mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 21:58:27 +01:00
232 lines
8.5 KiB
OpenSCAD
232 lines
8.5 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vectors.scad
|
|
// Vector math functions.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Vector Manipulation
|
|
|
|
|
|
// Function: is_vector()
|
|
// Usage:
|
|
// is_vector(v)
|
|
// Description:
|
|
// Returns true if the given value is a list, and at least the first item is a number.
|
|
// Example:
|
|
// is_vector([1,2,3]); // Returns: true
|
|
// is_vector([[1,2,3]]); // Returns: false
|
|
// is_vector(["foo"]); // Returns: false
|
|
// is_vector([]); // Returns: false
|
|
// is_vector(1); // Returns: false
|
|
// is_vector("foo"); // Returns: false
|
|
// is_vector(true); // Returns: false
|
|
function is_vector(v) = is_list(v) && is_num(v[0]);
|
|
|
|
|
|
// Function: add_scalar()
|
|
// Usage:
|
|
// add_scalar(v,s);
|
|
// Description:
|
|
// Given a vector and a scalar, returns the vector with the scalar added to each item in it.
|
|
// If given a list of vectors, recursively adds the scalar to the each vector.
|
|
// Arguments:
|
|
// v = The initial list of values.
|
|
// s = A scalar value to add to every item in the vector.
|
|
// Example:
|
|
// add_scalar([1,2,3],3); // Returns: [4,5,6]
|
|
// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
|
|
function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s];
|
|
|
|
|
|
// Function: vmul()
|
|
// Description:
|
|
// Element-wise vector multiplication. Multiplies each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the products.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
|
|
function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
|
|
|
|
|
// Function: vdiv()
|
|
// Description:
|
|
// Element-wise vector division. Divides each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the quotients.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
|
|
function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
|
|
|
|
|
// Function: vabs()
|
|
// Description: Returns a vector of the absolute value of each element of vector `v`.
|
|
// Arguments:
|
|
// v = The vector to get the absolute values of.
|
|
// Example:
|
|
// vabs([-1,3,-9]); // Returns: [1,3,9]
|
|
function vabs(v) = [for (x=v) abs(x)];
|
|
|
|
|
|
// Function: normalize()
|
|
// Description:
|
|
// Returns unit length normalized version of vector v.
|
|
// If passed a zero-length vector, returns the unchanged vector.
|
|
// Arguments:
|
|
// v = The vector to normalize.
|
|
// Examples:
|
|
// normalize([10,0,0]); // Returns: [1,0,0]
|
|
// normalize([0,10,0]); // Returns: [0,1,0]
|
|
// normalize([0,0,10]); // Returns: [0,0,1]
|
|
// normalize([0,-10,0]); // Returns: [0,-1,0]
|
|
// normalize([0,0,0]); // Returns: [0,0,0]
|
|
function normalize(v) = norm(v)<=EPSILON? v : v/norm(v);
|
|
|
|
|
|
// Function: vquant()
|
|
// Usage:
|
|
// vquant(v,m)
|
|
// Description:
|
|
// Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding to the nearest multiple.
|
|
// Arguments:
|
|
// v = The vector to quantize.
|
|
// m = The multiple to quantize to.
|
|
// Examples:
|
|
// vquant(12,4); // Returns: 12
|
|
// vquant(13,4); // Returns: 12
|
|
// vquant(14,4); // Returns: 16
|
|
// vquant(15,4); // Returns: 16
|
|
// vquant(16,4); // Returns: 16
|
|
// vquant(9,3); // Returns: 9
|
|
// vquant(10,3); // Returns: 9
|
|
// vquant(11,3); // Returns: 12
|
|
// vquant(12,3); // Returns: 12
|
|
function vquant(v,m) = [for (x=v) quant(x,m)];
|
|
|
|
|
|
// Function: vquantdn()
|
|
// Usage:
|
|
// vquantdn(v,m)
|
|
// Description:
|
|
// Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding down to the nearest multiple.
|
|
// Arguments:
|
|
// v = The vector to quantize.
|
|
// m = The multiple to quantize to.
|
|
// Examples:
|
|
// vquant(12,4); // Returns: 12
|
|
// vquant(13,4); // Returns: 12
|
|
// vquant(14,4); // Returns: 12
|
|
// vquant(15,4); // Returns: 12
|
|
// vquant(16,4); // Returns: 16
|
|
// vquant(9,3); // Returns: 9
|
|
// vquant(10,3); // Returns: 9
|
|
// vquant(11,3); // Returns: 9
|
|
// vquant(12,3); // Returns: 12
|
|
function vquantdn(v,m) = [for (x=v) quantdn(x,m)];
|
|
|
|
|
|
// Function: vquantup()
|
|
// Usage:
|
|
// vquantup(v,m)
|
|
// Description:
|
|
// Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding up to the nearest multiple.
|
|
// Arguments:
|
|
// v = The vector to quantize.
|
|
// m = The multiple to quantize to.
|
|
// Examples:
|
|
// vquant(12,4); // Returns: 12
|
|
// vquant(13,4); // Returns: 16
|
|
// vquant(14,4); // Returns: 16
|
|
// vquant(15,4); // Returns: 16
|
|
// vquant(16,4); // Returns: 16
|
|
// vquant(9,3); // Returns: 9
|
|
// vquant(10,3); // Returns: 12
|
|
// vquant(11,3); // Returns: 12
|
|
// vquant(12,3); // Returns: 12
|
|
function vquantup(v,m) = [for (x=v) quantup(x,m)];
|
|
|
|
|
|
// Function: vector_angle()
|
|
// Usage:
|
|
// vector_angle(v1,v2);
|
|
// vector_angle(PT1,PT2,PT3);
|
|
// vector_angle([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
|
|
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
|
|
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_angle(UP,LEFT); // Returns: 90
|
|
// vector_angle(RIGHT,LEFT); // Returns: 180
|
|
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
|
|
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
|
|
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
|
|
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
|
|
function vector_angle(v1,v2=undef,v3=undef) =
|
|
(is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? (
|
|
assert(is_vector(v1.x))
|
|
assert(is_vector(v1.y))
|
|
len(v1)==3? assert(is_vector(v1.z)) vector_angle(v1.x, v1.y, v1.z) :
|
|
len(v1)==2? vector_angle(v1.x, v1.y) :
|
|
assert(false, "Bad arguments.")
|
|
) :
|
|
(is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_angle(v1-v2, v3-v2) :
|
|
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
|
(is_vector(v1) && is_vector(v2) && is_undef(v3))? acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1)) :
|
|
assert(false, "Bad arguments.");
|
|
|
|
|
|
// Function: vector_axis()
|
|
// Usage:
|
|
// vector_axis(v1,v2);
|
|
// vector_axis(PT1,PT2,PT3);
|
|
// vector_axis([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular the line segments AB and BC.
|
|
// If given two vectors, like `vector_axis(V1,V1)`, returns the vector perpendicular the two vectors V1 and V2.
|
|
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular the line segments AB and BC.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
|
|
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
|
|
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
function vector_axis(v1,v2=undef,v3=undef) =
|
|
(is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? (
|
|
assert(is_vector(v1.x))
|
|
assert(is_vector(v1.y))
|
|
len(v1)==3? assert(is_vector(v1.z)) vector_axis(v1.x, v1.y, v1.z) :
|
|
len(v1)==2? vector_axis(v1.x, v1.y) :
|
|
assert(false, "Bad arguments.")
|
|
) :
|
|
(is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_axis(v1-v2, v3-v2) :
|
|
(is_vector(v1) && is_vector(v2) && is_undef(v3))? let(
|
|
eps = 1e-6,
|
|
v1 = point3d(v1/norm(v1)),
|
|
v2 = point3d(v2/norm(v2)),
|
|
v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 :
|
|
(norm(vabs(v2)-UP) > eps)? UP :
|
|
RIGHT
|
|
) normalize(cross(v1,v3)) : assert(false, "Bad arguments.");
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|