mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 21:58:27 +01:00
242 lines
8.5 KiB
OpenSCAD
242 lines
8.5 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: hull.scad
|
|
// Functions to create 2D and 3D convex hulls.
|
|
// To use, add the following line to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/hull.scad>
|
|
// ```
|
|
// Derived from Oskar Linde's Hull:
|
|
// - https://github.com/openscad/scad-utils
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Convex Hulls
|
|
|
|
|
|
// Function: hull()
|
|
// Usage:
|
|
// hull(points);
|
|
// Description:
|
|
// Takes a list of 2D or 3D points (but not both in the same list) and returns either the list of
|
|
// indexes into `points` that forms the 2D convex hull perimeter path, or the list of faces that
|
|
// form the 3d convex hull surface. Each face is a list of indexes into `points`. If the input
|
|
// points are co-linear, the result will be the indexes of the two extrema points. If the input
|
|
// points are co-planar, the results will be a simple list of vertex indices that will form a planar
|
|
// perimeter. Otherwise a list of faces will be returned, where each face is a simple list of
|
|
// vertex indices for the perimeter of the face.
|
|
// Arguments:
|
|
// points = The set of 2D or 3D points to find the hull of.
|
|
function hull(points) = let(two_d = len(points[0]) == 2) two_d? hull2d_path(points) : hull3d_faces(points);
|
|
|
|
|
|
// Module: hull_points()
|
|
// Usage:
|
|
// hull_points(points, [fast]);
|
|
// Description:
|
|
// If given a list of 2D points, creates a 2D convex hull polygon that encloses all those points.
|
|
// If given a list of 3D points, creates a 3D polyhedron that encloses all the points. This should
|
|
// handle about 4000 points in slow mode. If `fast` is set to true, this should be able to handle
|
|
// far more.
|
|
// Arguments:
|
|
// points = The list of points to form a hull around.
|
|
// fast = If true, uses a faster cheat that may handle more points, but also may emit warnings that can stop your script if you have "Halt on first warning" enabled. Default: false
|
|
// Example(2D):
|
|
// pts = [[-10,-10], [0,10], [10,10], [12,-10]];
|
|
// hull_points(pts);
|
|
// Example:
|
|
// pts = [for (phi = [30:60:150], theta = [0:60:359]) spherical_to_xyz(10, theta, phi)];
|
|
// hull_points(pts);
|
|
module hull_points(points, fast=false) {
|
|
assert(is_list(points));
|
|
if (points) {
|
|
assert(is_list(points[0]));
|
|
if (fast) {
|
|
if (len(points[0]) == 2) {
|
|
hull() polygon(points=points);
|
|
} else {
|
|
extra = len(points)%3;
|
|
faces = concat(
|
|
[[for(i=[0:1:extra+2])i]],
|
|
[for(i=[extra+3:3:len(points)-3])[i,i+1,i+2]]
|
|
);
|
|
hull() polyhedron(points=points, faces=faces);
|
|
}
|
|
} else {
|
|
perim = hull(points);
|
|
if (is_num(perim[0])) {
|
|
polygon(points=points, paths=[perim]);
|
|
} else {
|
|
polyhedron(points=points, faces=perim);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Function: hull2d_path()
|
|
// Usage:
|
|
// hull2d_path(points)
|
|
// Description:
|
|
// Takes a list of arbitrary 2D points, and finds the minimal convex hull polygon to enclose them.
|
|
// Returns a path as a list of indices into `points`.
|
|
// Example(2D):
|
|
// pts = [[-10,-10], [0,10], [10,10], [12,-10]];
|
|
// path = hull2d_path(pts);
|
|
// place_copies(pts) color("red") sphere(1);
|
|
// polygon(points=pts, paths=[path]);
|
|
function hull2d_path(points) =
|
|
(len(points) < 3)? [] : let(
|
|
a=0, b=1,
|
|
c = first_noncollinear(a, b, points, 2)
|
|
) (c == len(points))? _hull2d_collinear(points) : let(
|
|
remaining = [ for (i = [2:1:len(points)-1]) if (i != c) i ],
|
|
ccw = triangle_area(points[a], points[b], points[c]) > 0,
|
|
polygon = ccw? [a,b,c] : [a,c,b]
|
|
) _hull2d_iterative(points, polygon, remaining);
|
|
|
|
|
|
// Adds the remaining points one by one to the convex hull
|
|
function _hull2d_iterative(points, polygon, remaining, _i=0) =
|
|
(_i >= len(remaining))? polygon : let (
|
|
// pick a point
|
|
i = remaining[_i],
|
|
// find the segments that are in conflict with the point (point not inside)
|
|
conflicts = _find_conflicting_segments(points, polygon, points[i])
|
|
// no conflicts, skip point and move on
|
|
) (len(conflicts) == 0)? _hull2d_iterative(points, polygon, remaining, _i+1) : let(
|
|
// find the first conflicting segment and the first not conflicting
|
|
// conflict will be sorted, if not wrapping around, do it the easy way
|
|
polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i)
|
|
) _hull2d_iterative(points, polygon, remaining, _i+1);
|
|
|
|
|
|
function _hull2d_collinear(points) =
|
|
let(
|
|
a = points[0],
|
|
n = points[1] - a,
|
|
points1d = [ for(p = points) (p-a)*n ],
|
|
min_i = min_index(points1d),
|
|
max_i = max_index(points1d)
|
|
) [min_i, max_i];
|
|
|
|
|
|
function _find_conflicting_segments(points, polygon, point) = [
|
|
for (i = [0:1:len(polygon)-1]) let(
|
|
j = (i+1) % len(polygon),
|
|
p1 = points[polygon[i]],
|
|
p2 = points[polygon[j]],
|
|
area = triangle_area(p1, p2, point)
|
|
) if (area < 0) i
|
|
];
|
|
|
|
|
|
// remove the conflicting segments from the polygon
|
|
function _remove_conflicts_and_insert_point(polygon, conflicts, point) =
|
|
(conflicts[0] == 0)? let(
|
|
nonconflicting = [ for(i = [0:1:len(polygon)-1]) if (!in_list(i, conflicts)) i ],
|
|
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
|
|
polygon = concat([ for (i = new_indices) polygon[i] ], point)
|
|
) polygon : let(
|
|
before_conflicts = [ for(i = [0:1:min(conflicts)]) polygon[i] ],
|
|
after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:1:len(polygon)-1]) polygon[i] ],
|
|
polygon = concat(before_conflicts, point, after_conflicts)
|
|
) polygon;
|
|
|
|
|
|
|
|
// Function: hull3d_faces()
|
|
// Usage:
|
|
// hull3d_faces(points)
|
|
// Description:
|
|
// Takes a list of arbitrary 3D points, and finds the minimal convex hull polyhedron to enclose
|
|
// them. Returns a list of faces, where each face is a list of indexes into the given `points`
|
|
// list. If all points passed to it are coplanar, then the return is the list of indices of points
|
|
// forming the minimal convex hull polygon.
|
|
// Example(3D):
|
|
// pts = [[-20,-20,0], [20,-20,0], [0,20,5], [0,0,20]];
|
|
// faces = hull3d_faces(pts);
|
|
// place_copies(pts) color("red") sphere(1);
|
|
// %polyhedron(points=pts, faces=faces);
|
|
function hull3d_faces(points) =
|
|
(len(points) < 3)? list_range(len(points)) : let (
|
|
// start with a single non-collinear triangle
|
|
a = 0,
|
|
b = 1,
|
|
c = first_noncollinear(a, b, points, 2)
|
|
) (c == len(points))? _hull2d_collinear(points) : let(
|
|
plane = plane3pt_indexed(points, a, b, c),
|
|
d = _find_first_noncoplanar(plane, points, 3)
|
|
) (d == len(points))? /* all coplanar*/ let (
|
|
pts2d = [ for (p = points) project_plane(p, points[a], points[b], points[c]) ],
|
|
hull2d = hull2d_path(pts2d)
|
|
) hull2d : let(
|
|
remaining = [for (i = [3:1:len(points)-1]) if (i != d) i],
|
|
// Build an initial tetrahedron.
|
|
// Swap b, c if d is in front of triangle t.
|
|
ifop = in_front_of_plane(plane, points[d]),
|
|
bc = ifop? [c,b] : [b,c],
|
|
b = bc[0],
|
|
c = bc[1],
|
|
triangles = [
|
|
[a,b,c],
|
|
[d,b,a],
|
|
[c,d,a],
|
|
[b,d,c]
|
|
],
|
|
// calculate the plane equations
|
|
planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
|
|
) _hull3d_iterative(points, triangles, planes, remaining);
|
|
|
|
|
|
// Adds the remaining points one by one to the convex hull
|
|
function _hull3d_iterative(points, triangles, planes, remaining, _i=0) =
|
|
_i >= len(remaining) ? triangles :
|
|
let (
|
|
// pick a point
|
|
i = remaining[_i],
|
|
// find the triangles that are in conflict with the point (point not inside)
|
|
conflicts = _find_conflicts(points[i], planes),
|
|
// for all triangles that are in conflict, collect their halfedges
|
|
halfedges = [
|
|
for(c = conflicts, i = [0:2]) let(
|
|
j = (i+1)%3
|
|
) [triangles[c][i], triangles[c][j]]
|
|
],
|
|
// find the outer perimeter of the set of conflicting triangles
|
|
horizon = _remove_internal_edges(halfedges),
|
|
// generate a new triangle for each horizon halfedge together with the picked point i
|
|
new_triangles = [ for (h = horizon) concat(h,i) ],
|
|
// calculate the corresponding plane equations
|
|
new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
|
|
) _hull3d_iterative(
|
|
points,
|
|
// remove the conflicting triangles and add the new ones
|
|
concat(list_remove(triangles, conflicts), new_triangles),
|
|
concat(list_remove(planes, conflicts), new_planes),
|
|
remaining,
|
|
_i+1
|
|
);
|
|
|
|
|
|
function _remove_internal_edges(halfedges) = [
|
|
for (h = halfedges)
|
|
if (!in_list(reverse(h), halfedges))
|
|
h
|
|
];
|
|
|
|
|
|
function _find_conflicts(point, planes) = [
|
|
for (i = [0:1:len(planes)-1])
|
|
if (in_front_of_plane(planes[i], point))
|
|
i
|
|
];
|
|
|
|
|
|
function _find_first_noncoplanar(plane, points, i) =
|
|
(i >= len(points) || !coplanar(plane, points[i]))? i :
|
|
_find_first_noncoplanar(plane, points, i+1);
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|