BOSL2/attachments.scad
2020-07-19 05:49:05 -07:00

1325 lines
54 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: attachments.scad
// This is the file that handles attachments and orientation of children.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Default values for attachment code.
$tags = "";
$overlap = 0.01;
$color = undef;
$attach_to = undef;
$attach_anchor = [CENTER, CENTER, UP, 0];
$attach_norot = false;
$parent_anchor = BOTTOM;
$parent_spin = 0;
$parent_orient = UP;
$parent_size = undef;
$parent_geom = undef;
$tags_shown = [];
$tags_hidden = [];
// Section: Anchors, Spin, and Orientation
// This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()`
// and `sphere()` builtins, as well as to most of the shapes provided by this library itself.
// * An anchor is a place on an object which you can align the object to, or attach other objects
// to using `attach()` or `position()`. An anchor has a position, a direction, and a spin.
// The direction and spin are used to orient other objects to match when using `attach()`.
// * Spin is a simple rotation around the Z axis.
// * Orientation is rotating an object so that its top is pointed towards a given vector.
// An object will first be translated to its anchor position, then spun, then oriented.
//
// ## Anchor
// Anchoring is specified with the `anchor` argument in most shape modules.
// Specifying `anchor` when creating an object will translate the object so
// that the anchor point is at the origin (0,0,0). Anchoring always occurs
// before spin and orientation are applied.
//
// An anchor can be referred to in one of two ways; as a directional vector,
// or as a named anchor string.
//
// When given as a vector, it points, in a general way, towards the face, edge, or
// corner of the object that you want the anchor for, relative to the center of
// the object. There are directional constants named `TOP`, `BOTTOM`, `FRONT`, `BACK`,
// `LEFT`, and `RIGHT` that you can add together to specify an anchor point.
// For example:
// - `[0,0,1]` is the same as `TOP` and refers to the center of the top face.
// - `[-1,0,1]` is the same as `TOP+LEFT`, and refers to the center of the top-left edge.
// - `[1,1,-1]` is the same as `BOTTOM+BACK+RIGHT`, and refers to the bottom-back-right corner.
//
// The components of the directional vector should all be `1`, `0`, or `-1`.
// When the object is cylindrical, conical, or spherical in nature, the anchors will be
// located around the surface of the cylinder, cone, or sphere, relative to the center.
// The direction of a face anchor will be perpendicular to the face, pointing outward.
// The direction of a edge anchor will be the average of the anchor directions of the
// two faces the edge is between. The direction of a corner anchor will be the average
// of the anchor directions of the three faces the corner is on. The spin of all standard
// anchors is 0.
//
// Some more complex objects, like screws and stepper motors, have named anchors
// to refer to places on the object that are not at one of the standard faces, edges
// or corners. For example, stepper motors have anchors for `"screw1"`, `"screw2"`,
// etc. to refer to the various screwholes on the stepper motor shape. The names,
// positions, directions, and spins of these anchors will be specific to the object,
// and will be documented when they exist.
//
// ## Spin
// Spin is specified with the `spin` argument in most shape modules. Specifying `spin`
// when creating an object will rotate the object counter-clockwise around the Z axis
// by the given number of degrees. Spin is always applied after anchoring, and before
// orientation.
//
// ## Orient
// Orientation is specified with the `orient` argument in most shape modules. Specifying
// `orient` when creating an object will rotate the object such that the top of the
// object will be pointed at the vector direction given in the `orient` argument.
// Orientation is always applied after anchoring and spin. The constants `UP`, `DOWN`,
// `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be added together to form the directional
// vector for this. ie: `LEFT+BACK`
// Section: Functions
// Function: anchorpt()
// Usage:
// anchor(name, pos, [dir], [rot])
// Description:
// Creates a anchor data structure.
// Arguments:
// name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces.
// pos = The [X,Y,Z] position of the anchor.
// orient = A vector pointing in the direction parts should project from the anchor position.
// spin = If needed, the angle to rotate the part around the direction vector.
function anchorpt(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, spin];
// Function: attach_geom()
//
// Usage:
// geom = attach_geom(anchor, spin, [orient], two_d, size, [size2], [shift], [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], two_d, r|d, [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], two_d, path, [extent], [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], size, [size2], [shift], [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], r|d, l, [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], r1|d1, r2|d2, l, [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], r|d, [cp], [offset], [anchors]);
// geom = attach_geom(anchor, spin, [orient], vnf, [extent], [cp], [offset], [anchors]);
//
// Description:
// Given arguments that describe the geometry of an attachable object, returns the internal geometry description.
//
// Arguments:
// size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length.
// size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape.
// shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift.
// r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis.
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l = Length of the cylindrical/conical volume along axis.
// vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: true.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint.
// anchors = If given as a list of anchor points, allows named anchor points.
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
//
// Example(NORENDER): Cubical Shape
// geom = attach_geom(anchor, spin, orient, size=size);
//
// Example(NORENDER): Prismoidal Shape
// geom = attach_geom(
// anchor, spin, orient,
// size=point3d(botsize,h),
// size2=topsize, shift=shift
// );
//
// Example(NORENDER): Cylindrical Shape
// geom = attach_geom(anchor, spin, orient, r=r, h=h);
//
// Example(NORENDER): Conical Shape
// geom = attach_geom(anchor, spin, orient, r1=r1, r2=r2, h=h);
//
// Example(NORENDER): Spherical Shape
// geom = attach_geom(anchor, spin, orient, r=r);
//
// Example(NORENDER): Arbitrary VNF Shape
// geom = attach_geom(anchor, spin, orient, vnf=vnf);
//
// Example(NORENDER): 2D Rectangular Shape
// geom = attach_geom(anchor, spin, orient, size=size);
//
// Example(NORENDER): 2D Trapezoidal Shape
// geom = attach_geom(
// anchor, spin, orient,
// size=[x1,y], size2=x2, shift=shift
// );
//
// Example(NORENDER): 2D Circular Shape
// geom = attach_geom(anchor, spin, orient, two_d=true, r=r);
//
// Example(NORENDER): Arbitrary 2D Polygon Shape
// geom = attach_geom(anchor, spin, orient, path=path);
//
function attach_geom(
size, size2, shift,
r,r1,r2, d,d1,d2, l,h,
vnf, path,
extent=true,
cp=[0,0,0],
offset=[0,0,0],
anchors=[],
two_d=false
) =
assert(is_bool(extent))
assert(is_vector(cp))
assert(is_vector(offset))
assert(is_list(anchors))
assert(is_bool(two_d))
!is_undef(size)? (
two_d? (
let(
size2 = default(size2, size.x),
shift = default(shift, 0)
)
assert(is_vector(size,2))
assert(is_num(size2))
assert(is_num(shift))
["rect", point2d(size), size2, shift, cp, offset, anchors]
) : (
let(
size2 = default(size2, point2d(size)),
shift = default(shift, [0,0])
)
assert(is_vector(size,3))
assert(is_vector(size2,2))
assert(is_vector(shift,2))
["cuboid", size, size2, shift, cp, offset, anchors]
)
) : !is_undef(vnf)? (
assert(is_vnf(vnf))
assert(two_d == false)
extent? ["vnf_extent", vnf, cp, offset, anchors] :
["vnf_isect", vnf, cp, offset, anchors]
) : !is_undef(path)? (
assert(is_path(path),2)
assert(two_d == true)
extent? ["path_extent", path, cp, offset, anchors] :
["path_isect", path, cp, offset, anchors]
) :
let(
r1 = get_radius(r1=r1,d1=d1,r=r,d=d,dflt=undef)
)
!is_undef(r1)? (
let( l = default(l, h) )
!is_undef(l)? (
let(
shift = default(shift, [0,0]),
r2 = get_radius(r1=r2,d1=d2,r=r,d=d,dflt=undef)
)
assert(is_num(r1) || is_vector(r1,2))
assert(is_num(r2) || is_vector(r2,2))
assert(is_num(l))
assert(is_vector(shift,2))
["cyl", r1, r2, l, shift, cp, offset, anchors]
) : (
two_d? (
assert(is_num(r1) || is_vector(r1,2))
["circle", r1, cp, offset, anchors]
) : (
assert(is_num(r1) || is_vector(r1,3))
["spheroid", r1, cp, offset, anchors]
)
)
) :
assert(false, "Unrecognizable geometry description.");
// Function: attach_geom_2d()
// Usage:
// attach_geom_2d(geom);
// Description:
// Returns true if the given attachment geometry description is for a 2D shape.
function attach_geom_2d(geom) =
let( type = geom[0] )
type == "rect" || type == "circle" ||
type == "path_isect" || type == "path_extent";
// Function: attach_geom_size()
// Usage:
// attach_geom_size(geom);
// Description:
// Returns the `[X,Y,Z]` bounding size for the given attachment geometry description.
function attach_geom_size(geom) =
let( type = geom[0] )
type == "cuboid"? ( //size, size2, shift
let(
size=geom[1], size2=geom[2], shift=point2d(geom[3]),
maxx = max(size.x,size2.x),
maxy = max(size.y,size2.y),
z = size.z
) [maxx, maxy, z]
) : type == "cyl"? ( //r1, r2, l, shift
let(
r1=geom[1], r2=geom[2], l=geom[3], shift=point2d(geom[4]),
rx1 = default(r1[0],r1),
ry1 = default(r1[1],r1),
rx2 = default(r2[0],r2),
ry2 = default(r2[1],r2),
maxxr = max(rx1,rx2),
maxyr = max(ry1,ry2)
) [2*maxxr,2*maxyr,l]
) : type == "spheroid"? ( //r
let( r=geom[1] )
is_num(r)? [2,2,2]*r : vmul([2,2,2],r)
) : type == "vnf_extent" || type=="vnf_isect"? ( //vnf
let(
mm = pointlist_bounds(geom[1][0]),
delt = mm[1]-mm[0]
) delt
) : type == "rect"? ( //size, size2
let(
size=geom[1], size2=geom[2],
maxx = max(size.x,size2)
) [maxx, size.y]
) : type == "circle"? ( //r
let( r=geom[1] )
is_num(r)? [2,2]*r : vmul([2,2],r)
) : type == "path_isect" || type == "path_extent"? ( //path
let(
mm = pointlist_bounds(geom[1]),
delt = mm[1]-mm[0]
) [delt.x, delt.y]
) :
assert(false, "Unknown attachment geometry type.");
// Function: attach_transform()
// Usage:
// mat = attach_transform(anchor=CENTER, spin=0, orient=UP, geom);
// Description:
// Returns the affine3d transformation matrix needed to `anchor`, `spin`, and `orient`
// the given geometry `geom` shape into position.
// Arguments:
// anchor = Anchor point to translate to the origin `[0,0,0]`. See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// geom = The geometry description of the shape.
// p = If given as a VNF, path, or point, applies the affine3d transformation matrix to it and returns the result.
function attach_transform(anchor=CENTER, spin=0, orient=UP, geom, p) =
assert(is_string(anchor) || is_vector(anchor))
assert(is_vector(orient))
let(
two_d = attach_geom_2d(geom),
m = ($attach_to != undef)? (
let(
anch = find_anchor($attach_to, geom),
pos = anch[1]
) two_d? (
assert(two_d && is_num(spin))
affine3d_zrot(spin) *
rot(to=FWD, from=point3d(anch[2])) *
affine3d_translate(point3d(-pos))
) : (
assert(is_num(spin) || is_vector(spin,3))
let(
ang = vector_angle(anch[2], DOWN),
axis = vector_axis(anch[2], DOWN),
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3],
axis2 = rot(p=axis,[0,0,ang2])
)
affine3d_rot_by_axis(axis2,ang) * (
is_num(spin)? affine3d_zrot(ang2+spin) : (
affine3d_zrot(spin.z) *
affine3d_yrot(spin.y) *
affine3d_xrot(spin.x) *
affine3d_zrot(ang2)
)
) * affine3d_translate(point3d(-pos))
)
) : (
let(
pos = find_anchor(anchor, geom)[1]
) two_d? (
assert(two_d && is_num(spin))
affine3d_zrot(spin) *
affine3d_translate(point3d(-pos))
) : (
assert(is_num(spin) || is_vector(spin,3))
let(
axis = vector_axis(UP,orient),
ang = vector_angle(UP,orient)
)
affine3d_rot_by_axis(axis,ang) * (
is_num(spin)? affine3d_zrot(spin) : (
affine3d_zrot(spin.z) *
affine3d_yrot(spin.y) *
affine3d_xrot(spin.x)
)
) * affine3d_translate(point3d(-pos))
)
)
) is_undef(p)? m :
is_vnf(p)? [apply(m, p[0]), p[1]] :
apply(m, p);
// Function: find_anchor()
// Usage:
// find_anchor(anchor, geom);
// Description:
// Calculates the anchor data for the given `anchor` vector or name, in the given attachment
// geometry. Returns `[ANCHOR, POS, VEC, ANG]` where `ANCHOR` is the requested anchorname
// or vector, `POS` is the anchor position, `VEC` is the direction vector of the anchor, and
// `ANG` is the angle to align with around the rotation axis of th anchor direction vector.
// Arguments:
// anchor = Vector or named anchor string.
// geom = The geometry description of the shape.
function find_anchor(anchor, geom) =
let(
cp = select(geom,-3),
offset = anchor==CENTER? CENTER : select(geom,-2),
anchors = select(geom,-1),
type = geom[0]
)
is_string(anchor)? (
anchor=="origin"? [anchor, CENTER, UP, 0] :
let(found = search([anchor], anchors, num_returns_per_match=1)[0])
assert(found!=[], str("Unknown anchor: ",anchor))
anchors[found]
) :
assert(is_vector(anchor),str("anchor=",anchor))
let(anchor = point3d(anchor))
anchor==CENTER? [anchor, cp, UP, 0] :
let(
oang = (
approx(point2d(anchor), [0,0])? 0 :
atan2(anchor.y, anchor.x)+90
)
)
type == "cuboid"? ( //size, size2, shift
let(
size=geom[1], size2=geom[2], shift=point2d(geom[3]),
h = size.z,
u = (anchor.z+1)/2,
axy = point2d(anchor),
bot = point3d(vmul(point2d(size)/2,axy),-h/2),
top = point3d(vmul(point2d(size2)/2,axy)+shift,h/2),
pos = point3d(cp) + lerp(bot,top,u) + offset,
sidevec = unit(rot(from=UP, to=top-bot, p=point3d(axy)),UP),
vvec = anchor==CENTER? UP : unit([0,0,anchor.z],UP),
vec = anchor==CENTER? UP :
approx(axy,[0,0])? unit(anchor,UP) :
approx(anchor.z,0)? sidevec :
unit((sidevec+vvec)/2,UP)
) [anchor, pos, vec, oang]
) : type == "cyl"? ( //r1, r2, l, shift
let(
rr1=geom[1], rr2=geom[2], l=geom[3], shift=point2d(geom[4]),
r1 = is_num(rr1)? [rr1,rr1] : rr1,
r2 = is_num(rr2)? [rr2,rr2] : rr2,
u = (anchor.z+1)/2,
axy = unit(point2d(anchor),[0,0]),
bot = point3d(vmul(r1,axy), -l/2),
top = point3d(vmul(r2,axy)+shift, l/2),
pos = point3d(cp) + lerp(bot,top,u) + offset,
sidevec = rot(from=UP, to=top-bot, p=point3d(axy)),
vvec = anchor==CENTER? UP : unit([0,0,anchor.z],UP),
vec = anchor==CENTER? UP :
approx(axy,[0,0])? unit(anchor,UP) :
approx(anchor.z,0)? sidevec :
unit((sidevec+vvec)/2,UP)
) [anchor, pos, vec, oang]
) : type == "spheroid"? ( //r
let(
rr = geom[1],
r = is_num(rr)? [rr,rr,rr] : rr,
anchor = unit(point3d(anchor),CENTER),
pos = point3d(cp) + vmul(r,anchor) + offset,
vec = unit(vmul(r,anchor),UP)
) [anchor, pos, vec, oang]
) : type == "vnf_isect"? ( //vnf
let(
vnf=geom[1],
eps = 1/2048,
points = vnf[0],
faces = vnf[1],
rpts = rot(from=anchor, to=RIGHT, p=move(point3d(-cp), p=points)),
hits = [
for (i = idx(faces)) let(
face = faces[i],
verts = select(rpts, face)
) if (
max(subindex(verts,0)) >= -eps &&
max(subindex(verts,1)) >= -eps &&
max(subindex(verts,2)) >= -eps &&
min(subindex(verts,1)) <= eps &&
min(subindex(verts,2)) <= eps
) let(
pt = polygon_line_intersection(
select(points, face),
[CENTER,anchor], eps=eps
)
) if (!is_undef(pt)) [norm(pt), i, pt]
]
)
assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.")
let(
furthest = max_index(subindex(hits,0)),
pos = point3d(cp) + hits[furthest][2],
dist = hits[furthest][0],
nfaces = [for (hit = hits) if(approx(hit[0],dist,eps=eps)) hit[1]],
n = unit(
sum([
for (i = nfaces) let(
faceverts = select(points, faces[i]),
faceplane = plane_from_points(faceverts),
nrm = plane_normal(faceplane)
) nrm
]) / len(nfaces),
UP
)
)
[anchor, pos, n, oang]
) : type == "vnf_extent"? ( //vnf
let(
vnf=geom[1],
rpts = rot(from=anchor, to=RIGHT, p=move(point3d(-cp), p=vnf[0])),
maxx = max(subindex(rpts,0)),
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
mm = pointlist_bounds(select(rpts,idxs)),
avgy = (mm[0].y+mm[1].y)/2,
avgz = (mm[0].z+mm[1].z)/2,
mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : [maxx, avgy, avgz],
pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt)
) [anchor, pos, anchor, oang]
) : type == "rect"? ( //size, size2
let(
size=geom[1], size2=geom[2],
u = (anchor.y+1)/2,
frpt = [size.x/2*anchor.x, -size.y/2],
bkpt = [size2/2*anchor.x, size.y/2],
pos = point2d(cp) + lerp(frpt, bkpt, u) + offset,
vec = unit(rot(from=BACK, to=bkpt-frpt, p=anchor),[0,1])
) [anchor, pos, vec, 0]
) : type == "circle"? ( //r
let(
rr = geom[1],
r = is_num(rr)? [rr,rr] : rr,
pos = point2d(cp) + vmul(r,anchor) + offset,
anchor = unit(point2d(anchor),[0,0]),
vec = unit(vmul([r.y,r.x],anchor),[0,1])
) [anchor, pos, vec, 0]
) : type == "path_isect"? ( //path
let(
path = move(-point2d(cp), p=geom[1]),
anchor = point2d(anchor),
isects = [
for (t=triplet_wrap(path)) let(
seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]],
isect = ray_segment_intersection([[0,0],anchor], seg1),
n = is_undef(isect)? [0,1] :
!approx(isect, t[1])? line_normal(seg1) :
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
n2 = vector_angle(anchor,n)>90? -n : n
)
if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2]
],
maxidx = max_index(subindex(isects,0)),
isect = isects[maxidx],
pos = point2d(cp) + isect[1],
vec = unit(isect[2],[0,1])
) [anchor, pos, vec, 0]
) : type == "path_extent"? ( //path
let(
path = geom[1],
anchor = point2d(anchor),
rpath = rot(from=anchor, to=RIGHT, p=move(point2d(-cp), p=path)),
maxx = max(subindex(rpath,0)),
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
miny = min([for (i=idxs) rpath[i].y]),
maxy = max([for (i=idxs) rpath[i].y]),
avgy = (miny+maxy)/2,
pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,avgy])
) [anchor, pos, anchor, 0]
) :
assert(false, "Unknown attachment geometry type.");
// Function: attachment_is_shown()
// Usage:
// attachment_is_shown(tags);
// Description:
// Returns true if the given space-delimited string of tag names should currently be shown.
function attachment_is_shown(tags) =
assert(!is_undef($tags_shown))
assert(!is_undef($tags_hidden))
let(
tags = str_split(tags, " "),
shown = !$tags_shown || any([for (tag=tags) in_list(tag, $tags_shown)]),
hidden = any([for (tag=tags) in_list(tag, $tags_hidden)])
) shown && !hidden;
// Function: reorient()
//
// Usage:
// reorient(anchor, spin, [orient], two_d, size, [size2], [shift], [cp], [offset], [anchors], [p]);
// reorient(anchor, spin, [orient], two_d, r|d, [cp], [offset], [anchors], [p]);
// reorient(anchor, spin, [orient], two_d, path, [extent], [cp], [offset], [anchors], [p]);
// reorient(anchor, spin, [orient], size, [size2], [shift], [cp], [offset], [anchors], [p]);
// reorient(anchor, spin, [orient], r|d, l, [offset], [cp], [anchors], [p]);
// reorient(anchor, spin, [orient], r1|d1, r2|d2, l, [cp], [offset], [anchors], [p]);
// reorient(anchor, spin, [orient], r|d, [cp], [offset], [anchors], [p]);
// reorient(anchor, spin, [orient], vnf, [extent], [cp], [offset], [anchors], [p]);
//
// Description:
// Given anchor, spin, orient, and general geometry info for a managed volume, this calculates
// the transformation matrix needed to be applied to the contents of that volume. A managed 3D
// volume is assumed to be vertically (Z-axis) oriented, and centered. A managed 2D area is just
// assumed to be centered.
//
// If `p` is not given, then the transformation matrix will be returned.
// If `p` contains a VNF, a new VNF will be returned with the vertices transformed by the matrix.
// If `p` contains a path, a new path will be returned with the vertices transformed by the matrix.
// If `p` contains a point, a new point will be returned, transformed by the matrix.
//
// If `$attach_to` is not defined, then the following transformations are performed in order:
// * Translates so the `anchor` point is at the origin (0,0,0).
// * Rotates around the Z axis by `spin` degrees counter-clockwise.
// * Rotates so the top of the part points towards the vector `orient`.
//
// If `$attach_to` is defined, as a consequence of `attach(from,to)`, then
// the following transformations are performed in order:
// * Translates this part so it's anchor position matches the parent's anchor position.
// * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector.
// * Rotates this part so it's anchor spin matches the parent's anchor spin.
//
// Arguments:
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length.
// size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape.
// shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift.
// r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis.
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l = Length of the cylindrical/conical volume along axis.
// vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: false.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint.
// anchors = If given as a list of anchor points, allows named anchor points.
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
// p = The VNF, path, or point to transform.
function reorient(
anchor=CENTER,
spin=0,
orient=UP,
size, size2, shift,
r,r1,r2, d,d1,d2, l,h,
vnf, path,
extent=true,
offset=[0,0,0],
cp=[0,0,0],
anchors=[],
two_d=false,
p=undef
) = (anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let(
geom = attach_geom(
size=size, size2=size2, shift=shift,
r=r, r1=r1, r2=r2, h=h,
d=d, d1=d1, d2=d2, l=l,
vnf=vnf, path=path, extent=extent,
cp=cp, offset=offset, anchors=anchors,
two_d=two_d
),
$attach_to = undef
) attach_transform(anchor,spin,orient,geom,p);
// Section: Attachability Modules
// Module: attachable()
//
// Usage:
// attachable(anchor, spin, [orient], two_d, size, [size2], [shift], [cp], [offset], [anchors] ...
// attachable(anchor, spin, [orient], two_d, r|d, [cp], [offset], [anchors]) ...
// attachable(anchor, spin, [orient], two_d, path, [extent], [cp], [offset], [anchors] ...
// attachable(anchor, spin, [orient], size, [size2], [shift], [cp], [offset], [anchors] ...
// attachable(anchor, spin, [orient], r|d, l, [cp], [offset], [anchors]) ...
// attachable(anchor, spin, [orient], r1|d1, r2|d2, l, [cp], [offset], [anchors]) ...
// attachable(anchor, spin, [orient], r|d, [cp], [offset], [anchors]) ...
// attachable(anchor, spin, [orient], vnf, [extent], [cp], [offset], [anchors]) ...
//
// Description:
// Manages the anchoring, spin, orientation, and attachments for a 3D volume or 2D area.
// A managed 3D volume is assumed to be vertically (Z-axis) oriented, and centered.
// A managed 2D area is just assumed to be centered. The shape to be managed is given
// as the first child to this module, and the second child should be given as `children()`.
// For example, to manage a conical shape:
// ```openscad
// attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) {
// cyl(r1=r1, r2=r2, l=h);
// children();
// }
// ```
//
// If this is *not* run as a child of `attach()` with the `to` argument
// given, then the following transformations are performed in order:
// * Translates so the `anchor` point is at the origin (0,0,0).
// * Rotates around the Z axis by `spin` degrees counter-clockwise.
// * Rotates so the top of the part points towards the vector `orient`.
//
// If this is called as a child of `attach(from,to)`, then the info
// for the anchor points referred to by `from` and `to` are fetched,
// which will include position, direction, and spin. With that info,
// the following transformations are performed:
// * Translates this part so it's anchor position matches the parent's anchor position.
// * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector.
// * Rotates this part so it's anchor spin matches the parent's anchor spin.
//
// Arguments:
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length.
// size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape.
// shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift.
// r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis.
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l = Length of the cylindrical/conical volume along axis.
// vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: false.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint.
// anchors = If given as a list of anchor points, allows named anchor points.
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
//
// Side Effects:
// `$parent_anchor` is set to the parent object's `anchor` value.
// `$parent_spin` is set to the parent object's `spin` value.
// `$parent_orient` is set to the parent object's `orient` value.
// `$parent_geom` is set to the parent object's `geom` value.
// `$parent_size` is set to the parent object's cubical `[X,Y,Z]` volume size.
//
// Example(NORENDER): Cubical Shape
// attachable(anchor, spin, orient, size=size) {
// cube(size, center=true);
// children();
// }
//
// Example(NORENDER): Prismoidal Shape
// attachable(
// anchor, spin, orient,
// size=point3d(botsize,h),
// size2=topsize,
// shift=shift
// ) {
// prismoid(botsize, topsize, h=h, shift=shift);
// children();
// }
//
// Example(NORENDER): Cylindrical Shape
// attachable(anchor, spin, orient, r=r, l=h) {
// cyl(r=r, l=h);
// children();
// }
//
// Example(NORENDER): Conical Shape
// attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) {
// cyl(r1=r1, r2=r2, l=h);
// children();
// }
//
// Example(NORENDER): Spherical Shape
// attachable(anchor, spin, orient, r=r) {
// sphere(r=r);
// children();
// }
//
// Example(NORENDER): Arbitrary VNF Shape
// attachable(anchor, spin, orient, vnf=vnf) {
// vnf_polyhedron(vnf);
// children();
// }
//
// Example(NORENDER): 2D Rectangular Shape
// attachable(anchor, spin, orient, size=size) {
// square(size, center=true);
// children();
// }
//
// Example(NORENDER): 2D Trapezoidal Shape
// attachable(
// anchor, spin, orient,
// size=[x1,y],
// size2=x2,
// shift=shift
// ) {
// trapezoid(w1=x1, w2=x2, h=y, shift=shift);
// children();
// }
//
// Example(NORENDER): 2D Circular Shape
// attachable(anchor, spin, orient, two_d=true, r=r) {
// circle(r=r);
// children();
// }
//
// Example(NORENDER): Arbitrary 2D Polygon Shape
// attachable(anchor, spin, orient, path=path) {
// polygon(path);
// children();
// }
module attachable(
anchor=CENTER,
spin=0,
orient=UP,
size, size2, shift,
r,r1,r2, d,d1,d2, l,h,
vnf, path,
extent=true,
cp=[0,0,0],
offset=[0,0,0],
anchors=[],
two_d=false
) {
assert($children==2, "attachable() expects exactly two children; the shape to manage, and the union of all attachment candidates.");
assert(!is_undef(anchor), str("anchor undefined in attachable(). Did you forget to set a default value for anchor in ", parent_module(1)));
assert(!is_undef(spin), str("spin undefined in attachable(). Did you forget to set a default value for spin in ", parent_module(1)));
assert(!is_undef(orient), str("orient undefined in attachable(). Did you forget to set a default value for orient in ", parent_module(1)));
geom = attach_geom(
size=size, size2=size2, shift=shift,
r=r, r1=r1, r2=r2, h=h,
d=d, d1=d1, d2=d2, l=l,
vnf=vnf, path=path, extent=extent,
cp=cp, offset=offset, anchors=anchors,
two_d=two_d
);
m = attach_transform(anchor,spin,orient,geom);
multmatrix(m) {
$parent_anchor = anchor;
$parent_spin = spin;
$parent_orient = orient;
$parent_geom = geom;
$parent_size = attach_geom_size(geom);
$attach_to = undef;
if (attachment_is_shown($tags)) {
if (is_undef($color)) {
children(0);
} else color($color) {
$color = undef;
children(0);
}
}
children(1);
}
}
// Section: Attachment Positioning
// Module: position()
// Usage:
// position(from, [overlap]) ...
// Description:
// Attaches children to a parent object at an anchor point.
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// Example:
// spheroid(d=20) {
// position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(RIGHT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(FRONT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// }
module position(from)
{
assert($parent_geom != undef, "No object to attach to!");
anchors = (is_vector(from)||is_string(from))? [from] : from;
for (anchr = anchors) {
anch = find_anchor(anchr, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
translate(anch[1]) children();
}
}
// Module: attach()
// Usage:
// attach(from, [overlap]) ...
// attach(from, to, [overlap]) ...
// Description:
// Attaches children to a parent object at an anchor point and orientation.
// Attached objects will be overlapped into the parent object by a little bit,
// as specified by the default `$overlap` value (0.01 by default), or by the
// overriding `overlap=` argument. This is to prevent OpenSCAD from making
// non-manifold objects. You can also define `$overlap=` as an argument in a
// parent module to set the default for all attachments to it.
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// to = Optional name of the child anchor point. If given, orients the child such that the named anchors align together rotationally.
// overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0.01` by default.
// norot = If true, don't rotate children when attaching to the anchor point. Only translate to the anchor point.
// Example:
// spheroid(d=20) {
// attach(TOP) down(1.5) cyl(l=11.5, d1=10, d2=5, anchor=BOTTOM);
// attach(RIGHT, BOTTOM) down(1.5) cyl(l=11.5, d1=10, d2=5);
// attach(FRONT, BOTTOM, overlap=1.5) cyl(l=11.5, d1=10, d2=5);
// }
module attach(from, to=undef, overlap=undef, norot=false)
{
assert($parent_geom != undef, "No object to attach to!");
overlap = (overlap!=undef)? overlap : $overlap;
anchors = (is_vector(from)||is_string(from))? [from] : from;
for (anchr = anchors) {
anch = find_anchor(anchr, $parent_geom);
two_d = attach_geom_2d($parent_geom);
$attach_to = to;
$attach_anchor = anch;
$attach_norot = norot;
if (norot || (norm(anch[2]-UP)<1e-9 && anch[3]==0)) {
translate(anch[1]) translate([0,0,-overlap]) children();
} else {
fromvec = two_d? BACK : UP;
translate(anch[1]) rot(anch[3],from=fromvec,to=anch[2]) translate([0,0,-overlap]) children();
}
}
}
// Module: face_profile()
// Usage:
// face_profile(faces=[], convexity=10, r, d) ...
// Description:
// Given a 2D edge profile, extrudes it into a mask for all edges and corners bounding each given face.
// Arguments:
// faces = Faces to mask edges and corners of.
// r = Radius of corner mask.
// d = Diameter of corner mask.
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
module face_profile(faces=[], r, d, convexity=10) {
faces = is_vector(faces)? [faces] : faces;
assert(all([for (face=faces) is_vector(face) && sum([for (x=face) x!=0? 1 : 0])==1]), "Vector in faces doesn't point at a face.");
r = get_radius(r=r, d=d, dflt=undef);
assert(is_num(r) && r>0);
edge_profile(faces) children();
corner_profile(faces, convexity=convexity, r=r) children();
}
// Module: edge_profile()
// Usage:
// edge_profile([edges], [except], [convexity]) ...
// Description:
// Takes a 2D mask shape and attaches it to the selected edges, with the appropriate orientation
// and extruded length to be `diff()`ed away, to give the edge a matching profile.
// Arguments:
// edges = Edges to mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
// except = Edges to explicitly NOT mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_roundover(r=10, inset=2);
module edge_profile(edges=EDGES_ALL, except=[], convexity=10) {
assert($parent_geom != undef, "No object to attach to!");
edges = edges(edges, except=except);
vecs = [
for (i = [0:3], axis=[0:2])
if (edges[axis][i]>0)
EDGE_OFFSETS[axis][i]
];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 2, "Not an edge vector!");
anch = find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
length = sum(vmul($parent_size, [for (x=vec) x?0:1]))+0.1;
rotang =
vec.z<0? [90,0,180+vang(point2d(vec))] :
vec.z==0 && sign(vec.x)==sign(vec.y)? 135+vang(point2d(vec)) :
vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+vang(point2d(vec))] :
[-90,0,180+vang(point2d(vec))];
translate(anch[1]) {
rot(rotang) {
linear_extrude(height=length, center=true, convexity=convexity) {
children();
}
}
}
}
}
// Module: corner_profile()
// Usage:
// corner_profile([corners], [except], [convexity]) ...
// Description:
// Takes a 2D mask shape, rotationally extrudes and converts it into a corner mask, and attaches it
// to the selected corners with the appropriate orientation. Tags it as a "mask" to allow it to be
// `diff()`ed away, to give the corner a matching profile.
// Arguments:
// corners = Edges to mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: All corners.
// except = Edges to explicitly NOT mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: No corners.
// r = Radius of corner mask.
// d = Diameter of corner mask.
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cuboid([50,60,70],rounding=10,edges="Z",anchor=CENTER) {
// corner_profile(BOT,r=10)
// mask2d_teardrop(r=10, angle=40);
// }
module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
assert($parent_geom != undef, "No object to attach to!");
r = get_radius(r=r, d=d, dflt=undef);
assert(is_num(r));
corners = corners(corners, except=except);
vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 3, "Not an edge vector!");
anch = find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
rotang = vec.z<0?
[ 0,0,180+vang(point2d(vec))-45] :
[180,0,-90+vang(point2d(vec))-45];
translate(anch[1]) {
rot(rotang) {
render(convexity=convexity)
difference() {
translate(-0.1*[1,1,1]) cube(r+0.1, center=false);
right(r) back(r) zrot(180) {
rotate_extrude(angle=90, convexity=convexity) {
xflip() left(r) {
difference() {
square(r,center=false);
children();
}
}
}
}
}
}
}
}
}
// Module: edge_mask()
// Usage:
// edge_mask([edges], [except]) ...
// Description:
// Takes a 3D mask shape, and attaches it to the given edges, with the
// appropriate orientation to be `diff()`ed away.
// Arguments:
// edges = Edges to mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
// except = Edges to explicitly NOT mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube([50,60,70],center=true)
// edge_mask([TOP,"Z"],except=[BACK,TOP+LEFT])
// rounding_mask_z(l=71,r=10);
module edge_mask(edges=EDGES_ALL, except=[]) {
assert($parent_geom != undef, "No object to attach to!");
edges = edges(edges, except=except);
vecs = [
for (i = [0:3], axis=[0:2])
if (edges[axis][i]>0)
EDGE_OFFSETS[axis][i]
];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 2, "Not an edge vector!");
anch = find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
rotang =
vec.z<0? [90,0,180+vang(point2d(vec))] :
vec.z==0 && sign(vec.x)==sign(vec.y)? 135+vang(point2d(vec)) :
vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+vang(point2d(vec))] :
[-90,0,180+vang(point2d(vec))];
translate(anch[1]) rot(rotang) children();
}
}
// Module: corner_mask()
// Usage:
// corner_mask([corners], [except]) ...
// Description:
// Takes a 3D mask shape, and attaches it to the given corners, with the appropriate
// orientation to be `diff()`ed away. The 3D corner mask shape should be designed to
// mask away the X+Y+Z+ octant.
// Arguments:
// corners = Edges to mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: All corners.
// except = Edges to explicitly NOT mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: No corners.
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube(100, center=true)
// corner_mask([TOP,FRONT],LEFT+FRONT+TOP)
// difference() {
// translate(-0.01*[1,1,1]) cube(20);
// translate([20,20,20]) sphere(r=20);
// }
module corner_mask(corners=CORNERS_ALL, except=[]) {
assert($parent_geom != undef, "No object to attach to!");
corners = corners(corners, except=except);
vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 3, "Not an edge vector!");
anch = find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
rotang = vec.z<0?
[ 0,0,180+vang(point2d(vec))-45] :
[180,0,-90+vang(point2d(vec))-45];
translate(anch[1]) rot(rotang) children();
}
}
// Module: tags()
// Usage:
// tags(tags) ...
// Description:
// Marks all children with the given tags.
// Arguments:
// tags = String containing space delimited set of tags to apply.
module tags(tags)
{
$tags = tags;
children();
}
// Module: recolor()
// Usage:
// recolor(c) ...
// Description:
// Sets the color for children that can use the $color special variable.
// Arguments:
// c = Color name or RGBA vector.
// Example:
// recolor("red") cyl(l=20, d=10);
module recolor(c)
{
$color = c;
children();
}
// Module: hide()
// Usage:
// hide(tags) ...
// Description:
// Hides all children with the given tags.
// Example:
// hide("A") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module hide(tags="")
{
$tags_hidden = tags==""? [] : str_split(tags, " ");
children();
}
// Module: show()
// Usage:
// show(tags) ...
// Description:
// Shows only children with the given tags.
// Example:
// show("A B") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module show(tags="")
{
$tags_shown = tags==""? [] : str_split(tags, " ");
children();
}
// Module: diff()
// Usage:
// diff(neg, [keep]) ...
// diff(neg, pos, [keep]) ...
// Description:
// If `neg` is given, takes the union of all children with tags
// that are in `neg`, and differences them from the union of all
// children with tags in `pos`. If `pos` is not given, then all
// items in `neg` are differenced from all items not in `neg`. If
// `keep` is given, all children with tags in `keep` are then unioned
// with the result. If `keep` is not given, all children without
// tags in `pos` or `neg` are then unioned with the result.
// Arguments:
// neg = String containing space delimited set of tag names of children to difference away.
// pos = String containing space delimited set of tag names of children to be differenced away from.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// diff("neg", "pos", keep="axle")
// sphere(d=100, $tags="pos") {
// attach(CENTER) xcyl(d=40, l=120, $tags="axle");
// attach(CENTER) cube([40,120,100], anchor=CENTER, $tags="neg");
// }
// Example: Masking
// diff("mask")
// cube([80,90,100], center=true) {
// let(p = $parent_size*1.01, $tags="mask") {
// position([for (y=[-1,1],z=[-1,1]) [0,y,z]])
// rounding_mask_x(l=p.x, r=25);
// position([for (x=[-1,1],z=[-1,1]) [x,0,z]])
// rounding_mask_y(l=p.y, r=20);
// position([for (x=[-1,1],y=[-1,1]) [x,y,0]])
// rounding_mask_z(l=p.z, r=25);
// }
// }
module diff(neg, pos=undef, keep=undef)
{
difference() {
if (pos != undef) {
show(pos) children();
} else {
if (keep == undef) {
hide(neg) children();
} else {
hide(str(neg," ",keep)) children();
}
}
show(neg) children();
}
if (keep!=undef) {
show(keep) children();
} else if (pos!=undef) {
hide(str(pos," ",neg)) children();
}
}
// Module: intersect()
// Usage:
// intersect(a, [keep]) ...
// intersect(a, b, [keep]) ...
// Description:
// If `a` is given, takes the union of all children with tags that
// are in `a`, and intersection()s them with the union of all
// children with tags in `b`. If `b` is not given, then the union
// of all items with tags in `a` are intersection()ed with the union
// of all items without tags in `a`. If `keep` is given, then the
// result is unioned with all the children with tags in `keep`. If
// `keep` is not given, all children without tags in `a` or `b` are
// unioned with the result.
// Arguments:
// a = String containing space delimited set of tag names of children.
// b = String containing space delimited set of tag names of children.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// intersect("wheel", "mask", keep="axle")
// sphere(d=100, $tags="wheel") {
// attach(CENTER) cube([40,100,100], anchor=CENTER, $tags="mask");
// attach(CENTER) xcyl(d=40, l=100, $tags="axle");
// }
module intersect(a, b=undef, keep=undef)
{
intersection() {
if (b != undef) {
show(b) children();
} else {
if (keep == undef) {
hide(a) children();
} else {
hide(str(a," ",keep)) children();
}
}
show(a) children();
}
if (keep!=undef) {
show(keep) children();
} else if (b!=undef) {
hide(str(a," ",b)) children();
}
}
// Module: hulling()
// Usage:
// hulling(a, [keep]) ...
// Description:
// Takes the union of all children with tags that are in `a`, and hull()s them.
// If `keep` is given, then the result is unioned with all the children with
// tags in `keep`. If `keep` is not given, all children without tags in `a` are
// unioned with the result.
// Arguments:
// a = String containing space delimited set of tag names of children.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// hulling("body")
// sphere(d=100, $tags="body") {
// attach(CENTER) cube([40,90,90], anchor=CENTER, $tags="body");
// attach(CENTER) xcyl(d=40, l=120, $tags="other");
// }
module hulling(a)
{
hull() show(a) children();
children();
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap