BOSL2/common.scad

610 lines
23 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: common.scad
// Common functions used in argument processing.
// To use, include this line at the top of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Type handling helpers.
// Function: typeof()
// Usage:
// typ = typeof(x);
// Description:
// Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid".
// Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid".
function typeof(x) =
is_undef(x)? "undef" :
is_bool(x)? "boolean" :
is_num(x)? "number" :
is_nan(x)? "nan" :
is_string(x)? "string" :
is_list(x)? "list" :
is_range(x) ? "range" :
"invalid";
// Function: is_type()
// Usage:
// b = is_type(x, types);
// Description:
// Returns true if the type of the value `x` is one of those given as strings in the list `types`.
// Valid types are "undef", "boolean", "number", "nan", "string", "list", or "range"
// Arguments:
// x = The value to check the type of.
// types = A list of types to check
// Example:
// is_str_or_list = is_type("foo", ["string","list"]); // Returns: true
// is_str_or_list2 = is_type([1,2,3], ["string","list"]); // Returns: true
// is_str_or_list3 = is_type(2, ["string","list"]); // Returns: false
// is_str = is_type("foo", "string"); // Returns: true
// is_str2 = is_type([3,4], "string"); // Returns: false
// is_str3 = is_type(["foo"], "string"); // Returns: false
// is_str4 = is_type(3, "string"); // Returns: false
function is_type(x,types) =
is_list(types)? in_list(typeof(x),types) :
is_string(types)? typeof(x) == types :
assert(is_list(types)||is_string(types));
// Function: is_def()
// Usage:
// is_def(x)
// Description:
// Returns true if `x` is not `undef`. False if `x==undef`.
function is_def(x) = !is_undef(x);
// Function: is_str()
// Usage:
// is_str(x)
// Description:
// Returns true if `x` is a string. A shortcut for `is_string()`.
function is_str(x) = is_string(x);
// Function: is_int()
// Usage:
// is_int(n)
// Description:
// Returns true if the given value is an integer (it is a number and it rounds to itself).
function is_int(n) = is_finite(n) && n == round(n);
function is_integer(n) = is_finite(n) && n == round(n);
// Function: is_nan()
// Usage:
// is_nan(x);
// Description:
// Returns true if a given value `x` is nan, a floating point value representing "not a number".
function is_nan(x) = (x!=x);
// Function: is_finite()
// Usage:
// is_finite(x);
// Description:
// Returns true if a given value `x` is a finite number.
function is_finite(x) = is_num(x) && !is_nan(0*x);
// Function: is_range()
// Description:
// Returns true if its argument is a range
function is_range(x) = !is_list(x) && is_finite(x[0]) && is_finite(x[1]) && is_finite(x[2]) ;
// Function: valid_range()
// Description:
// Returns true if its argument is a valid range (deprecated ranges excluded).
function valid_range(x) =
is_range(x)
&& ( x[1]>0
? x[0]<=x[2]
: ( x[1]<0 && x[0]>=x[2] ) );
// Function: is_list_of()
// Usage:
// is_list_of(list, pattern)
// Description:
// Tests whether the input is a list whose entries are all numeric lists that have the same
// list shape as the pattern.
// Example:
// is_list_of([3,4,5], 0); // Returns true
// is_list_of([3,4,undef], 0); // Returns false
// is_list_of([[3,4],[4,5]], [1,1]); // Returns true
// is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true
// is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false
// is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true
// is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false
// is_list_of([], [1,[2,3]]); // Returns true
function is_list_of(list,pattern) =
let(pattern = 0*pattern)
is_list(list) &&
[]==[for(entry=0*list) if (entry != pattern) entry];
// Function: is_consistent()
// Usage:
// is_consistent(list)
// Description:
// Tests whether input is a list of entries which all have the same list structure
// and are filled with finite numerical data. It returns `true`for the empty list.
// Example:
// is_consistent([3,4,5]); // Returns true
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true
// is_consistent([[3,4,5],[3,4]]); // Returns false
// is_consistent([[3,[3,4,[5]]], [5,[2,9,[9]]]]); // Returns true
// is_consistent([[3,[3,4,[5]]], [5,[2,9,9]]]); // Returns false
function is_consistent(list) =
/*is_list(list) &&*/ is_list_of(list, _list_pattern(list[0]));
//Internal function
//Creates a list with the same structure of `list` with each of its elements substituted by 0.
function _list_pattern(list) =
is_list(list)
? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0]
: 0;
// Function: same_shape()
// Usage:
// same_shape(a,b)
// Description:
// Tests whether the inputs `a` and `b` are both numeric and are the same shaped list.
// Example:
// same_shape([3,[4,5]],[7,[3,4]]); // Returns true
// same_shape([3,4,5], [7,[3,4]]); // Returns false
function same_shape(a,b) = _list_pattern(a) == b*0;
// Section: Handling `undef`s.
// Function: default()
// Description:
// Returns the value given as `v` if it is not `undef`.
// Otherwise, returns the value of `dflt`.
// Arguments:
// v = Value to pass through if not `undef`.
// dflt = Value to return if `v` *is* `undef`.
function default(v,dflt=undef) = is_undef(v)? dflt : v;
// Function: first_defined()
// Description:
// Returns the first item in the list that is not `undef`.
// If all items are `undef`, or list is empty, returns `undef`.
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
function first_defined(v,recursive=false,_i=0) =
_i<len(v) && (
is_undef(v[_i]) || (
recursive &&
is_list(v[_i]) &&
is_undef(first_defined(v[_i],recursive=recursive))
)
)? first_defined(v,recursive=recursive,_i=_i+1) : v[_i];
// Function: one_defined()
// Usage:
// one_defined(vars, names, <required>)
// Description:
// Examines the input list `vars` and returns the entry which is not `undef`. If more
// than one entry is `undef` then issues an assertion specifying "Must define exactly one of" followed
// by the defined items from the `names` parameter. If `required` is set to false then it is OK if all of the
// entries of `vars` are undefined, and in this case, `undef` is returned.
// Example:
// length = one_defined([length,L,l], ["length","L","l"]);
function one_defined(vars, names, required=true) =
assert(len(vars)==len(names))
let (
ok = num_defined(vars)==1 || (!required && num_defined(vars)==0)
)
assert(ok,str("Must define ",required?"exactly":"at most"," one of ",num_defined(vars)==0?names:[for(i=[0:len(vars)]) if (is_def(vars[i])) names[i]]))
first_defined(vars);
// Function: num_defined()
// Description: Counts how many items in list `v` are not `undef`.
function num_defined(v) = len([for(vi=v) if(!is_undef(vi)) 1]);
// Function: any_defined()
// Description:
// Returns true if any item in the given array is not `undef`.
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, any sublists are evaluated recursively.
function any_defined(v,recursive=false) = first_defined(v,recursive=recursive) != undef;
// Function: all_defined()
// Description:
// Returns true if all items in the given array are not `undef`.
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, any sublists are evaluated recursively.
function all_defined(v,recursive=false) =
[]==[for (x=v) if(is_undef(x)||(recursive && is_list(x) && !all_defined(x,recursive))) 0 ];
// Section: Argument Helpers
// Function: get_anchor()
// Usage:
// get_anchor(anchor,center,<uncentered>,<dflt>);
// Description:
// Calculated the correct anchor from `anchor` and `center`. In order:
// - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned.
// - Otherwise, if `center` is not `undef` and `center` evaluates as false, then the value of `uncentered` is returned.
// - Otherwise, if `anchor` is not `undef`, then the value of `anchor` is returned.
// - Otherwise, the value of `dflt` is returned.
// This ordering ensures that `center` will override `anchor`.
// Arguments:
// anchor = The anchor name or vector.
// center = If not `undef`, this overrides the value of `anchor`.
// uncentered = The value to return if `center` is not `undef` and evaluates as false. Default: ALLNEG
// dflt = The default value to return if both `anchor` and `center` are `undef`. Default: `CENTER`
function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
!is_undef(center)? (center? CENTER : uncentered) :
!is_undef(anchor)? anchor :
dflt;
// Function: get_radius()
// Usage:
// get_radius(<r1>, <r2>, <r>, <d1>, <d2>, <d>, <dflt>);
// Description:
// Given various radii and diameters, returns the most specific radius.
// If a diameter is most specific, returns half its value, giving the radius.
// If no radii or diameters are defined, returns the value of dflt.
// Value specificity order is r1, r2, d1, d2, r, d, then dflt
// Only one of `r1`, `r2`, `d1`, or `d2` can be defined at once, or else it
// errors out, complaining about conflicting radius/diameter values.
// Only one of `r` or `d` can be defined at once, or else it errors out,
// complaining about conflicting radius/diameter values.
// Arguments:
// r1 = Most specific radius.
// d1 = Most specific diameter.
// r2 = Second most specific radius.
// d2 = Second most specific diameter.
// r = Most general radius.
// d = Most general diameter.
// dflt = Value to return if all other values given are `undef`.
function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) =
assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.")
!is_undef(r1) ? assert(is_finite(r1), "Invalid radius r1." ) r1
: !is_undef(r2) ? assert(is_finite(r2), "Invalid radius r2." ) r2
: !is_undef(d1) ? assert(is_finite(d1), "Invalid diameter d1." ) d1/2
: !is_undef(d2) ? assert(is_finite(d2), "Invalid diameter d2." ) d2/2
: !is_undef(r)
? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.")
assert(is_finite(r) || is_vector(r,1) || is_vector(r,2), "Invalid radius r." )
r
: !is_undef(d) ? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." ) d/2
: dflt;
// Function: get_height()
// Usage:
// get_height(<h>,<l>,<height>,<dflt>)
// Description:
// Given several different parameters for height check that height is not multiply defined
// and return a single value. If the three values `l`, `h`, and `height` are all undefined
// then return the value `dflt`, if given, or undef otherwise.
// Arguments:
// l = l.
// h = h.
// height = height.
// dflt = Value to return if other values are `undef`.
function get_height(h=undef,l=undef,height=undef,dflt=undef) =
assert(num_defined([h,l,height])<=1,"You must specify only one of `l`, `h`, and `height`")
first_defined([h,l,height,dflt]);
// Function: get_named_args(positional, named, _undef)
// Usage:
// function f(pos1=_undef, pos2=_undef,...,
// named1=_undef, named2=_undef, ...) =
// let(args = get_named_args([pos1, pos2, ...],
// [[named1, default1], [named2, default2], ...]),
// named1=args[0], named2=args[1], ...)
// ...
// Description:
// Given the values of some positional and named arguments,
// returns a list of the values assigned to named arguments,
// in the following way:
// - All named arguments which were explicitly assigned in the
// function call take the value provided.
// - All named arguments which were not provided by the user are
// affected from positional arguments; the priority order in which
// these are assigned is given by the `priority` argument, while the
// positional assignation is done in the order of the named arguments.
// - Any remaining named arguments take the provided default values.
// Arguments:
// positional = the list of values of positional arguments.
// named = the list of named arguments; each entry of the list has the
// form [passed-value, default-value, priority], where
// passed-value is the value that was passed at function call;
// default-value is the value that will be used if nothing is read
// from either named or positional arguments;
// priority is the priority assigned to this argument.
// _undef = the default value used by the calling function for all arguments (default is some random string that you will never use). (this is *not* undef, or any value that the user might purposely want to use as an argument value).
//
// If only k positional arguments are used, then the k named values
// with lowest 'priority' value (among the unassigned ones) will get them.
// The arguments will be assigned in the order of the named values.
// By default these two orders coincide.
//
//
// Examples:
// function f(arg1=_undef, arg2=_undef, arg3=_undef,
// named1=_undef, named2=_undef, named3=_undef) =
// let(named = get_named_args([arg1, arg2, arg3],
// [[named1, "default1"], [named2, "default2"], [named3, "default3"]]))
// named;
// echo(f()); // ["default1", "default2", "default3"]
// echo(f("given2", "given3", named1="given1")); // ["given1", "given2", "given3"]
// echo(f("given1")); // ["given1", "default2", "default3"]
// echo(f(named1="given1", "given2")); // ["given1", "given2", "default3"]
// echo(f(undef, named1="given1", undef)); // ["given1", undef, undef]
// a value that the user should never enter randomly;
// result of `dd if=/dev/random bs=32 count=1 |base64` :
_undef="LRG+HX7dy89RyHvDlAKvb9Y04OTuaikpx205CTh8BSI";
/* Note: however tempting it might be, it is *not* possible to accept
* named argument as a list [named1, named2, ...] (without default
* values), because the values [named1, named2...] themselves might be
* lists, and we will not be able to distinguish the two cases. */
function get_named_args(positional, named,_undef=_undef) =
let(deft = [for(p=named) p[1]], // default is undef
// indices of the values to fetch from positional args:
unknown = [for(x=enumerate(named)) if(x[1][0]==_undef) x[0]],
// number of values given to positional arguments:
n_positional = count_true([for(p=positional) p!=_undef]))
assert(n_positional <= len(unknown),
str("too many positional arguments (", n_positional, " given, ",
len(unknown), " required)"))
let(
// those elements which have no priority assigned go last (prio=+∞):
prio = sortidx([for(u=unknown) default(named[u][2], 1/0)]),
// list of indices of values assigned from positional arguments:
assigned = sort([for(i=[0:1:n_positional-1]) prio[i]]))
[ for(e = enumerate(named))
let(idx=e[0], val=e[1][0], ass=search(idx, assigned))
val != _undef ? val :
ass != [] ? positional[ass[0]] :
deft[idx] ];
// Function: scalar_vec3()
// Usage:
// scalar_vec3(v, <dflt>);
// Description:
// If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`.
// If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`.
// If `v` is a vector, returns the first 3 items, with any missing values replaced by `dflt`.
// If `v` is `undef`, returns `undef`.
// Arguments:
// v = Value to return vector from.
// dflt = Default value to set empty vector parts from.
function scalar_vec3(v, dflt=undef) =
is_undef(v)? undef :
is_list(v)? [for (i=[0:2]) default(v[i], default(dflt, 0))] :
!is_undef(dflt)? [v,dflt,dflt] : [v,v,v];
// Function: segs()
// Usage:
// sides = segs(r);
// Description:
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
// Arguments:
// r = Radius of circle to get the number of segments for.
function segs(r) =
$fn>0? ($fn>3? $fn : 3) :
let( r = is_finite(r)? r: 0 )
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs))) ;
// Module: no_children()
// Usage:
// no_children($children);
// Description:
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
// as indicated by its argument.
// Arguments:
// $children = number of children the module has.
module no_children(count) {
assert($children==0, "Module no_children() does not support child modules");
assert(count==0, str("Module ",parent_module(1),"() does not support child modules"));
}
// Section: Testing Helpers
function _valstr(x) =
is_list(x)? str("[",str_join([for (xx=x) _valstr(xx)],","),"]") :
is_finite(x)? fmt_float(x,12) : x;
// Module: assert_approx()
// Usage:
// assert_approx(got, expected, <info>);
// Description:
// Tests if the value gotten is what was expected. If not, then
// the expected and received values are printed to the console and
// an assertion is thrown to stop execution.
// Arguments:
// got = The value actually received.
// expected = The value that was expected.
// info = Extra info to print out to make the error clearer.
module assert_approx(got, expected, info) {
no_children($children);
if (!approx(got, expected)) {
echo();
echo(str("EXPECT: ", _valstr(expected)));
echo(str("GOT : ", _valstr(got)));
if (same_shape(got, expected)) {
echo(str("DELTA : ", _valstr(got - expected)));
}
if (is_def(info)) {
echo(str("INFO : ", _valstr(info)));
}
assert(approx(got, expected));
}
}
// Module: assert_equal()
// Usage:
// assert_equal(got, expected, <info>);
// Description:
// Tests if the value gotten is what was expected. If not, then
// the expected and received values are printed to the console and
// an assertion is thrown to stop execution.
// Arguments:
// got = The value actually received.
// expected = The value that was expected.
// info = Extra info to print out to make the error clearer.
module assert_equal(got, expected, info) {
no_children($children);
if (got != expected || (is_nan(got) && is_nan(expected))) {
echo();
echo(str("EXPECT: ", _valstr(expected)));
echo(str("GOT : ", _valstr(got)));
if (same_shape(got, expected)) {
echo(str("DELTA : ", _valstr(got - expected)));
}
if (is_def(info)) {
echo(str("INFO : ", _valstr(info)));
}
assert(got == expected);
}
}
// Module: shape_compare()
// Usage:
// shape_compare(<eps>) {test_shape(); expected_shape();}
// Description:
// Compares two child shapes, returning empty geometry if they are very nearly the same shape and size.
// Returns the differential geometry if they are not nearly the same shape and size.
// Arguments:
// eps = The surface of the two shapes must be within this size of each other. Default: 1/1024
module shape_compare(eps=1/1024) {
union() {
difference() {
children(0);
if (eps==0) {
children(1);
} else {
minkowski() {
children(1);
cube(eps, center=true);
}
}
}
difference() {
children(1);
if (eps==0) {
children(0);
} else {
minkowski() {
children(0);
cube(eps, center=true);
}
}
}
}
}
// Section: Looping Helpers
// You can use a list comprehension with a C-style for loop to iteratively make a calculation.
// .
// The syntax is: `[for (INIT; CONDITION; NEXT) RETVAL]` where:
// - INIT is zero or more `let()` style assignments that are evaluated exactly one time, before the first loop.
// - CONDITION is an expression evaluated at the start of each loop. If true, continues with the loop.
// - RETVAL is an expression that returns a list item for each loop.
// - NEXT is one or more `let()` style assignments that is evaluated at the end of each loop.
// .
// Since the INIT phase is only run once, and the CONDITION and RETVAL expressions cannot update
// variables, that means that only the NEXT phase can be used for iterative calculations.
// Unfortunately, the NEXT phase runs *after* the RETVAL expression, which means that you need
// to run the loop one extra time to return the final value. This tends to make the loop code
// look rather ugly. The `looping()`, `loop_while()` and `loop_done()` functions
// can make this somewhat more legible.
// ```openscad
// function flat_sum(l) = [
// for (
// i = 0,
// total = 0,
// state = 0;
//
// looping(state);
//
// state = loop_while(state, i < len(l)),
// total = total +
// loop_done(state) ? 0 :
// let( x = l[i] )
// is_list(x) ? flat_sum(x) : x,
// i = i + 1
// ) if (loop_done(state)) total;
// ].x;
// ```
// Function: looping()
// Usage:
// looping(state)
// Description:
// Returns true if the `state` value indicates the current loop should continue.
// This is useful when using C-style for loops to iteratively calculate a value.
// Used with `loop_while()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example.
// Arguments:
// state = The loop state value.
function looping(state) = state < 2;
// Function: loop_while()
// Usage:
// state = loop_while(state, continue)
// Description:
// Given the current `state`, and a boolean `continue` that indicates if the loop should still be
// continuing, returns the updated state value for the the next loop.
// This is useful when using C-style for loops to iteratively calculate a value.
// Used with `looping()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example.
// Arguments:
// state = The loop state value.
// continue = A boolean value indicating whether the current loop should progress.
function loop_while(state, continue) =
state > 0 ? 2 :
continue ? 0 : 1;
// Function: loop_done()
// Usage:
// loop_done(state)
// Description:
// Returns true if the `state` value indicates the loop is finishing.
// This is useful when using C-style for loops to iteratively calculate a value.
// Used with `looping()` and `loop_while()`. See [Looping Helpers](#5-looping-helpers) for an example.
// Arguments:
// state = The loop state value.
function loop_done(state) = state > 0;
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap