////////////////////////////////////////////////////////////////////// // LibFile: shapes2d.scad // This file includes redefinitions of the core modules to // work with attachment, and functional forms of those modules // that produce paths. You can create regular polygons // with optional rounded corners and alignment features not // available with circle(). The file also provides teardrop2d, // which is useful for 3D printable holes. // Many of the commands have module forms that produce geometry and // function forms that produce a path. // Includes: // include // FileGroup: Basic Modeling // FileSummary: Attachable circles, squares, polygons, teardrop. Can make geometry or paths. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// use // Section: 2D Primitives // Function&Module: square() // Topics: Shapes (2D), Path Generators (2D) // Usage: As a Module // square(size, [center], ...); // Usage: With Attachments // square(size, [center], ...) { attachables } // Usage: As a Function // path = square(size, [center], ...); // See Also: rect() // Description: // When called as the builtin module, creates a 2D square or rectangle of the given size. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the square to create. If given as a scalar, both X and Y will be the same size. // center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): // square(40); // Example(2D): Centered // square([40,30], center=true); // Example(2D): Called as Function // path = square([40,30], anchor=FRONT, spin=30); // stroke(path, closed=true); // move_copies(path) color("blue") circle(d=2,$fn=8); function square(size=1, center, anchor, spin=0) = let( anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]), size = is_num(size)? [size,size] : point2d(size), path = [ [ size.x,-size.y], [-size.x,-size.y], [-size.x, size.y], [ size.x, size.y] ] / 2 ) reorient(anchor,spin, two_d=true, size=size, p=path); module square(size=1, center, anchor, spin) { anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); size = is_num(size)? [size,size] : point2d(size); attachable(anchor,spin, two_d=true, size=size) { _square(size, center=true); children(); } } // Function&Module: rect() // Usage: As Module // rect(size, [rounding], [chamfer], ...); // Usage: With Attachments // rect(size, ...) { attachables } // Usage: As Function // path = rect(size, [rounding], [chamfer], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: square() // Description: // When called as a module, creates a 2D rectangle of the given size, with optional rounding or chamfering. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size. // rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): // rect(40); // Example(2D): Anchored // rect([40,30], anchor=FRONT); // Example(2D): Spun // rect([40,30], anchor=FRONT, spin=30); // Example(2D): Chamferred Rect // rect([40,30], chamfer=5); // Example(2D): Rounded Rect // rect([40,30], rounding=5); // Example(2D): Mixed Chamferring and Rounding // rect([40,30],rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); // Example(2D): Called as Function // path = rect([40,30], chamfer=5, anchor=FRONT, spin=30); // stroke(path, closed=true); // move_copies(path) color("blue") circle(d=2,$fn=8); module rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) { size = is_num(size)? [size,size] : point2d(size); if (rounding==0 && chamfer==0) { attachable(anchor, spin, two_d=true, size=size) { square(size, center=true); children(); } } else { pts = rect(size=size, rounding=rounding, chamfer=chamfer); attachable(anchor, spin, two_d=true, path=pts) { polygon(pts); children(); } } } function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) = assert(is_num(size) || is_vector(size)) assert(is_num(chamfer) || len(chamfer)==4) assert(is_num(rounding) || len(rounding)==4) let( anchor=point2d(anchor), size = is_num(size)? [size,size] : point2d(size), complex = rounding!=0 || chamfer!=0 ) (rounding==0 && chamfer==0)? let( path = [ [ size.x/2, -size.y/2], [-size.x/2, -size.y/2], [-size.x/2, size.y/2], [ size.x/2, size.y/2] ] ) rot(spin, p=move(-v_mul(anchor,size/2), p=path)) : let( chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer], rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding], quadorder = [3,2,1,0], quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]], insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0], insets_x = max(insets[0]+insets[1],insets[2]+insets[3]), insets_y = max(insets[0]+insets[3],insets[1]+insets[2]) ) assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the rect width.") assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the rect height.") let( path = [ for(i = [0:3]) let( quad = quadorder[i], inset = insets[quad], cverts = quant(segs(inset),4)/4, cp = v_mul(size/2-[inset,inset], quadpos[quad]), step = 90/cverts, angs = chamfer[quad] > 0? [0,-90]-90*[i,i] : rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] : [0] ) each [for (a = angs) cp + inset*[cos(a),sin(a)]] ] ) complex? reorient(anchor,spin, two_d=true, path=path, p=path) : reorient(anchor,spin, two_d=true, size=size, p=path); // Function&Module: circle() // Topics: Shapes (2D), Path Generators (2D) // Usage: As a Module // circle(r|d=, ...); // Usage: With Attachments // circle(r|d=, ...) { attachables } // Usage: As a Function // path = circle(r|d=, ...); // See Also: ellipse(), circle_2tangents(), circle_3points() // Description: // When called as the builtin module, creates a 2D polygon that approximates a circle of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size. // Arguments: // r = The radius of the circle to create. // d = The diameter of the circle to create. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): By Radius // circle(r=25); // Example(2D): By Diameter // circle(d=50); // Example(NORENDER): Called as Function // path = circle(d=50, anchor=FRONT, spin=45); function circle(r, d, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=1), sides = segs(r), path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]] ) reorient(anchor,spin, two_d=true, r=r, p=path); module circle(r, d, anchor=CENTER, spin=0) { r = get_radius(r=r, d=d, dflt=1); attachable(anchor,spin, two_d=true, r=r) { _circle(r=r); children(); } } // Function&Module: ellipse() // Usage: As a Module // ellipse(r|d=, [realign=], [circum=], ...); // Usage: With Attachments // ellipse(r|d=, [realign=], [circum=], ...) { attachables } // Usage: As a Function // path = ellipse(r|d=, [realign=], [circum=], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), circle_2tangents(), circle_3points() // Description: // When called as a module, creates a 2D polygon that approximates a circle or ellipse of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle or ellipse of the given size. // By default the point list or shape is the same as the one you would get by scaling the output of {{circle()}}, but with this module your // attachments to the ellipse will retain their dimensions, whereas scaling a circle with attachments will also scale the attachments. // If you set unifom to true then you will get a polygon with congruent sides whose vertices lie on the ellipse. // Arguments: // r = Radius of the circle or pair of semiaxes of ellipse // --- // d = Diameter of the circle or a pair giving the full X and Y axis lengths. // realign = If false starts the approximate ellipse with a point on the X+ axis. If true the midpoint of a side is on the X+ axis and the first point of the polygon is below the X+ axis. This can result in a very different polygon when $fn is small. Default: false // circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): By Radius // ellipse(r=25); // Example(2D): By Diameter // ellipse(d=50); // Example(2D): Anchoring // ellipse(d=50, anchor=FRONT); // Example(2D): Spin // ellipse(d=50, anchor=FRONT, spin=45); // Example(NORENDER): Called as Function // path = ellipse(d=50, anchor=FRONT, spin=45); // Example(2D,NoAxes): Uniformly sampled hexagon at the top, regular non-uniform one at the bottom // r=[10,3]; // ydistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6)],width=0.1,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6,uniform=true)],width=0.1,color="red"); // } // } // Example(2D): The realigned hexagons are even more different // r=[10,3]; // ydistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6,realign=true)],width=0.1,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6,realign=true,uniform=true)],width=0.1,color="red"); // } // } // Example(2D): For odd $fn the result may not look very elliptical: // r=[10,3]; // ydistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false)],width=0.1,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false,uniform=true)],width=0.1,color="red"); // } // } // Example(2D): The same ellipse, turned 90 deg, gives a very different result: // r=[3,10]; // xdistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.1,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false)],width=0.2,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.1,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false,uniform=true)],width=0.2,color="red"); // } // } module ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, spin=0) { r = force_list(get_radius(r=r, d=d, dflt=1),2); dummy = assert(is_vector(r,2) && all_positive(r), "Invalid radius or diameter for ellipse"); sides = segs(max(r)); sc = circum? (1 / cos(180/sides)) : 1; rx = r.x * sc; ry = r.y * sc; attachable(anchor,spin, two_d=true, r=[rx,ry]) { if (uniform) { assert(!circum, "Circum option not allowed when \"uniform\" is true"); polygon(ellipse(r,realign=realign, circum=circum, uniform=true)); } else if (rx < ry) { xscale(rx/ry) { zrot(realign? 180/sides : 0) { circle(r=ry, $fn=sides); } } } else { yscale(ry/rx) { zrot(realign? 180/sides : 0) { circle(r=rx, $fn=sides); } } } children(); } } // Iterative refinement to produce an inscribed polygon // in an ellipse whose side lengths are all equal function _ellipse_refine(a,b,N, _theta=[]) = len(_theta)==0? _ellipse_refine(a,b,N,lerpn(0,360,N,endpoint=false)) : let( pts = [for(t=_theta) [a*cos(t),b*sin(t)]], lenlist= path_segment_lengths(pts,closed=true), meanlen = mean(lenlist), error = lenlist/meanlen ) all_equal(error,EPSILON) ? pts : let( dtheta = [each deltas(_theta), 360-last(_theta)], newdtheta = [for(i=idx(dtheta)) dtheta[i]/error[i]], adjusted = [0,each cumsum(list_head(newdtheta / sum(newdtheta) * 360))] ) _ellipse_refine(a,b,N,adjusted); function _ellipse_refine_realign(a,b,N, _theta=[],i=0) = len(_theta)==0? _ellipse_refine_realign(a,b,N, count(N-1,180/N,360/N)) : let( pts = [for(t=_theta) [a*cos(t),b*sin(t)], [a*cos(_theta[0]), -b*sin(_theta[0])]], lenlist= path_segment_lengths(pts,closed=true), meanlen = mean(lenlist), error = lenlist/meanlen ) all_equal(error,EPSILON) ? pts : let( dtheta = [each deltas(_theta), 360-last(_theta)-_theta[0], 2*_theta[0]], newdtheta = [for(i=idx(dtheta)) dtheta[i]/error[i]], normdtheta = newdtheta / sum(newdtheta) * 360, adjusted = cumsum([last(normdtheta)/2, each list_head(normdtheta, -3)]) ) _ellipse_refine_realign(a,b,N,adjusted, i+1); function ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, spin=0) = let( r = force_list(get_radius(r=r, d=d, dflt=1),2), sides = segs(max(r)) ) uniform ? assert(!circum, "Circum option not allowed when \"uniform\" is true") reorient(anchor,spin,two_d=true,r=[r.x,r.y], p=realign ? reverse(_ellipse_refine_realign(r.x,r.y,sides)) : reverse_polygon(_ellipse_refine(r.x,r.y,sides))) : let( offset = realign? 180/sides : 0, sc = circum? (1 / cos(180/sides)) : 1, rx = r.x * sc, ry = r.y * sc, pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) [rx*cos(a), ry*sin(a)]] ) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts); // Section: Polygons // Function&Module: regular_ngon() // Usage: // regular_ngon(n, r/d=/or=/od=, [realign=]); // regular_ngon(n, ir=/id=, [realign=]); // regular_ngon(n, side=, [realign=]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), pentagon(), hexagon(), octagon(), ellipse(), star() // Description: // When called as a function, returns a 2D path for a regular N-sided polygon. // When called as a module, creates a 2D regular N-sided polygon. // Arguments: // n = The number of sides. // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // "side0", "side1", etc. = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // regular_ngon(n=5, or=30); // regular_ngon(n=5, od=60); // Example(2D): by Inner Size // regular_ngon(n=5, ir=30); // regular_ngon(n=5, id=60); // Example(2D): by Side Length // regular_ngon(n=8, side=20); // Example(2D): Realigned // regular_ngon(n=8, side=20, realign=true); // Example(2D): Alignment by Tip // regular_ngon(n=5, r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // regular_ngon(n=5, r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // regular_ngon(n=5, od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, regular_ngon(n=6, or=30)); function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0, _mat, _anchs) = assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_side) || is_vector(align_side)) assert(is_undef(align_tip) || is_undef(align_side), "Can only specify one of align_tip and align-side") let( sc = 1/cos(180/n), ir = is_finite(ir)? ir*sc : undef, id = is_finite(id)? id*sc : undef, side = is_finite(side)? side/2/sin(180/n) : undef, r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side) ) assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.") let( inset = opp_ang_to_hyp(rounding, (180-360/n)/2), mat = !is_undef(_mat) ? _mat : ( realign? zrot(-180/n) : ident(4)) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip)) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side)) * zrot(180/n) : 1 ), path4 = rounding==0? ellipse(r=r, $fn=n) : ( let( steps = floor(segs(r)/n), step = 360/n/steps, path2 = [ for (i = [0:1:n-1]) let( a = 360 - i*360/n, p = polar_to_xy(r-inset, a) ) each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n) ], maxx_idx = max_index(column(path2,0)), path3 = list_rotate(path2,maxx_idx) ) path3 ), path = apply(mat, path4), anchors = !is_undef(_anchs) ? _anchs : !is_string(anchor)? [] : [ for (i = [0:1:n-1]) let( a1 = 360 - i*360/n, a2 = a1 - 360/n, p1 = apply(mat, polar_to_xy(r,a1)), p2 = apply(mat, polar_to_xy(r,a2)), tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)), pos = (p1+p2)/2 ) each [ named_anchor(str("tip",i), tipp, unit(tipp,BACK), 0), named_anchor(str("side",i), pos, unit(pos,BACK), 0), ] ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path, anchors=anchors); module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) { sc = 1/cos(180/n); ir = is_finite(ir)? ir*sc : undef; id = is_finite(id)? id*sc : undef; side = is_finite(side)? side/2/sin(180/n) : undef; r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side); assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side."); mat = ( realign? zrot(-180/n) : ident(4) ) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip)) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side)) * zrot(180/n) : 1 ); inset = opp_ang_to_hyp(rounding, (180-360/n)/2); anchors = [ for (i = [0:1:n-1]) let( a1 = 360 - i*360/n, a2 = a1 - 360/n, p1 = apply(mat, polar_to_xy(r,a1)), p2 = apply(mat, polar_to_xy(r,a2)), tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)), pos = (p1+p2)/2 ) each [ named_anchor(str("tip",i), tipp, unit(tipp,BACK), 0), named_anchor(str("side",i), pos, unit(pos,BACK), 0), ] ]; path = regular_ngon(n=n, r=r, rounding=rounding, _mat=mat, _anchs=anchors); attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) { polygon(path); children(); } } // Function&Module: pentagon() // Usage: // pentagon(or|od=, [realign=]); // pentagon(ir=|id=, [realign=]); // pentagon(side=, [realign=]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), hexagon(), octagon(), ellipse(), star() // Description: // When called as a function, returns a 2D path for a regular pentagon. // When called as a module, creates a 2D regular pentagon. // Arguments: // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "side0" ... "side4" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // pentagon(or=30); // pentagon(od=60); // Example(2D): by Inner Size // pentagon(ir=30); // pentagon(id=60); // Example(2D): by Side Length // pentagon(side=20); // Example(2D): Realigned // pentagon(side=20, realign=true); // Example(2D): Alignment by Tip // pentagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // pentagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // pentagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, pentagon(or=30)); function pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: hexagon() // Usage: As Module // hexagon(r/or, [realign=], , [rounding=], ...); // hexagon(d=/od=, ...); // hexagon(ir=/id=, ...); // hexagon(side=, ...); // Usage: With Attachments // hexagon(r/or, ...) { attachments } // Usage: As Function // path = hexagon(r/or, ...); // path = hexagon(d=/od=, ...); // path = hexagon(ir=/id=, ...); // path = hexagon(side=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), pentagon(), octagon(), ellipse(), star() // Description: // When called as a function, returns a 2D path for a regular hexagon. // When called as a module, creates a 2D regular hexagon. // Arguments: // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0" ... "tip5" = Each tip has an anchor, pointing outwards. // "side0" ... "side5" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // hexagon(or=30); // hexagon(od=60); // Example(2D): by Inner Size // hexagon(ir=30); // hexagon(id=60); // Example(2D): by Side Length // hexagon(side=20); // Example(2D): Realigned // hexagon(side=20, realign=true); // Example(2D): Alignment by Tip // hexagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // hexagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // hexagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, hexagon(or=30)); function hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: octagon() // Usage: As Module // octagon(r/or, [realign=], , [rounding=], ...); // octagon(d=/od=, ...); // octagon(ir=/id=, ...); // octagon(side=, ...); // Usage: With Attachments // octagon(r/or, ...) { attachments } // Usage: As Function // path = octagon(r/or, ...); // path = octagon(d=/od=, ...); // path = octagon(ir=/id=, ...); // path = octagon(side=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), pentagon(), hexagon(), ellipse(), star() // Description: // When called as a function, returns a 2D path for a regular octagon. // When called as a module, creates a 2D regular octagon. // Arguments: // r/or = Outside radius, at points. // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0" ... "tip7" = Each tip has an anchor, pointing outwards. // "side0" ... "side7" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // octagon(or=30); // octagon(od=60); // Example(2D): by Inner Size // octagon(ir=30); // octagon(id=60); // Example(2D): by Side Length // octagon(side=20); // Example(2D): Realigned // octagon(side=20, realign=true); // Example(2D): Alignment by Tip // octagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // octagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // octagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, octagon(or=30)); function octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: right_triangle() // Usage: As Module // right_triangle(size, [center], ...); // Usage: With Attachments // right_triangle(size, [center], ...) { attachments } // Usage: As Function // path = right_triangle(size, [center], ...); // Description: // Creates a right triangle with the Hypotenuse in the X+Y+ quadrant. // Arguments: // size = The width and length of the right triangle, given as a scalar or an XY vector. // center = If true, forces `anchor=CENTER`. If false, forces `anchor=[-1,-1]`. Default: undef (use `anchor=`) // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example: // right_triangle([40,30]); // Example: With `center=true` // right_triangle([40,30], center=true); // Example: Anchors // right_triangle([40,30]) // show_anchors(); function right_triangle(size=[1,1], center, anchor, spin=0) = let( size = is_num(size)? [size,size] : size, anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]) ) assert(is_vector(size,2)) let( path = [ [size.x/2,-size.y/2], [-size.x/2,-size.y/2], [-size.x/2,size.y/2] ] ) reorient(anchor,spin, two_d=true, size=[size.x,size.y], size2=0, shift=-size.x/2, p=path); module right_triangle(size=[1,1], center, anchor, spin=0) { size = is_num(size)? [size,size] : size; anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); assert(is_vector(size,2)); path = right_triangle(size, center=true); attachable(anchor,spin, two_d=true, size=[size.x,size.y], size2=0, shift=-size.x/2) { polygon(path); children(); } } // Function&Module: trapezoid() // Usage: As Module // trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...); // trapezoid(h, w1, angle=, ...); // trapezoid(h, w2, angle=, ...); // trapezoid(w1, w2, angle=, ...); // Usage: With Attachments // trapezoid(h, w1, w2, ...) { attachments } // Usage: As Function // path = trapezoid(h, w1, w2, ...); // path = trapezoid(h, w1, angle=, ...); // path = trapezoid(h, w2=, angle=, ...); // path = trapezoid(w1=, w2=, angle=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: rect(), square() // Description: // When called as a function, returns a 2D path for a trapezoid with parallel front and back sides. // When called as a module, creates a 2D trapezoid with parallel front and back sides. // Arguments: // h = The Y axis height of the trapezoid. // w1 = The X axis width of the front end of the trapezoid. // w2 = The X axis width of the back end of the trapezoid. // --- // angle = If given in place of `h`, `w1`, or `w2`, then the missing value is calculated such that the right side has that angle away from the Y axis. // shift = Scalar value to shift the back of the trapezoid along the X axis by. Default: 0 // rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The Length of the chamfer faces at the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Examples(2D): // trapezoid(h=30, w1=40, w2=20); // trapezoid(h=25, w1=20, w2=35); // trapezoid(h=20, w1=40, w2=0); // trapezoid(h=20, w1=30, angle=30); // trapezoid(h=20, w1=20, angle=-30); // trapezoid(h=20, w2=10, angle=30); // trapezoid(h=20, w2=30, angle=-30); // trapezoid(w1=30, w2=10, angle=30); // Example(2D): Chamferred Trapezoid // trapezoid(h=30, w1=60, w2=40, chamfer=5); // Example(2D): Rounded Trapezoid // trapezoid(h=30, w1=60, w2=40, rounding=5); // Example(2D): Mixed Chamfering and Rounding // trapezoid(h=30, w1=60, w2=40, rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); // Example(2D): Called as Function // stroke(closed=true, trapezoid(h=30, w1=40, w2=20)); function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) = assert(is_undef(h) || is_finite(h)) assert(is_undef(w1) || is_finite(w1)) assert(is_undef(w2) || is_finite(w2)) assert(is_undef(angle) || is_finite(angle)) assert(num_defined([h, w1, w2, angle]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.") assert(is_finite(shift)) assert(is_finite(chamfer) || is_vector(chamfer,4)) assert(is_finite(rounding) || is_vector(rounding,4)) let( simple = chamfer==0 && rounding==0, h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)), w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift), w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift) ) assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.") assert(w1+w2>0, "Degenerate trapezoid geometry.") let( base_path = [ [w2/2+shift,h/2], [-w2/2+shift,h/2], [-w1/2,-h/2], [w1/2,-h/2], ], cpath = simple? base_path : path_chamfer_and_rounding( base_path, closed=true, chamfer=chamfer, rounding=rounding ), path = reverse(cpath) ) simple ? reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path) : reorient(anchor,spin, two_d=true, path=path, p=path); module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) { path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding); union() { simple = chamfer==0 && rounding==0; h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)); w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift); w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift); if (simple) { attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift) { polygon(path); children(); } } else { attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } } } // Function&Module: star() // Usage: As Module // star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...); // star(n, r/or, step=, ...); // Usage: With Attachments // star(n, r/or, ir, ...) { attachments } // Usage: As Function // path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...); // path = star(n, r/or, step=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse() // Description: // When called as a function, returns the path needed to create a star polygon with N points. // When called as a module, creates a star polygon with N points. // Arguments: // n = The number of stellate tips on the star. // r/or = The radius to the tips of the star. // ir = The radius to the inner corners of the star. // --- // d/od = The diameter to the tips of the star. // id = The diameter to the inner corners of the star. // step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2 // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin. // align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // atype = Choose "hull" or "intersect" anchor methods. Default: "hull" // Extra Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards. // "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards. // Examples(2D): // star(n=5, r=50, ir=25); // star(n=5, r=50, step=2); // star(n=7, r=50, step=2); // star(n=7, r=50, step=3); // Example(2D): Realigned // star(n=7, r=50, step=3, realign=true); // Example(2D): Alignment by Tip // star(n=5, ir=15, or=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Pit // star(n=5, ir=15, or=30, align_pit=BACK+RIGHT) // attach("pit0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Called as Function // stroke(closed=true, star(n=5, r=50, ir=25)); function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, atype="hull", _mat, _anchs) = assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"") assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_pit) || is_vector(align_pit)) assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit") assert(is_def(n), "Must specify number of points, n") let( r = get_radius(r1=or, d1=od, r=r, d=d), count = num_defined([ir,id,step]), stepOK = is_undef(step) || (step>1 && step= cap_h ? hyp_opp_to_adj(r, cap_h) : adj_ang_to_opp(tip_y-cap_h, ang), ang2 = min(ang,atan2(cap_h,cap_w)), sa = 180 - ang2, ea = 360 + ang2, steps = ceil(segs(r)*(ea-sa)/360), path = deduplicate( [ [ cap_w,cap_h], for (a=lerpn(ea,sa,steps+1)) r*[cos(a),sin(a)], [-cap_w,cap_h] ], closed=true ), maxx_idx = max_index(column(path,0)), path2 = list_rotate(path,maxx_idx) ) reorient(anchor,spin, two_d=true, path=path2, p=path2, extent=false); // Function&Module: glued_circles() // Usage: As Module // glued_circles(r/d=, [spread=], [tangent=], ...); // Usage: With Attachments // glued_circles(r/d=, [spread=], [tangent=], ...) { attachments } // Usage: As Function // path = glued_circles(r/d=, [spread=], [tangent=], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse() // Description: // When called as a function, returns a 2D path forming a shape of two circles joined by curved waist. // When called as a module, creates a 2D shape of two circles joined by curved waist. Uses "hull" style anchoring. // Arguments: // r = The radius of the end circles. // spread = The distance between the centers of the end circles. Default: 10 // tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. Default: 30 // --- // d = The diameter of the end circles. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Examples(2D): // glued_circles(r=15, spread=40, tangent=45); // glued_circles(d=30, spread=30, tangent=30); // glued_circles(d=30, spread=30, tangent=15); // glued_circles(d=30, spread=30, tangent=-30); // Example(2D): Called as Function // stroke(closed=true, glued_circles(r=15, spread=40, tangent=45)); function glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=10), r2 = (spread/2 / sin(tangent)) - r, cp1 = [spread/2, 0], cp2 = [0, (r+r2)*cos(tangent)], sa1 = 90-tangent, ea1 = 270+tangent, lobearc = ea1-sa1, lobesegs = ceil(segs(r)*lobearc/360), sa2 = 270-tangent, ea2 = 270+tangent, subarc = ea2-sa2, arcsegs = ceil(segs(r2)*abs(subarc)/360), // In the tangent zero case the inner curves are missing so we need to complete the two // outer curves. In the other case the inner curves are present and endpoint=false // prevents point duplication. path = tangent==0 ? concat(arc(N=lobesegs+1, r=r, cp=-cp1, angle=[sa1,ea1]), arc(N=lobesegs+1, r=r, cp=cp1, angle=[sa1+180,ea1+180])) : concat(arc(N=lobesegs, r=r, cp=-cp1, angle=[sa1,ea1], endpoint=false), [for(theta=lerpn(ea2+180,ea2-subarc+180,arcsegs,endpoint=false)) r2*[cos(theta),sin(theta)] - cp2], arc(N=lobesegs, r=r, cp=cp1, angle=[sa1+180,ea1+180], endpoint=false), [for(theta=lerpn(ea2,ea2-subarc,arcsegs,endpoint=false)) r2*[cos(theta),sin(theta)] + cp2]), maxx_idx = max_index(column(path,0)), path2 = reverse_polygon(list_rotate(path,maxx_idx)) ) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2); module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) { path = glued_circles(r=r, d=d, spread=spread, tangent=tangent); attachable(anchor,spin, two_d=true, path=path, extent=true) { polygon(path); children(); } } function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) = pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1); // Function&Module: supershape() // Usage: As Module // supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], ); // Usage: With Attachments // supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], ) { attachments } // Usage: As Function // path = supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], ); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse() // Description: // When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // Note that the "hull" type anchoring (the default) is more intuitive for concave star-like shapes, but the anchor points do not // necesarily lie on the line of the anchor vector, which can be confusing, especially for simpler, ellipse-like shapes. // Arguments: // step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate. // m1 = The m1 argument for the superformula. Default: 4. // m2 = The m2 argument for the superformula. Default: m1. // n1 = The n1 argument for the superformula. Default: 1. // n2 = The n2 argument for the superformula. Default: n1. // n3 = The n3 argument for the superformula. Default: n2. // a = The a argument for the superformula. Default: 1. // b = The b argument for the superformula. Default: a. // r = Radius of the shape. Scale shape to fit in a circle of radius r. // --- // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // atype = Select "hull" or "intersect" style anchoring. Default: "hull". // Example(2D): // supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50); // Example(2D): Called as Function // stroke(closed=true, supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,d=100)); // Examples(2D,Med): // for(n=[2:5]) right(2.5*(n-2)) supershape(m1=4,m2=4,n1=n,a=1,b=2); // Superellipses // m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(.5,m1=m[i],n1=1); // m=[6,8,10,12]; for(i=[0:3]) right(2.7*i) supershape(.5,m1=m[i],n1=1,b=1.5); // m should be even // m=[1,2,3,5]; for(i=[0:3]) fwd(1.5*i) supershape(m1=m[i],n1=0.4); // supershape(m1=5, n1=4, n2=1); right(2.5) supershape(m1=5, n1=40, n2=10); // m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(m1=m[i], n1=60, n2=55, n3=30); // n=[0.5,0.2,0.1,0.02]; for(i=[0:3]) right(2.5*i) supershape(m1=5,n1=n[i], n2=1.7); // supershape(m1=2, n1=1, n2=4, n3=8); // supershape(m1=7, n1=2, n2=8, n3=4); // supershape(m1=7, n1=3, n2=4, n3=17); // supershape(m1=4, n1=1/2, n2=1/2, n3=4); // supershape(m1=4, n1=4.0,n2=16, n3=1.5, a=0.9, b=9); // for(i=[1:4]) right(3*i) supershape(m1=i, m2=3*i, n1=2); // m=[4,6,10]; for(i=[0:2]) right(i*5) supershape(m1=m[i], n1=12, n2=8, n3=5, a=2.7); // for(i=[-1.5:3:1.5]) right(i*1.5) supershape(m1=2,m2=10,n1=i,n2=1); // for(i=[1:3],j=[-1,1]) translate([3.5*i,1.5*j])supershape(m1=4,m2=6,n1=i*j,n2=1); // for(i=[1:3]) right(2.5*i)supershape(step=.5,m1=88, m2=64, n1=-i*i,n2=1,r=1); // Examples: // linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6); // linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10); function supershape(step=0.5, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER, spin=0, atype="hull") = assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"") let( r = get_radius(r=r, d=d, dflt=undef), m2 = is_def(m2) ? m2 : m1, n2 = is_def(n2) ? n2 : n1, n3 = is_def(n3) ? n3 : n2, b = is_def(b) ? b : a, steps = ceil(360/step), step = 360/steps, angs = [for (i = [0:steps]) step*i], rads = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)], scale = is_def(r) ? r/max(rads) : 1, path = [for (i = [steps:-1:1]) let(a=angs[i]) scale*rads[i]*[cos(a), sin(a)]] ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=atype=="hull"); module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0, atype="hull") { assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d); attachable(anchor,spin,extent=atype=="hull", two_d=true, path=path) { polygon(path); children(); } } // Function&Module: reuleaux_polygon() // Usage: As Module // reuleaux_polygon(N, r|d, ...); // Usage: As Function // path = reuleaux_polygon(N, r|d, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: regular_ngon(), pentagon(), hexagon(), octagon() // Description: // Creates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring. // Arguments: // N = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3 // r = Radius of the shape. Scale shape to fit in a circle of radius r. // --- // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // Examples(2D): // reuleaux_polygon(N=3, r=50); // reuleaux_polygon(N=5, d=100); // Examples(2D): Standard vector anchors are based on extents // reuleaux_polygon(N=3, d=50) show_anchors(custom=false); // Examples(2D): Named anchors exist for the tips // reuleaux_polygon(N=3, d=50) show_anchors(std=false); module reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) { assert(N>=3 && (N%2)==1); r = get_radius(r=r, d=d, dflt=1); path = reuleaux_polygon(N=N, r=r); anchors = [ for (i = [0:1:N-1]) let( ca = 360 - i * 360/N, cp = polar_to_xy(r, ca) ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ]; attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) { polygon(path); children(); } } function reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) = assert(N>=3 && (N%2)==1) let( r = get_radius(r=r, d=d, dflt=1), ssegs = max(3,ceil(segs(r)/N)), slen = norm(polar_to_xy(r,0)-polar_to_xy(r,180-180/N)), path = [ for (i = [0:1:N-1]) let( ca = 180 - (i+0.5) * 360/N, sa = ca + 180 + (90/N), ea = ca + 180 - (90/N), cp = polar_to_xy(r, ca) ) each arc(N=ssegs-1, r=slen, cp=cp, angle=[sa,ea], endpoint=false) ], anchors = [ for (i = [0:1:N-1]) let( ca = 360 - i * 360/N, cp = polar_to_xy(r, ca) ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors, p=path); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap