mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-08-04 11:27:35 +02:00
213 lines
8.5 KiB
Python
213 lines
8.5 KiB
Python
# Utility to convert GeoTIFF data to OpenSCAD, JSON, or PNG grayscale formats.
|
||
# Written with some back-and-forth collaboration with ChatGPT
|
||
# 16 May 2025
|
||
|
||
# Sources of Planetary/Moon GeoTIFF Data (information below may be out of date)
|
||
#
|
||
# 1. USGS Astrogeology Science Center - https://astrogeology.usgs.gov/search
|
||
# Elevation/bathymetry GeoTIFFs for:
|
||
# Mars (MOLA)
|
||
# Moon (LOLA)
|
||
# Venus (Magellan)
|
||
# Mercury (MESSENGER)
|
||
# Ceres, Vesta, Europa, Ganymede, Titan, etc.
|
||
# Most data is in GeoTIFF or .IMG formats. Look for DEM, DTM, or topography in the search.
|
||
#
|
||
# 2. NASA PDS (Planetary Data System) - https://pds.nasa.gov
|
||
# More advanced, but hosts nearly every planetary mission dataset.
|
||
# Good for Mars, the Moon, and Mercury.
|
||
#
|
||
# 3. OpenPlanetaryMap / OpenPlanetary - https://github.com/OpenPlanetary/opm
|
||
# Community-led project with easy-to-use formats.
|
||
|
||
# Files may be large (100–500 MB)! Some are .IMG or .JP2 and must be converted to .tif using GDAL.
|
||
# Some planetary datasets use planetocentric or planetographic projections — still usable for 2D mapping.
|
||
|
||
# ----------------------------
|
||
# Required modules
|
||
# ----------------------------
|
||
|
||
# builtin modules that should always be available
|
||
import os
|
||
import sys
|
||
import argparse
|
||
import json
|
||
|
||
# Require necessary other modules
|
||
def require_module(name, alias=None, install_hint=None):
|
||
try:
|
||
module = __import__(name)
|
||
if alias:
|
||
globals()[alias] = module
|
||
else:
|
||
globals()[name] = module
|
||
except ImportError:
|
||
print(f"Error: This script requires the '{name}' package.")
|
||
if install_hint:
|
||
print(f"Install it using: {install_hint}")
|
||
else:
|
||
print(f"Try: pip install {name}")
|
||
sys.exit(1)
|
||
|
||
require_module('rasterio', install_hint='pip install rasterio')
|
||
require_module('numpy', alias='np', install_hint='pip install numpy')
|
||
require_module('PIL.Image', alias='Image', install_hint='pip install pillow')
|
||
|
||
from rasterio.enums import Resampling
|
||
|
||
# ----------------------------
|
||
# Command-line argument parsing
|
||
# ----------------------------
|
||
|
||
parser = argparse.ArgumentParser(
|
||
description="Convert a GeoTIFF elevation file to an OpenSCAD 2D array using nonlinear elevation scaling.",
|
||
epilog="""Examples:
|
||
python geotiff2scad.py mydata.tif
|
||
python geotiff2scad.py mydata.tif -o terrain.scad -v terrain_data -r 720x360
|
||
python geotiff2scad.py mydata.tif --resize 360 --output terrain.scad --varname elevation_map
|
||
""",
|
||
formatter_class=argparse.RawTextHelpFormatter
|
||
)
|
||
parser.add_argument("input_file", nargs='?', default="geotiff.tif", help="Input GeoTIFF filename (default=geotiff.tif)")
|
||
parser.add_argument("-o", "--output", default="terrain.scad", help="Output file (.scad, .json, or .png) (default=terrain.scad)")
|
||
parser.add_argument("-v", "--varname", default="elevation_data", help="Variable name for SCAD array (default=elevation_data)")
|
||
parser.add_argument("-r", "--resize", default="360", help="Resize to WxH or W; e.g. 300x150, or 300 width preserving aspect; default=360)")
|
||
parser.add_argument("-s", "--scale", default="cbrt", choices=["cbrt", "sqrt"], help="Scaling method (cube root or sqare root, default=cbrt)")
|
||
parser.add_argument("--min_land_value", type=float, default=0.03, help="Minimum scaled value for coastlines, default=0.03, use 0 for planets/moons")
|
||
args = parser.parse_args()
|
||
if len(sys.argv) == 1:
|
||
parser.print_help()
|
||
sys.exit(0)
|
||
|
||
output_ext = os.path.splitext(args.output)[1].lower()
|
||
if output_ext not in [".scad", ".json", ".png"]:
|
||
print(f"Error: Filename '{args.output}' requires an extension .scad, .json, or .png to specify output type.")
|
||
sys.exit(1)
|
||
output_type = output_ext[1:] # Removes the dot, e.g., 'json', 'png', 'scad'
|
||
output_filename = args.output
|
||
|
||
|
||
# Parse resize dimensions
|
||
def parse_resize(resize_str, aspect):
|
||
if "x" in resize_str:
|
||
w, h = map(int, resize_str.lower().split("x"))
|
||
else: # use aspect ratio to get height
|
||
w = int(resize_str)
|
||
h = int(round(w / aspect))
|
||
return w, h
|
||
|
||
output_width = 0
|
||
output_height = 0
|
||
|
||
# ----------------------------
|
||
# Load GeoTIFF and downsample
|
||
# ----------------------------
|
||
with rasterio.open(args.input_file) as src:
|
||
input_width = src.width
|
||
input_height = src.height
|
||
output_width, output_height = parse_resize(args.resize, input_width/input_height)
|
||
print(f"Reading data from {args.input_file} and resampling")
|
||
data = src.read(1, out_shape=(1, output_height, output_width), resampling=Resampling.bilinear)
|
||
# Replace nodata values
|
||
nodata = src.nodata
|
||
if nodata is not None:
|
||
data[data == nodata] = 0
|
||
data = np.nan_to_num(data, nan=0)
|
||
|
||
# Basic elevation stats
|
||
|
||
raw_min = np.min(data)
|
||
raw_max = np.max(data)
|
||
|
||
min_land_value = args.min_land_value # e.g. 0.04
|
||
land_mask = data > 0 # positive elevations
|
||
sea_mask = data <= 0 # sea level and below
|
||
|
||
# ----------------------------
|
||
# Scale data using cube-root or square-root
|
||
# ----------------------------
|
||
|
||
def scale_fn(x, mode=args.scale): # args.scale is 'cbrt' or 'sqrt'
|
||
if mode == "sqrt":
|
||
return np.sqrt(x)
|
||
elif mode == "cbrt":
|
||
return np.cbrt(x)
|
||
else:
|
||
raise ValueError("Unsupported scale mode")
|
||
|
||
scaled = np.zeros_like(data, dtype=np.float32) # zero'd output array
|
||
|
||
# ---- LAND -------------------------------------------------------
|
||
land_data = scale_fn(data[land_mask]) # transform land only
|
||
min_land = land_data.min()
|
||
max_land = land_data.max()
|
||
|
||
# Scale factor is derived **solely from land range**
|
||
scale_factor = (1.0 - min_land_value) / (max_land - min_land)
|
||
|
||
# Map land to [min_land_value, 1.0]
|
||
scaled[land_mask] = (land_data - min_land) * scale_factor + min_land_value
|
||
|
||
# ---- SEA --------------------------------------------------------
|
||
# Use the same scale_factor so land & sea remain proportional,
|
||
# but subtract sea’s own minimum (shallowest depth) so that
|
||
# sea level (0 m) maps to -min_land_value and deeper values extend down.
|
||
if np.any(sea_mask):
|
||
sea_data = scale_fn(np.abs(data[sea_mask])) # make depths positive, then transform
|
||
min_sea = sea_data.min() # shallowest (near zero)
|
||
# Map sea to [ -min_land_value … more negative ]
|
||
scaled[sea_mask] = -((sea_data - min_sea) * scale_factor + min_land_value)
|
||
|
||
# ----------------------------
|
||
# Output
|
||
# ----------------------------
|
||
|
||
# Compact formatter for OpenSCAD (no unnecessary whitespace, no leading zero before decimal point)
|
||
def format_val(val):
|
||
# Omit leading 0 and trailing zeros
|
||
out = f"{val:.2f}".lstrip("0").rstrip("0").rstrip(".") if val >= 0 else f"-{abs(val):.2f}".lstrip("0").rstrip("0").rstrip(".")
|
||
if (len(out) == 0): return "0"
|
||
else: return out
|
||
|
||
# Compact formatter for json (no unnecessary whitespace, but has leading zeros for json standards compliance)
|
||
def format_json_array(data_array):
|
||
return json.dumps(data_array, separators=(',', ':'))
|
||
|
||
print(f"Original resolution: {src.width}×{src.height}")
|
||
print(f"Output resolution: {output_width}×{output_height}")
|
||
print(f"Resampled elevation range: {raw_min} to {raw_max}")
|
||
scel_min = np.min(scaled)
|
||
scel_max = np.max(scaled)
|
||
if output_type=="png":
|
||
# Normalize to 0–255 for 8-bit grayscale
|
||
scaled = (scaled - scaled.min()) / (scaled.max() - scaled.min())
|
||
scel_min = np.min(scaled*255).astype(np.uint8)
|
||
scel_max = np.max(scaled*255).astype(np.uint8)
|
||
print(f"Scaled elevation range: {format_val(scel_min)} to {format_val(scel_max)}")
|
||
print(f"Writing output file {output_filename}")
|
||
|
||
if output_type=="json":
|
||
formatted_array = [
|
||
[round(val, 2) for val in row] for row in scaled.tolist()
|
||
]
|
||
with open(output_filename, "w") as f:
|
||
json.dump({args.varname: formatted_array}, f, separators=(",", ":"))
|
||
elif output_type=="png":
|
||
from PIL import Image
|
||
img_array = (scaled * 255).astype(np.uint8)
|
||
img = Image.fromarray(img_array, mode='L')
|
||
img.save(output_filename)
|
||
else: # output .scad
|
||
with open(output_filename, "w") as f:
|
||
f.write(f"// Auto-generated terrain data\n")
|
||
f.write(f"// Source file: {args.input_file}\n")
|
||
f.write(f"// Original resolution: {src.width}×{src.height}\n")
|
||
f.write(f"// Output resolution: {output_width}×{output_height}\n")
|
||
f.write(f"// Resampled elevation range: {raw_min} to {raw_max} meters\n")
|
||
f.write(f"// Scaled elevation range: {scel_min} to {scel_max}\n")
|
||
f.write(f"{args.varname} = [\n")
|
||
for row in scaled:
|
||
line = "[" + ",".join(format_val(val) for val in row) + "],\n"
|
||
f.write(line)
|
||
f.write("];\n")
|