poly), p0 = poly[0] ) assert( lp>=3 , "A polygon must have at least 3 points" ) let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] ) len(p0)==2 ? let( size = max([for(p=poly) norm(p-p0)]), tol=pow(size,2)*eps ) assert( size>eps, "The polygon is self-crossing or its points are collinear" ) min(crosses) >=-tol || max(crosses)<=tol : let( ip = noncollinear_triple(poly,error=false,eps=eps) ) assert( ip!=[], "The points are collinear") let( crx = cross(poly[ip[1]]-poly[ip[0]],poly[ip[2]]-poly[ip[1]]), nrm = crx/norm(crx), plane = concat(nrm, nrm*poly[0]), prod = crosses*nrm, size = norm(poly[ip[1]]-poly[ip[0]]), tol = pow(size,2)*eps ) assert(_pointlist_greatest_distance(poly,plane) < size*eps, "The polygon points are not coplanar") let( minc = min(prod), maxc = max(prod) ) minc>=-tol || maxc<=tol; // Function: convex_distance() // Usage: // dist = convex_distance(pts1, pts2,[eps=]); // Topics: Geometry, Convexity, Distance // See also: // convex_collision(), hull() // Description: // Returns the smallest distance between a point in convex hull of `points1` // and a point in the convex hull of `points2`. All the points in the lists // should have the same dimension, either 2D or 3D. // A zero result means the hulls intercept whithin a tolerance `eps`. // Arguments: // points1 = first list of 2d or 3d points. // points2 = second list of 2d or 3d points. // eps = tolerance in distance evaluations. Default: EPSILON. // Example(2D): // pts1 = move([-3,0], p=square(3,center=true)); // pts2 = rot(a=45, p=square(2,center=true)); // pts3 = [ [2,0], [1,2],[3,2], [3,-2], [1,-2] ]; // polygon(pts1); // polygon(pts2); // polygon(pts3); // echo(convex_distance(pts1,pts2)); // Returns: 0.0857864 // echo(convex_distance(pts2,pts3)); // Returns: 0 // Example(3D): // sphr1 = sphere(2,$fn=10); // sphr2 = move([4,0,0], p=sphr1); // sphr3 = move([4.5,0,0], p=sphr1); // vnf_polyhedron(sphr1); // vnf_polyhedron(sphr2); // echo(convex_distance(sphr1[0], sphr2[0])); // Returns: 0 // echo(convex_distance(sphr1[0], sphr3[0])); // Returns: 0.5 function convex_distance(points1, points2, eps=EPSILON) = assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])), "The input lists should be compatible consistent non empty lists of points.") assert(len(points1[0])==2 || len(points1[0])==3 , "The input points should be 2d or 3d points.") let( d = points1[0]-points2[0] ) norm(d) eps*eps ? false : // no collision let( newsplx = _closest_simplex(concat(simplex,[v]),eps) ) norm(v-newsplx[0])1 ? [ s[1], [s[1]] ] : [ s[0]+t*c, s ]; // find the point of a 2-simplex closest to the origin function _closest_s2(s, eps=EPSILON) = // considering that s[2] was the last inserted vertex in s by GJK, // the plane orthogonal to the triangle [ origin, s[0], s[1] ] that // contains [s[0],s[1]] have the origin and s[2] on the same side; // that reduces the cases to test and the only possible simplex // outcomes are s, [s[0],s[2]] and [s[1],s[2]] let( area = cross(s[2]-s[0], s[1]-s[0]), area2 = area*area // tri area squared ) area2<=eps*max([for(si=s) pow(si*si,2)]) // degenerate tri ? norm(s[2]-s[0]) < norm(s[2]-s[1]) ? _closest_s1([s[1],s[2]]) : _closest_s1([s[0],s[2]]) : let( crx1 = cross(s[0], s[2])*area, crx2 = cross(s[1], s[0])*area, crx0 = cross(s[2], s[1])*area ) // all have the same signal -> origin projects inside the tri max(crx1, crx0, crx2) < 0 || min(crx1, crx0, crx2) > 0 ? // baricentric coords of projection [ [abs(crx0),abs(crx1),abs(crx2)]*s/area2, s ] : let( cl12 = _closest_s1([s[1],s[2]]), cl02 = _closest_s1([s[0],s[2]]) ) norm(cl12[0])0)==(nrm*s[i]<0) ) i ] ) len(facing)==0 ? [ [0,0,0], s ] : // origin is inside the simplex len(facing)==1 ? _closest_s2(tris[facing[0]], eps) : let( // look for the origin-facing tri closest to the origin closest = [for(i=facing) _closest_s2(tris[i], eps) ], dist = [for(cl=closest) norm(cl[0]) ], nearest = min_index(dist) ) closest[nearest]; function _tri_normal(tri) = cross(tri[1]-tri[0],tri[2]-tri[0]); function _support_diff(p1,p2,d) = let( p1d = p1*d, p2d = p2*d ) p1[search(max(p1d),p1d,1)[0]] - p2[search(min(p2d),p2d,1)[0]]; // Section: Rotation Decoding // Function: rot_decode() // Usage: // info = rot_decode(rotation,[long]); // Returns: [angle,axis,cp,translation] // Topics: Affine, Matrices, Transforms // Description: // Given an input 3D rigid transformation operator (one composed of just rotations and translations) represented // as a 4x4 matrix, compute the rotation and translation parameters of the operator. Returns a list of the // four parameters, the angle, in the interval [0,180], the rotation axis as a unit vector, a centerpoint for // the rotation, and a translation. If you set `parms = rot_decode(rotation)` then the transformation can be // reconstructed from parms as `move(parms[3]) * rot(a=parms[0],v=parms[1],cp=parms[2])`. This decomposition // makes it possible to perform interpolation. If you construct a transformation using `rot` the decoding // may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector, and // the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different // than the centerpoint you used to construct the transformation. // . // If you set `long` to true then return the reversed rotation, with the angle in [180,360]. // Arguments: // rotation = rigid transformation to decode // long = if true return the "long way" around, with the angle in [180,360]. Default: false // Example: // info = rot_decode(rot(45)); // // Returns: [45, [0,0,1], [0,0,0], [0,0,0]] // info = rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7]))); // // Returns: [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]] // info = rot_decode(left(12)*xrot(-33)); // // Returns: [33, [-1,0,0], [0,0,0], [-12,0,0]] // info = rot_decode(translate([3,4,5])); // // Returns: [0, [0,0,1], [0,0,0], [3,4,5]] function rot_decode(M,long=false) = assert(is_matrix(M,4,4) && approx(M[3],[0,0,0,1]), "Input matrix must be a 4x4 matrix representing a 3d transformation") let(R = submatrix(M,[0:2],[0:2])) assert(approx(det3(R),1) && approx(norm_fro(R * transpose(R)-ident(3)),0),"Input matrix is not a rotation") let( translation = [for(row=[0:2]) M[row][3]], // translation vector largest = max_index([R[0][0], R[1][1], R[2][2]]), axis_matrix = R + transpose(R) - (matrix_trace(R)-1)*ident(3), // Each row is on the rotational axis // Construct quaternion q = c * [x sin(theta/2), y sin(theta/2), z sin(theta/2), cos(theta/2)] q_im = axis_matrix[largest], q_re = R[(largest+2)%3][(largest+1)%3] - R[(largest+1)%3][(largest+2)%3], c_sin = norm(q_im), // c * sin(theta/2) for some c c_cos = abs(q_re) // c * cos(theta/2) ) approx(c_sin,0) ? [0,[0,0,1],[0,0,0],translation] : let( angle = 2*atan2(c_sin, c_cos), // This is supposed to be more accurate than acos or asin axis = (q_re>=0 ? 1:-1)*q_im/c_sin, tproj = translation - (translation*axis)*axis, // Translation perpendicular to axis determines centerpoint cp = (tproj + cross(axis,tproj)*c_cos/c_sin)/2 ) [long ? 360-angle:angle, long? -axis : axis, cp, (translation*axis)*axis]; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap