BOSL2/screw_drive.scad

364 lines
14 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: screw_drive.scad
// Masks for Phillips, Torx and square (Robertson) driver holes.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/screw_drive.scad>
// FileGroup: Threaded Parts
// FileSummary: Masks for Phillips, Torx and square (Robertson) driver holes.
//////////////////////////////////////////////////////////////////////
include <structs.scad>
// Section: Phillips Drive
// Module: phillips_mask()
// Synopsis: Creates a mask for a Philips screw drive.
// Topics: Screws, Masks
// See Also: hex_drive_mask(), philips_depth(), phillips_diam(), torx_mask(), robertson_mask()
// Usage:
// phillips_mask(size) [ATTACHMENTS];
// Description:
// Creates a mask for creating a Phillips drive recess given the Phillips size. Each mask can
// be lowered to different depths to create different sizes of recess.
// Arguments:
// size = The size of the bit as an integer or string. "#0", "#1", "#2", "#3", or "#4"
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example:
// xdistribute(10) {
// phillips_mask(size="#1");
// phillips_mask(size="#2");
// phillips_mask(size=3);
// phillips_mask(size=4);
// }
// Specs for phillips recess here:
// https://www.fasteners.eu/tech-info/ISO/4757/
function _phillips_shaft(x) = [3,4.5,6,8,10][x];
function _ph_bot_angle() = 28.0;
function _ph_side_angle() = 26.5;
module phillips_mask(size="#2", $fn=36, anchor=BOTTOM, spin=0, orient=UP) {
dummy = assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]));
num = is_num(size) ? size : ord(size[1]) - ord("0");
shaft = _phillips_shaft(num);
b = [0.61, 0.97, 1.47, 2.41, 3.48][num];
e = [0.31, 0.435, 0.815, 2.005, 2.415][num];
g = [0.81, 1.27, 2.29, 3.81, 5.08][num];
alpha = [ 136, 138, 140, 146, 153][num];
beta = [7.00, 7.00, 5.75, 5.75, 7.00][num];
gamma = 92.0;
h1 = adj_ang_to_opp(g/2, _ph_bot_angle()); // height of the small conical tip
h2 = adj_ang_to_opp((shaft-g)/2, 90-_ph_side_angle()); // height of larger cone
l = h1+h2;
h3 = adj_ang_to_opp(b/2, _ph_bot_angle()); // height where cutout starts
p0 = [0,0];
p1 = [adj_ang_to_opp(e/2, 90-alpha/2), -e/2];
p2 = p1 + [adj_ang_to_opp((shaft-e)/2, 90-gamma/2),-(shaft-e)/2];
attachable(anchor,spin,orient, d=shaft, l=l) {
down(l/2) {
difference() {
rotate_extrude()
polygon([[0,0],[g/2,h1],[shaft/2,l],[0,l]]);
zrot(45)
zrot_copies(n=4, r=b/2) {
up(h3) {
yrot(beta) {
down(1)
linear_extrude(height=l+2, convexity=4, center=false) {
path = [p0, p1, p2, [p2.x,-p2.y], [p1.x,-p1.y]];
polygon(path);
}
}
}
}
}
}
children();
}
}
// Function: phillips_depth()
// Synopsis: Returns the depth a phillips recess needs to be for a given diameter.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), philips_depth(), phillips_diam(), torx_mask()
// Usage:
// depth = phillips_depth(size, d);
// Description:
// Returns the depth of the Phillips recess required to produce the specified diameter, or
// undef if not possible.
// Arguments:
// size = size as a number or text string like "#2"
// d = desired diameter
function phillips_depth(size, d) =
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]))
let(
num = is_num(size) ? size : ord(size[1]) - ord("0"),
shaft = [3,4.5,6,8,10][num],
g = [0.81, 1.27, 2.29, 3.81, 5.08][num],
h1 = adj_ang_to_opp(g/2, _ph_bot_angle()), // height of the small conical tip
h2 = adj_ang_to_opp((shaft-g)/2, 90-_ph_side_angle()) // height of larger cone
)
d>=shaft || d<g ? undef :
(d-g) / 2 / tan(_ph_side_angle()) + h1;
// Function: phillips_diam()
// Synopsis: Returns the diameter of a phillips recess of a given depth.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), philips_depth(), phillips_diam(), torx_mask()
// Usage:
// diam = phillips_diam(size, depth);
// Description:
// Returns the diameter at the top of the Phillips recess when constructed at the specified depth,
// or undef if that depth is not valid.
// Arguments:
// size = size as number or text string like "#2"
// depth = depth of recess to find the diameter of
function phillips_diam(size, depth) =
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]))
let(
num = is_num(size) ? size : ord(size[1]) - ord("0"),
shaft = _phillips_shaft(num),
g = [0.81, 1.27, 2.29, 3.81, 5.08][num],
h1 = adj_ang_to_opp(g/2, _ph_bot_angle()), // height of the small conical tip
h2 = adj_ang_to_opp((shaft-g)/2, 90-_ph_side_angle()) // height of larger cone
)
depth<h1 || depth>= h1+h2 ? undef :
2 * tan(_ph_side_angle())*(depth-h1) + g;
// Section: Hex drive
// Module hex_drive_mask()
// Synopsis: Creates a mask for a hex drive recess.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), robertson_mask()
// Usage:
// hex_drive_mask(size, length, [anchor], [spin], [orient], [$slop]) [ATTACHMENTS];
// Description:
// Creates a mask for hex drive. Note that the hex recess specs requires
// a slightly oversized recess. You can use $slop to increase the size by
// `2 * $slop` if necessary.
//
module hex_drive_mask(size,length,l,h,height,anchor,spin,orient)
{
length = one_defined([length,height,l,h],"length,height,l,h");
realsize = 1.0072*size + 0.0341 + 2 * get_slop(); // Formula emperically determined from ISO standard
linear_sweep(height=length,hexagon(id=realsize),anchor=anchor,spin=spin,orient=orient) children();
}
function hex_drive_mask(size,length,l,h,height,anchor,spin,orient) = no_function("hex_drive_mask");
// Section: Torx Drive
// Module: torx_mask()
// Synopsis: Creates a mask for a torx drive recess.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), robertson_mask()
// Usage:
// torx_mask(size, l, [center]) [ATTACHMENTS];
// Description: Creates a torx bit tip.
// Arguments:
// size = Torx size.
// l = Length of bit.
// center = If true, centers mask vertically.
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Examples:
// torx_mask(size=30, l=10, $fa=1, $fs=1);
module torx_mask(size, l=5, center, anchor, spin=0, orient=UP) {
od = torx_diam(size);
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, d=od, l=l) {
linear_extrude(height=l, convexity=4, center=true) {
torx_mask2d(size);
}
children();
}
}
// Module: torx_mask2d()
// Synopsis: Creates the 2D cross section for a torx drive recess.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), torx_info(), robertson_mask()
// Usage:
// torx_mask2d(size);
// Description: Creates a torx bit 2D profile.
// Arguments:
// size = Torx size.
// Example(2D):
// torx_mask2d(size=30, $fa=1, $fs=1);
module torx_mask2d(size) {
no_children($children);
info = torx_info(size);
od = info[0];
id = info[1];
tip = info[3];
rounding = info[4];
base = od - 2*tip;
$fn = quantup(segs(od/2),12);
difference() {
union() {
circle(d=base);
zrot_copies(n=2) {
hull() {
zrot_copies(n=3) {
translate([base/2,0,0]) {
circle(r=tip, $fn=$fn/2);
}
}
}
}
}
zrot_copies(n=6) {
zrot(180/6) {
translate([id/2+rounding,0,0]) {
circle(r=rounding);
}
}
}
}
}
// Function: torx_info()
// Synopsis: Returns the dimensions of a torx drive.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), torx_info()
// Usage:
// info = torx_info(size);
// Description:
// Get the typical dimensional info for a given Torx size.
// Returns a list containing, in order:
// - Outer Diameter
// - Inner Diameter
// - Drive Hole Depth
// - External Tip Rounding Radius
// - Inner Rounding Radius
// Arguments:
// size = Torx size.
function torx_info(size) =
let(
info_arr = [ // Depth is from metric socket head screws, ISO 14583
//T# OD ID H Re Ri
[ 1, [ 0.90, 0.65, 0.40, 0.059, 0.201]], // depth interpolated
[ 2, [ 1.00, 0.73, 0.44, 0.069, 0.224]], // depth interpolated
[ 3, [ 1.20, 0.87, 0.53, 0.081, 0.266]], // depth interpolated
[ 4, [ 1.35, 0.98, 0.59, 0.090, 0.308]], // depth interpolated
[ 5, [ 1.48, 1.08, 0.65, 0.109, 0.330]], // depth interpolated
[ 6, [ 1.75, 1.27, 0.775, 0.132, 0.383]],
[ 7, [ 2.08, 1.50, 0.886, 0.161, 0.446]], // depth interpolated
[ 8, [ 2.40, 1.75, 1.0, 0.190, 0.510]],
[ 9, [ 2.58, 1.87, 1.078, 0.207, 0.554]], // depth interpolated
[ 10, [ 2.80, 2.05, 1.142, 0.229, 0.598]],
[ 15, [ 3.35, 2.40, 1.2, 0.267, 0.716]], // depth interpolated
[ 20, [ 3.95, 2.85, 1.4, 0.305, 0.859]], // depth interpolated
[ 25, [ 4.50, 3.25, 1.61, 0.375, 0.920]],
[ 27, [ 5.07, 3.65, 1.84, 0.390, 1.108]],
[ 30, [ 5.60, 4.05, 2.22, 0.451, 1.194]],
[ 40, [ 6.75, 4.85, 2.63, 0.546, 1.428]],
[ 45, [ 7.93, 5.64, 3.115, 0.574, 1.796]],
[ 50, [ 8.95, 6.45, 3.82, 0.775, 1.816]],
[ 55, [ 11.35, 8.05, 5.015, 0.867, 2.667]],
[ 60, [ 13.45, 9.60, 5.805, 1.067, 2.883]],
[ 70, [ 15.70, 11.20, 6.815, 1.194, 3.477]],
[ 80, [ 17.75, 12.80, 7.75, 1.526, 3.627]],
[ 90, [ 20.20, 14.40, 8.945, 1.530, 4.468]],
[100, [ 22.40, 16.00, 10.79, 1.720, 4.925]],
],
found = struct_val(info_arr,size)
)
assert(found, str("Unsupported Torx size, ",size))
found;
// Function: torx_diam()
// Synopsis: Returns the diameter of a torx drive.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), torx_info()
// Usage:
// diam = torx_diam(size);
// Description: Get the typical outer diameter of Torx profile.
// Arguments:
// size = Torx size.
function torx_diam(size) = torx_info(size)[0];
// Function: torx_depth()
// Synopsis: Returns the typical depth of a torx drive recess.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), torx_info()
// Usage:
// depth = torx_depth(size);
// Description: Gets typical drive hole depth.
// Arguments:
// size = Torx size.
function torx_depth(size) = torx_info(size)[2];
// Section: Robertson/Square Drives
// Module: robertson_mask()
// Synopsis: Creates a mask for a Robertson/Square drive recess.
// Topics: Screws, Masks
// See Also: phillips_mask(), hex_drive_mask(), torx_mask(), philips_depth(), phillips_diam(), torx_info(), robertson_mask()
// Usage:
// robertson_mask(size, [extra], [ang], [$slop=]);
// Description:
// Creates a mask for creating a Robertson/Square drive recess given the drive size as an integer.
// The width of the recess will be oversized by `2 * $slop`. Note that this model is based
// on an incomplete spec. https://www.aspenfasteners.com/content/pdf/square_drive_specification.pdf
// We determined the angle by doing print tests on a Prusa MK3S with $slop set to 0.05.
// Arguments:
// size = The size of the square drive, as an integer from 0 to 4.
// extra = Extra length of drive mask to create.
// ang = taper angle of each face. Default: 2.5
// ---
// $slop = enlarge recess by this twice amount. Default: 0
// Example:
// robertson_mask(size=2);
// Example:
// difference() {
// cyl(d1=2, d2=8, h=4, anchor=TOP);
// robertson_mask(size=2);
// }
module robertson_mask(size, extra=1, ang=2.5) {
dummy=assert(is_int(size) && size>=0 && size<=4);
Mmin = [0.0696, 0.0900, 0.1110, 0.1315, 0.1895][size];
Mmax = [0.0710, 0.0910, 0.1126, 0.1330, 0.1910][size];
M = (Mmin + Mmax) / 2 * INCH;
Tmin = [0.063, 0.105, 0.119, 0.155, 0.191][size];
Tmax = [0.073, 0.113, 0.140, 0.165, 0.201][size];
T = (Tmin + Tmax) / 2 * INCH;
Fmin = [0.032, 0.057, 0.065, 0.085, 0.090][size];
Fmax = [0.038, 0.065, 0.075, 0.095, 0.100][size];
F = (Fmin + Fmax) / 2 * INCH;
h = T + extra;
Mslop=M+2*get_slop();
down(T) {
intersection(){
Mtop = Mslop + 2*adj_ang_to_opp(F+extra,ang);
Mbot = Mslop - 2*adj_ang_to_opp(T-F,ang);
prismoid([Mbot,Mbot],[Mtop,Mtop],h=h,anchor=BOT);
cyl(d1=0, d2=Mslop/(T-F)*sqrt(2)*h, h=h, anchor=BOT);
}
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap