BOSL2/partitions.scad

197 lines
10 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: partitions.scad
// Modules to help partition large objects into smaller parts that can be reassembled.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/partitions.scad>
// FileGroup: Advanced Modeling
// FileSummary: Modules to help partition large objects into smaller assembled parts.
//////////////////////////////////////////////////////////////////////
// Section: Partitioning
function _partition_subpath(type) =
type=="flat"? [[0,0],[1,0]] :
type=="sawtooth"? [[0,-0.5], [0.5,0.5], [1,-0.5]] :
type=="sinewave"? [for (a=[0:5:360]) [a/360,sin(a)/2]] :
type=="comb"? let(dx=0.5*sin(2)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
type=="finger"? let(dx=0.5*sin(20)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
type=="dovetail"? [[0,-0.5], [0.3,-0.5], [0.2,0.5], [0.8,0.5], [0.7,-0.5], [1,-0.5]] :
type=="hammerhead"? [[0,-0.5], [0.35,-0.5], [0.35,0], [0.15,0], [0.15,0.5], [0.85,0.5], [0.85,0], [0.65,0], [0.65,-0.5],[1,-0.5]] :
type=="jigsaw"? concat(
arc(r=5/16, cp=[0,-3/16], start=270, angle=125),
arc(r=5/16, cp=[1/2,3/16], start=215, angle=-250),
arc(r=5/16, cp=[1,-3/16], start=145, angle=125)
) :
assert(false, str("Unsupported cutpath type: ", type));
function _partition_cutpath(l, h, cutsize, cutpath, gap) =
let(
check = assert(is_finite(l))
assert(is_finite(h))
assert(is_finite(gap))
assert(is_finite(cutsize) || is_vector(cutsize,2))
assert(is_string(cutpath) || is_path(cutpath,2)),
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize],
cutpath = is_path(cutpath)? cutpath :
_partition_subpath(cutpath),
reps = ceil(l/(cutsize.x+gap)),
cplen = (cutsize.x+gap) * reps,
path = deduplicate(concat(
[[-l/2, cutpath[0].y*cutsize.y]],
[for (i=[0:1:reps-1], pt=cutpath) v_mul(pt,cutsize)+[i*(cutsize.x+gap)+gap/2-cplen/2,0]],
[[ l/2, cutpath[len(cutpath)-1].y*cutsize.y]]
)),
stidxs = [for (i = idx(path)) if (path[i].x < -l/2) i],
enidxs = [for (i = idx(path)) if (path[i].x > +l/2) i],
stidx = stidxs? last(stidxs) : 0,
enidx = enidxs? enidxs[0] : -1,
trunc = select(path, stidx, enidx)
) trunc;
// Module: partition_mask()
// Usage:
// partition_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient],);
// Description:
// Creates a mask that you can use to difference or intersect with an object to remove half of it, leaving behind a side designed to allow assembly of the sub-parts.
// Arguments:
// l = The length of the cut axis.
// w = The width of the part to be masked, back from the cut plane.
// h = The height of the part to be masked.
// cutsize = The width of the cut pattern to be used.
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
// gap = Empty gaps between cutpath iterations. Default: 0
// inverse = If true, create a cutpath that is meant to mate to a non-inverted cutpath.
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// $slop = The amount to shrink the mask by, to correct for printer-specific fitting.
// Examples:
// partition_mask(w=50, gap=0, cutpath="jigsaw");
// partition_mask(w=50, gap=30, cutpath="jigsaw");
// partition_mask(w=50, gap=30, cutpath="jigsaw", inverse=true);
// partition_mask(w=50, gap=30, cutsize=15, cutpath="jigsaw");
// partition_mask(w=50, cutsize=[20,20], gap=30, cutpath="jigsaw");
// Examples(2D):
// partition_mask(w=20, cutpath="sawtooth");
// partition_mask(w=20, cutpath="sinewave");
// partition_mask(w=20, cutpath="comb");
// partition_mask(w=20, cutpath="finger");
// partition_mask(w=20, cutpath="dovetail");
// partition_mask(w=20, cutpath="hammerhead");
// partition_mask(w=20, cutpath="jigsaw");
module partition_mask(l=100, w=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, inverse=false, anchor=CENTER, spin=0, orient=UP)
{
cutsize = is_vector(cutsize)? point2d(cutsize) : [cutsize*2, cutsize];
path = _partition_cutpath(l, h, cutsize, cutpath, gap);
midpath = select(path,1,-2);
sizepath = concat([path[0]+[-$slop,0]], midpath, [last(path)+[$slop,0]], [[+(l/2+$slop), (w+$slop)*(inverse?-1:1)], [-(l/2+$slop), (w+$slop)*(inverse?-1:1)]]);
bnds = pointlist_bounds(sizepath);
fullpath = concat(path, [[last(path).x, w*(inverse?-1:1)], [path[0].x, w*(inverse?-1:1)]]);
attachable(anchor,spin,orient, size=point3d(bnds[1]-bnds[0],h)) {
linear_extrude(height=h, center=true, convexity=10) {
intersection() {
offset(delta=-$slop) polygon(fullpath);
square([l, w*2], center=true);
}
}
children();
}
}
// Module: partition_cut_mask()
// Usage:
// partition_cut_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient]);
// Description:
// Creates a mask that you can use to difference with an object to cut it into two sub-parts that can be assembled.
// The `$slop` value is important to get the proper fit and should probably be smaller than 0.2. The examples below
// use larger values to make the mask easier to see.
// Arguments:
// l = The length of the cut axis.
// w = The width of the part to be masked, back from the cut plane.
// h = The height of the part to be masked.
// cutsize = The width of the cut pattern to be used.
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5. Default: "jigsaw"
// gap = Empty gaps between cutpath iterations. Default: 0
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// $slop = The width of the cut mask, to correct for printer-specific fitting. Min: 0.05.
// Examples:
// partition_cut_mask(gap=0, cutpath="dovetail");
// partition_cut_mask(gap=30, cutpath="dovetail");
// partition_cut_mask(gap=30, cutsize=15, cutpath="dovetail");
// partition_cut_mask(gap=30, cutsize=[20,20], cutpath="dovetail");
// Examples(2DMed):
// partition_cut_mask(cutpath="sawtooth",$slop=0.5);
// partition_cut_mask(cutpath="sinewave",$slop=0.5);
// partition_cut_mask(cutpath="comb",$slop=0.5);
// partition_cut_mask(cutpath="finger",$slop=0.5);
// partition_cut_mask(cutpath="dovetail",$slop=1);
// partition_cut_mask(cutpath="hammerhead",$slop=1);
// partition_cut_mask(cutpath="jigsaw",$slop=0.5);
module partition_cut_mask(l=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, anchor=CENTER, spin=0, orient=UP)
{
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
path = _partition_cutpath(l, h, cutsize, cutpath, gap);
attachable(anchor,spin,orient, size=[l,cutsize.y,h]) {
linear_extrude(height=h, center=true, convexity=10) {
stroke(path, width=max(0.1, $slop*2));
}
children();
}
}
// Module: partition()
// Usage:
// partition(size, [spread], [cutsize], [cutpath], [gap], [spin]) ...
// Description:
// Partitions an object into two parts, spread apart a small distance, with matched joining edges.
// Arguments:
// size = The [X,Y,Z] size of the object to partition.
// spread = The distance to spread the two parts by.
// cutsize = The width of the cut pattern to be used.
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
// gap = Empty gaps between cutpath iterations. Default: 0
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// Examples(Med):
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
// partition(spread=12, gap=30, cutpath="dovetail") cylinder(h=50, d=80, center=false);
// partition(spread=20, gap=20, cutsize=15, cutpath="dovetail") cylinder(h=50, d=80, center=false);
// partition(spread=25, gap=15, cutsize=[20,20], cutpath="dovetail") cylinder(h=50, d=80, center=false);
// Examples(2DMed):
// partition(cutpath="sawtooth") cylinder(h=50, d=80, center=false);
// partition(cutpath="sinewave") cylinder(h=50, d=80, center=false);
// partition(cutpath="comb") cylinder(h=50, d=80, center=false);
// partition(cutpath="finger") cylinder(h=50, d=80, center=false);
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
// partition(spread=12, cutpath="hammerhead") cylinder(h=50, d=80, center=false);
// partition(cutpath="jigsaw") cylinder(h=50, d=80, center=false);
module partition(size=100, spread=10, cutsize=10, cutpath="jigsaw", gap=0, spin=0)
{
size = is_vector(size)? size : [size,size,size];
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
rsize = v_abs(rot(spin,p=size));
vec = rot(spin,p=BACK)*spread/2;
move(vec) {
intersection() {
children();
partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, spin=spin);
}
}
move(-vec) {
intersection() {
children();
partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, inverse=true, spin=spin);
}
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap