BOSL2/quaternions.scad

278 lines
8.1 KiB
OpenSCAD

///////////////////////////////////////////
// LibFile: quaternions.scad
// Support for Quaternions.
// To use, add the following line to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
///////////////////////////////////////////
// Section: Quaternions
// Quaternions are fast methods of storing and calculating arbitrary rotations.
// Quaternions contain information on both axis of rotation, and rotation angle.
// You can chain multiple rotation together by multiplying quaternions together.
// They don't suffer from the gimbal-lock issues that [X,Y,Z] rotation angles do.
// Quaternions are stored internally as a 4-value vector:
// `[X, Y, Z, W] = W + Xi + Yj + Zk`
// Internal
function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
// Function: Quat()
// Usage:
// Quat(ax, ang);
// Description: Create a new Quaternion from axis and angle of rotation.
// Arguments:
// ax = Vector of axis of rotation.
// ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function Quat(ax=[0,0,1], ang=0) = _Quat(ax/norm(ax), sin(ang/2), cos(ang/2));
// Function: QuatX()
// Usage:
// QuatX(a);
// Description: Create a new Quaternion for rotating around the X axis [1,0,0].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatX(a=0) = Quat([1,0,0],a);
// Function: QuatY()
// Usage:
// QuatY(a);
// Description: Create a new Quaternion for rotating around the Y axis [0,1,0].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatY(a=0) = Quat([0,1,0],a);
// Function: QuatZ()
// Usage:
// QuatZ(a);
// Description: Create a new Quaternion for rotating around the Z axis [0,0,1].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatZ(a=0) = Quat([0,0,1],a);
// Function: QuatXYZ()
// Usage:
// QuatXYZ([X,Y,Z])
// Description:
// Creates a quaternion from standard [X,Y,Z] rotation angles in degrees.
// Arguments:
// a = The triplet of rotation angles, [X,Y,Z]
function QuatXYZ(a=[0,0,0]) =
let(
qx = QuatX(a[0]),
qy = QuatY(a[1]),
qz = QuatZ(a[2])
)
Q_Mul(qz, Q_Mul(qy, qx));
// Function: Q_Ident()
// Description: Returns the "Identity" zero-rotation Quaternion.
function Q_Ident() = [0, 0, 0, 1];
// Function: Q_Add_S()
// Usage:
// Q_Add_S(q, s)
// Description: Adds a scalar value `s` to the W part of a quaternion `q`.
function Q_Add_S(q, s) = q+[0,0,0,s];
// Function: Q_Sub_S()
// Usage:
// Q_Sub_S(q, s)
// Description: Subtracts a scalar value `s` from the W part of a quaternion `q`.
function Q_Sub_S(q, s) = q-[0,0,0,s];
// Function: Q_Mul_S()
// Usage:
// Q_Mul_S(q, s)
// Description: Multiplies each part of a quaternion `q` by a scalar value `s`.
function Q_Mul_S(q, s) = q*s;
// Function: Q_Div_S()
// Usage:
// Q_Div_S(q, s)
// Description: Divides each part of a quaternion `q` by a scalar value `s`.
function Q_Div_S(q, s) = q/s;
// Function: Q_Add()
// Usage:
// Q_Add(a, b)
// Description: Adds each part of two quaternions together.
function Q_Add(a, b) = a+b;
// Function: Q_Sub()
// Usage:
// Q_Sub(a, b)
// Description: Subtracts each part of quaternion `b` from quaternion `a`.
function Q_Sub(a, b) = a-b;
// Function: Q_Mul()
// Usage:
// Q_Mul(a, b)
// Description: Multiplies quaternion `a` by quaternion `b`.
function Q_Mul(a, b) = [
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z,
];
// Function: Q_Dot()
// Usage:
// Q_Dot(a, b)
// Description: Calculates the dot product between quaternions `a` and `b`.
function Q_Dot(a, b) = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
// Function: Q_Neg()
// Usage:
// Q_Neg(q)
// Description: Returns the negative of quaternion `q`.
function Q_Neg(q) = -q;
// Function: Q_Conj()
// Usage:
// Q_Conj(q)
// Description: Returns the conjugate of quaternion `q`.
function Q_Conj(q) = [-q.x, -q.y, -q.z, q[3]];
// Function: Q_Norm()
// Usage:
// Q_Norm(q)
// Description: Returns the `norm()` "length" of quaternion `q`.
function Q_Norm(q) = norm(q);
// Function: Q_Normalize()
// Usage:
// Q_Normalize(q)
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
function Q_Normalize(q) = q/norm(q);
// Function: Q_Dist()
// Usage:
// Q_Dist(q1, q2)
// Description: Returns the "distance" between two quaternions.
function Q_Dist(q1, q2) = norm(q2-q1);
// Function: Q_Slerp()
// Usage:
// Q_Slerp(q1, q2, u);
// Description:
// Returns a quaternion that is a spherical interpolation between two quaternions.
// Arguments:
// q1 = The first quaternion. (u=0)
// q2 = The second quaternion. (u=1)
// u = The proportional value, from 0 to 1, of what part of the interpolation to return.
// Example(3D):
// a = QuatY(15);
// b = QuatY(75);
// color("blue",0.25) Qrot(a) cylinder(d=1, h=80);
// color("red",0.25) Qrot(b) cylinder(d=1, h=80);
// Qrot(Q_Slerp(a, b, 0.6)) cylinder(d=1, h=80);
function Q_Slerp(q1, q2, u) = let(
dot = Q_Dot(q1, q2),
qq2 = dot<0? Q_Neg(q2) : q2,
dott = dot<0? -dot : dot,
theta = u * acos(constrain(dott,-1,1))
) (dott>0.9995)?
Q_Normalize(q1 + ((qq2-q1) * u)) :
(q1*cos(theta) + (Q_Normalize(qq2 - (q1 * dott)) * sin(theta)));
// Function: Q_Matrix3()
// Usage:
// Q_Matrix3(q);
// Description:
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
function Q_Matrix3(q) = [
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]]
];
// Function: Q_Matrix4()
// Usage:
// Q_Matrix4(q);
// Description:
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
function Q_Matrix4(q) = [
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0],
[ 0, 0, 0, 1]
];
// Function: Q_Axis()
// Usage:
// Q_Axis(q)
// Description:
// Returns the axis of rotation of a normalized quaternion `q`.
function Q_Axis(q) = let(d = sqrt(1-(q[3]*q[3]))) (d==0)? [0,0,1] : [q[0]/d, q[1]/d, q[2]/d];
// Function: Q_Angle()
// Usage:
// Q_Angle(q)
// Description:
// Returns the angle of rotation (in degrees) of a normalized quaternion `q`.
function Q_Angle(q) = 2 * acos(q[3]);
// Function&Module: Qrot()
// Usage: As Module
// Qrot(q) ...
// Usage: As Function
// pts = Qrot(q,p);
// Description:
// When called as a module, rotates all children by the rotation stored in quaternion `q`.
// When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`.
// When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`.
// Example(FlatSpin):
// q = QuatXYZ([45,35,10]);
// color("red",0.25) cylinder(d=1,h=80);
// Qrot(q) cylinder(d=1,h=80);
// Example(NORENDER):
// q = QuatXYZ([45,35,10]);
// mat4x4 = Qrot(q);
// Example(NORENDER):
// q = QuatXYZ([45,35,10]);
// pt = Qrot(q, p=[4,5,6]);
// Example(NORENDER):
// q = QuatXYZ([45,35,10]);
// pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
module Qrot(q) {
multmatrix(Q_Matrix4(q)) {
children();
}
}
function Qrot(q,p) =
is_undef(p)? Q_Matrix4(q) :
is_vector(p)? Qrot(q,[p])[0] :
affine3d_apply(p,[Q_Matrix4(q)]);
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap