BOSL2/transforms.scad

1337 lines
55 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: transforms.scad
// Functions and modules that provide shortcuts for translation,
// rotation and mirror operations. Also provided are skew and frame_map
// which remaps the coordinate axes. The shortcuts can act on
// geometry, like the usual OpenSCAD rotate() and translate(). They
// also work as functions that operate on lists of points in various
// forms: paths, VNFS and bezier patches. Lastly, the function form
// of the shortcuts can return a matrix representing the operation
// the shortcut performs. The rotation and scaling shortcuts accept
// an optional centerpoint for the rotation or scaling operation.
// .
// Almost all of the transformation functions take a point, a point
// list, bezier patch, or VNF as a second positional argument to
// operate on. The exceptions are rot(), frame_map() and skew().
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// Section: Translations
//////////////////////////////////////////////////////////////////////
// Function&Module: move()
// Aliases: translate()
//
// Usage: As Module
// move([x=], [y=], [z=]) ...
// move(v) ...
// Usage: Translate Points
// pts = move(v, p);
// pts = move([x=], [y=], [z=], p=);
// Usage: Get Translation Matrix
// mat = move(v);
// mat = move([x=], [y=], [z=]);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: left(), right(), fwd(), back(), down(), up(), spherical_to_xyz(), altaz_to_xyz(), cylindrical_to_xyz(), polar_to_xy()
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
//
// Arguments:
// v = An [X,Y,Z] vector to translate by.
// p = Either a point, or a list of points to be translated when used as a function.
// ---
// x = X axis translation.
// y = Y axis translation.
// z = Z axis translation.
//
// Example:
// #sphere(d=10);
// move([0,20,30]) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(y=20) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10);
//
// Example(FlatSpin): Using Altitude-Azimuth Coordinates
// #sphere(d=10);
// move(altaz_to_xyz(30,90,20)) sphere(d=10);
//
// Example(FlatSpin): Using Spherical Coordinates
// #sphere(d=10);
// move(spherical_to_xyz(20,45,30)) sphere(d=10);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
// Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
module move(v=[0,0,0], p, x=0, y=0, z=0) {
assert(is_undef(p), "Module form `move()` does not accept p= argument.");
translate(point3d(v)+[x,y,z]) children();
}
function move(v=[0,0,0], p, x=0, y=0, z=0) =
let(
m = len(v)==2? affine2d_translate(v+[x,y]) :
affine3d_translate(point3d(v)+[x,y,z])
)
is_undef(p)? m : apply(m, p);
function translate(v=[0,0,0], p=undef) = move(v=v, p=p);
// Function&Module: left()
//
// Usage: As Module
// left(x) ...
// Usage: Translate Points
// pts = left(x, p);
// Usage: Get Translation Matrix
// mat = left(x);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: move(), right(), fwd(), back(), down(), up()
//
// Description:
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// x = Scalar amount to move left.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// left(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = left(20, p=[23,42]); // Returns: [3,42]
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module left(x=0, p) {
assert(is_undef(p), "Module form `left()` does not accept p= argument.");
translate([-x,0,0]) children();
}
function left(x=0, p) = move([-x,0,0],p=p);
// Function&Module: right()
//
// Usage: As Module
// right(x) ...
// Usage: Translate Points
// pts = right(x, p);
// Usage: Get Translation Matrix
// mat = right(x);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: move(), left(), fwd(), back(), down(), up()
//
// Description:
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// x = Scalar amount to move right.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// right(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = right(20, p=[23,42]); // Returns: [43,42]
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module right(x=0, p) {
assert(is_undef(p), "Module form `right()` does not accept p= argument.");
translate([x,0,0]) children();
}
function right(x=0, p) = move([x,0,0],p=p);
// Function&Module: fwd()
//
// Usage: As Module
// fwd(y) ...
// Usage: Translate Points
// pts = fwd(y, p);
// Usage: Get Translation Matrix
// mat = fwd(y);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: move(), left(), right(), back(), down(), up()
//
// Description:
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// y = Scalar amount to move forward.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// fwd(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = fwd(20, p=[23,42]); // Returns: [23,22]
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
module fwd(y=0, p) {
assert(is_undef(p), "Module form `fwd()` does not accept p= argument.");
translate([0,-y,0]) children();
}
function fwd(y=0, p) = move([0,-y,0],p=p);
// Function&Module: back()
//
// Usage: As Module
// back(y) ...
// Usage: Translate Points
// pts = back(y, p);
// Usage: Get Translation Matrix
// mat = back(y);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: move(), left(), right(), fwd(), down(), up()
//
// Description:
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// y = Scalar amount to move back.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// back(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = back(20, p=[23,42]); // Returns: [23,62]
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
module back(y=0, p) {
assert(is_undef(p), "Module form `back()` does not accept p= argument.");
translate([0,y,0]) children();
}
function back(y=0,p) = move([0,y,0],p=p);
// Function&Module: down()
//
// Usage: As Module
// down(z) ...
// Usage: Translate Points
// pts = down(z, p);
// Usage: Get Translation Matrix
// mat = down(z);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: move(), left(), right(), fwd(), back(), up()
//
// Description:
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// z = Scalar amount to move down.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// down(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
module down(z=0, p) {
assert(is_undef(p), "Module form `down()` does not accept p= argument.");
translate([0,0,-z]) children();
}
function down(z=0, p) = move([0,0,-z],p=p);
// Function&Module: up()
//
// Usage: As Module
// up(z) ...
// Usage: Translate Points
// pts = up(z, p);
// Usage: Get Translation Matrix
// mat = up(z);
//
// Topics: Affine, Matrices, Transforms, Translation
// See Also: move(), left(), right(), fwd(), back(), down()
//
// Description:
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// z = Scalar amount to move up.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// up(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
module up(z=0, p) {
assert(is_undef(p), "Module form `up()` does not accept p= argument.");
translate([0,0,z]) children();
}
function up(z=0, p) = move([0,0,z],p=p);
//////////////////////////////////////////////////////////////////////
// Section: Rotations
//////////////////////////////////////////////////////////////////////
// Function&Module: rot()
//
// Usage: As a Module
// rot(a, [cp], [reverse]) {...}
// rot([X,Y,Z], [cp], [reverse]) {...}
// rot(a, v, [cp], [reverse]) {...}
// rot(from, to, [a], [reverse]) {...}
// Usage: As a Function to transform data in `p`
// pts = rot(a, p=, [cp=], [reverse=]);
// pts = rot([X,Y,Z], p=, [cp=], [reverse=]);
// pts = rot(a, v, p=, [cp=], [reverse=]);
// pts = rot([a], from=, to=, p=, [reverse=]);
// Usage: As a Function to return a transform matrix
// M = rot(a, [cp=], [reverse=], [planar=]);
// M = rot([X,Y,Z], [cp=], [reverse=], [planar=]);
// M = rot(a, v, [cp=], [reverse=], [planar=]);
// M = rot(from=, to=, [a=], [reverse=], [planar=]);
//
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: xrot(), yrot(), zrot()
//
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the `from` vector to line up with the `to` vector, in this case the top to the right and hence equivalent to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,1,1], to=[1,1,0], a=45)` rotates 45 degrees around the `from` vector ([0,1,1]) and then rotates the `from` vector to align with the `to` vector. Equivalent to `rot(from=[0,1,1],to=[1,1,0]) rot(a=45,v=[0,1,1])`. You can also regard `a` as as post-rotation around the `to` vector. For this form, `a` must be a scalar.
// * If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint. So `rot(args...,cp=[1,2,3])` is equivalent to `move(-[1,2,3])rot(args...)move([1,2,3])`.
// * If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// .
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. The angle `a` must be a scalar.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
// Note that unlike almost all the other transformations, the `p` argument must be given as a named argument.
//
// Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. If `planar` is true or if `p` holds 2d data, or if you use the `from` and `to` arguments then `a` must be a scalar. Default: `0`
// v = vector for the axis of rotation. Default: [0,0,1] or UP
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
// from = Starting vector for vector-based rotations.
// to = Target vector for vector-based rotations.
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
// planar = If called as a function, this specifies if you want to work with 2D points.
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
//
// Example:
// #cube([2,4,9]);
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
//
// Example:
// #cube([2,4,9]);
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
//
// Example:
// #cube([2,4,9]);
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
module rot(a=0, v, cp, from, to, reverse=false)
{
m = rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=false);
multmatrix(m) children();
}
function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
assert(is_undef(from) || is_vector(from, zero=false), "'from' must be a non-zero vector.")
assert(is_undef(to) || is_vector(to, zero=false), "'to' must be a non-zero vector.")
assert(is_undef(v) || is_vector(v, zero=false), "'v' must be a non-zero vector.")
assert(is_undef(cp) || is_vector(cp), "'cp' must be a vector.")
assert(is_finite(a) || is_vector(a), "'a' must be a finite scalar or a vector.")
assert(is_bool(reverse))
assert(is_bool(planar))
let(
m = planar? let(
check = assert(is_num(a)),
cp = is_undef(cp)? cp : point2d(cp),
m1 = is_undef(from)? affine2d_zrot(a) :
assert(a==0, "'from' and 'to' cannot be used with 'a' when 'planar' is true.")
assert(approx(point3d(from).z, 0), "'from' must be a 2D vector when 'planar' is true.")
assert(approx(point3d(to).z, 0), "'to' must be a 2D vector when 'planar' is true.")
affine2d_zrot(
v_theta(to) -
v_theta(from)
),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
m3 = reverse? matrix_inverse(m2) : m2
) m3 : let(
from = is_undef(from)? undef : point3d(from),
to = is_undef(to)? undef : point3d(to),
cp = is_undef(cp)? undef : point3d(cp),
m1 = !is_undef(from)? (
assert(is_num(a))
affine3d_rot_from_to(from,to) * affine3d_rot_by_axis(from,a)
) :
!is_undef(v)? assert(is_num(a)) affine3d_rot_by_axis(v,a) :
is_num(a)? affine3d_zrot(a) :
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
m3 = reverse? matrix_inverse(m2) : m2
) m3
)
is_undef(p)? m : apply(m, p);
// Function&Module: xrot()
//
// Usage: As Module
// xrot(a, [cp=]) ...
// Usage: As a function to rotate points
// rotated = xrot(a, p, [cp=]);
// Usage: As a function to return rotation matrix
// mat = xrot(a, [cp=]);
//
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), yrot(), zrot()
//
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
//
// Example:
// #cylinder(h=50, r=10, center=true);
// xrot(90) cylinder(h=50, r=10, center=true);
module xrot(a=0, p, cp)
{
assert(is_undef(p), "Module form `xrot()` does not accept p= argument.");
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate([a, 0, 0]) translate(-cp) children();
} else {
rotate([a, 0, 0]) children();
}
}
function xrot(a=0, p, cp) = rot([a,0,0], cp=cp, p=p);
// Function&Module: yrot()
//
// Usage: As Module
// yrot(a, [cp=]) ...
// Usage: Rotate Points
// rotated = yrot(a, p, [cp=]);
// Usage: Get Rotation Matrix
// mat = yrot(a, [cp=]);
//
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), zrot()
//
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
//
// Example:
// #cylinder(h=50, r=10, center=true);
// yrot(90) cylinder(h=50, r=10, center=true);
module yrot(a=0, p, cp)
{
assert(is_undef(p), "Module form `yrot()` does not accept p= argument.");
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate([0, a, 0]) translate(-cp) children();
} else {
rotate([0, a, 0]) children();
}
}
function yrot(a=0, p, cp) = rot([0,a,0], cp=cp, p=p);
// Function&Module: zrot()
//
// Usage: As Module
// zrot(a, [cp=]) ...
// Usage: As Function to rotate points
// rotated = zrot(a, p, [cp=]);
// Usage: As Function to return rotation matrix
// mat = zrot(a, [cp=]);
//
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot()
//
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
//
// Example:
// #cube(size=[60,20,40], center=true);
// zrot(90) cube(size=[60,20,40], center=true);
module zrot(a=0, p, cp)
{
assert(is_undef(p), "Module form `zrot()` does not accept p= argument.");
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate(a) translate(-cp) children();
} else {
rotate(a) children();
}
}
function zrot(a=0, p, cp) = rot(a, cp=cp, p=p);
//////////////////////////////////////////////////////////////////////
// Section: Scaling
//////////////////////////////////////////////////////////////////////
// Function&Module: scale()
// Usage: As Module
// scale(SCALAR) ...
// scale([X,Y,Z]) ...
// Usage: Scale Points
// pts = scale(v, p, [cp=]);
// Usage: Get Scaling Matrix
// mat = scale(v, [cp=]);
// Topics: Affine, Matrices, Transforms, Scaling
// See Also: xscale(), yscale(), zscale()
// Description:
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// Arguments:
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
// p = If called as a function, the point or list of points to scale.
// ---
// cp = If given, centers the scaling on the point `cp`.
// Example(NORENDER):
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
// Example(2D):
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path),closed=true);
function scale(v=1, p, cp=[0,0,0]) =
assert(is_num(v) || is_vector(v))
assert(is_undef(p) || is_list(p))
assert(is_vector(cp))
let(
v = is_num(v)? [v,v,v] : v,
m = len(v)==2? (
cp==[0,0,0] || cp == [0,0] ? affine2d_scale(v) : (
affine2d_translate(point2d(cp)) *
affine2d_scale(v) *
affine2d_translate(point2d(-cp))
)
) : (
cp==[0,0,0] ? affine3d_scale(v) : (
affine3d_translate(point3d(cp)) *
affine3d_scale(v) *
affine3d_translate(point3d(-cp))
)
)
)
is_undef(p)? m : apply(m, p) ;
// Function&Module: xscale()
//
//
// Usage: As Module
// xscale(x, [cp=]) ...
// Usage: Scale Points
// scaled = xscale(x, p, [cp=]);
// Usage: Get Affine Matrix
// mat = xscale(x, [cp=], [planar=]);
//
// Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), yscale(), zscale()
//
// Description:
// Scales along the X axis by the scaling factor `x`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// x = Factor to scale by, along the X axis.
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
// ---
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[cp,0,0]`
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// xscale(3) sphere(r=10);
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(xscale(2,p=path),closed=true);
module xscale(x=1, p, cp=0, planar) {
assert(is_undef(p), "Module form `xscale()` does not accept p= argument.");
assert(is_undef(planar), "Module form `xscale()` does not accept planar= argument.");
cp = is_num(cp)? [cp,0,0] : cp;
if (cp == [0,0,0]) {
scale([x,1,1]) children();
} else {
translate(cp) scale([x,1,1]) translate(-cp) children();
}
}
function xscale(x=1, p, cp=0, planar=false) =
assert(is_finite(x))
assert(is_undef(p) || is_list(p))
assert(is_finite(cp) || is_vector(cp))
assert(is_bool(planar))
let( cp = is_num(cp)? [cp,0,0] : cp )
(planar || (!is_undef(p) && len(p)==2))
? scale([x,1], cp=cp, p=p)
: scale([x,1,1], cp=cp, p=p);
// Function&Module: yscale()
//
// Usage: As Module
// yscale(y, [cp=]) ...
// Usage: Scale Points
// scaled = yscale(y, p, [cp=]);
// Usage: Get Affine Matrix
// mat = yscale(y, [cp=], [planar=]);
//
// Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), xscale(), zscale()
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// y = Factor to scale by, along the Y axis.
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
// ---
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,cp,0]`
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// yscale(3) sphere(r=10);
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(yscale(2,p=path),closed=true);
module yscale(y=1, p, cp=0, planar) {
assert(is_undef(p), "Module form `yscale()` does not accept p= argument.");
assert(is_undef(planar), "Module form `yscale()` does not accept planar= argument.");
cp = is_num(cp)? [0,cp,0] : cp;
if (cp == [0,0,0]) {
scale([1,y,1]) children();
} else {
translate(cp) scale([1,y,1]) translate(-cp) children();
}
}
function yscale(y=1, p, cp=0, planar=false) =
assert(is_finite(y))
assert(is_undef(p) || is_list(p))
assert(is_finite(cp) || is_vector(cp))
assert(is_bool(planar))
let( cp = is_num(cp)? [0,cp,0] : cp )
(planar || (!is_undef(p) && len(p)==2))
? scale([1,y], cp=cp, p=p)
: scale([1,y,1], cp=cp, p=p);
// Function&Module: zscale()
//
// Usage: As Module
// zscale(z, [cp=]) ...
// Usage: Scale Points
// scaled = zscale(z, p, [cp=]);
// Usage: Get Affine Matrix
// mat = zscale(z, [cp=]);
//
// Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), xscale(), yscale()
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// z = Factor to scale by, along the Z axis.
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
// ---
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,0,cp]`
//
// Example: As Module
// zscale(3) sphere(r=10);
//
// Example: Scaling Points
// path = xrot(90,p=path3d(circle(d=50,$fn=12)));
// #stroke(path,closed=true);
// stroke(zscale(2,path),closed=true);
module zscale(z=1, p, cp=0) {
assert(is_undef(p), "Module form `zscale()` does not accept p= argument.");
cp = is_num(cp)? [0,0,cp] : cp;
if (cp == [0,0,0]) {
scale([1,1,z]) children();
} else {
translate(cp) scale([1,1,z]) translate(-cp) children();
}
}
function zscale(z=1, p, cp=0) =
assert(is_finite(z))
assert(is_undef(p) || is_list(p))
assert(is_finite(cp) || is_vector(cp))
let( cp = is_num(cp)? [0,0,cp] : cp )
scale([1,1,z], cp=cp, p=p);
//////////////////////////////////////////////////////////////////////
// Section: Reflection (Mirroring)
//////////////////////////////////////////////////////////////////////
// Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: xflip(), yflip(), zflip()
// Description:
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
function mirror(v, p) =
assert(is_vector(v))
assert(is_undef(p) || is_list(p))
let(m = len(v)==2? affine2d_mirror(v) : affine3d_mirror(v))
is_undef(p)? m : apply(m,p);
// Function&Module: xflip()
//
// Usage: As Module
// xflip([x]) ...
// Usage: As Function
// pt = xflip(p, [x]);
// Usage: Get Affine Matrix
// pt = xflip([x], [planar=]);
//
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), yflip(), zflip()
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and `planar=true`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// x = The X coordinate of the plane of reflection. Default: 0
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
// ---
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
//
// Example:
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
module xflip(p, x=0, planar) {
assert(is_undef(p), "Module form `zflip()` does not accept p= argument.");
assert(is_undef(planar), "Module form `zflip()` does not accept planar= argument.");
translate([x,0,0])
mirror([1,0,0])
translate([-x,0,0]) children();
}
function xflip(p, x=0, planar=false) =
assert(is_finite(x))
assert(is_bool(planar))
assert(is_undef(p) || is_list(p))
let(
v = RIGHT,
n = planar? point2d(v) : v
)
x == 0 ? mirror(n,p=p) :
let(
cp = x * n,
m = move(cp) * mirror(n) * move(-cp)
)
is_undef(p)? m : apply(m, p);
// Function&Module: yflip()
//
// Usage: As Module
// yflip([y]) ...
// Usage: As Function
// pt = yflip(p, [y]);
// Usage: Get Affine Matrix
// pt = yflip([y], [planar=]);
//
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), zflip()
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and `planar=true`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
// y = The Y coordinate of the plane of reflection. Default: 0
// ---
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
//
// Example:
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
module yflip(p, y=0, planar) {
assert(is_undef(p), "Module form `yflip()` does not accept p= argument.");
assert(is_undef(planar), "Module form `yflip()` does not accept planar= argument.");
translate([0,y,0])
mirror([0,1,0])
translate([0,-y,0]) children();
}
function yflip(p, y=0, planar=false) =
assert(is_finite(y))
assert(is_bool(planar))
assert(is_undef(p) || is_list(p))
let(
v = BACK,
n = planar? point2d(v) : v
)
y == 0 ? mirror(n,p=p) :
let(
cp = y * n,
m = move(cp) * mirror(n) * move(-cp)
)
is_undef(p)? m : apply(m, p);
// Function&Module: zflip()
//
// Usage: As Module
// zflip([z]) ...
// Usage: As Function
// pt = zflip(p, [z]);
// Usage: Get Affine Matrix
// pt = zflip([z]);
//
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip()
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
// z = The Z coordinate of the plane of reflection. Default: 0
//
// Example:
// zflip() cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
//
// Example:
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
module zflip(p, z=0) {
assert(is_undef(p), "Module form `zflip()` does not accept p= argument.");
translate([0,0,z])
mirror([0,0,1])
translate([0,0,-z]) children();
}
function zflip(p, z=0) =
assert(is_finite(z))
assert(is_undef(p) || is_list(p))
z==0? mirror([0,0,1],p=p) :
let(m = up(z) * mirror(UP) * down(z))
p==undef? m : apply(m, p);
//////////////////////////////////////////////////////////////////////
// Section: Other Transformations
//////////////////////////////////////////////////////////////////////
// Function&Module: frame_map()
// Usage: As module
// frame_map(v1, v2, v3, [reverse=]) { ... }
// Usage: As function to remap points
// transformed = frame_map(v1, v2, v3, p=points, [reverse=]);
// Usage: As function to return a transformation matrix:
// map = frame_map(v1, v2, v3, [reverse=]);
// map = frame_map(x=VECTOR1, y=VECTOR2, [reverse=]);
// map = frame_map(x=VECTOR1, z=VECTOR2, [reverse=]);
// map = frame_map(y=VECTOR1, z=VECTOR2, [reverse=]);
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot()
// Description:
// Maps one coordinate frame to another. You must specify two or
// three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied, so if you
// specify x=[1,1] then the x axis will be mapped to the line y=x. If you
// give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand
// coordinate system. If the vectors you give are orthogonal the result will be a rotation and the
// `reverse` parameter will supply the inverse map, which enables you to map two arbitrary
// coordinate systems to each other by using the canonical coordinate system as an intermediary.
// You cannot use the `reverse` option with non-orthogonal inputs. Note that only the direction
// of the specified vectors matters: the transformation will not apply scaling, though it can
// skew if your provide non-orthogonal axes.
// Arguments:
// x = Destination 3D vector for x axis.
// y = Destination 3D vector for y axis.
// z = Destination 3D vector for z axis.
// p = If given, the point, path, patch, or VNF to operate on. Function use only.
// reverse = reverse direction of the map for orthogonal inputs. Default: false
// Example: Remap axes after linear extrusion
// frame_map(x=[0,1,0], y=[0,0,1]) linear_extrude(height=10) square(3);
// Example: This map is just a rotation around the z axis
// mat = frame_map(x=[1,1,0], y=[-1,1,0]);
// multmatrix(mat) frame_ref();
// Example: This map is not a rotation because x and y aren't orthogonal
// frame_map(x=[1,0,0], y=[1,1,0]) cube(10);
// Example: This sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]. (Original directions shown in light shade, final directions shown dark.)
// mat = frame_map(x=[0,1,1], y=[0,-1,1]) * frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
// color("purple",alpha=.2) stroke([[0,0,0],10*[1,1,0]]);
// color("green",alpha=.2) stroke([[0,0,0],10*[-1,1,0]]);
// multmatrix(mat) {
// color("purple") stroke([[0,0,0],10*[1,1,0]]);
// color("green") stroke([[0,0,0],10*[-1,1,0]]);
// }
function frame_map(x,y,z, p, reverse=false) =
is_def(p)
? apply(frame_map(x,y,z,reverse=reverse), p)
:
assert(num_defined([x,y,z])>=2, "Must define at least two inputs")
let(
xvalid = is_undef(x) || (is_vector(x) && len(x)==3),
yvalid = is_undef(y) || (is_vector(y) && len(y)==3),
zvalid = is_undef(z) || (is_vector(z) && len(z)==3)
)
assert(xvalid,"Input x must be a length 3 vector")
assert(yvalid,"Input y must be a length 3 vector")
assert(zvalid,"Input z must be a length 3 vector")
let(
x = is_undef(x)? undef : unit(x,RIGHT),
y = is_undef(y)? undef : unit(y,BACK),
z = is_undef(z)? undef : unit(z,UP),
map = is_undef(x)? [cross(y,z), y, z] :
is_undef(y)? [x, cross(z,x), z] :
is_undef(z)? [x, y, cross(x,y)] :
[x, y, z]
)
reverse? (
let(
ocheck = (
approx(map[0]*map[1],0) &&
approx(map[0]*map[2],0) &&
approx(map[1]*map[2],0)
)
)
assert(ocheck, "Inputs must be orthogonal when reverse==true")
[for (r=map) [for (c=r) c, 0], [0,0,0,1]]
) : [for (r=transpose(map)) [for (c=r) c, 0], [0,0,0,1]];
module frame_map(x,y,z,p,reverse=false)
{
assert(is_undef(p), "Module form `frame_map()` does not accept p= argument.");
multmatrix(frame_map(x,y,z,reverse=reverse))
children();
}
// Function&Module: skew()
// Usage: As Module
// skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]) ...
// Usage: As Function
// pts = skew(p, [sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]);
// Usage: Get Affine Matrix
// mat = skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=], [planar=]);
// Topics: Affine, Matrices, Transforms, Skewing
//
// Description:
// Skews geometry by the given skew factors.
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
// Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis.
// Arguments:
// p = If given, the point, path, patch, or VNF to skew. Function use only.
// ---
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
// Example(2D): Skew along the X axis in 2D.
// skew(sxy=0.5) square(40, center=true);
// Example(2D): Skew along the Y axis in 2D.
// skew(syx=0.5) square(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Y coordinate.
// skew(sxy=0.5) cube(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Z coordinate.
// skew(sxz=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of X coordinate.
// skew(syx=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of Z coordinate.
// skew(syz=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of X coordinate.
// skew(szx=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of Y coordinate.
// skew(szy=0.75) cube(40, center=true);
// Example(FlatSpin,VPD=275): Skew Along Multiple Axes.
// skew(sxy=0.5, syx=0.3, szy=0.75) cube(40, center=true);
// Example(2D): Calling as a 2D Function
// pts = skew(p=square(40,center=true), sxy=0.5);
// color("yellow") stroke(pts, closed=true);
// color("blue") move_copies(pts) circle(d=3, $fn=8);
// Example(FlatSpin,VPD=175): Calling as a 3D Function
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
// stroke(pts,closed=true,dots=true,dots_color="blue");
module skew(p, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0)
{
assert(is_undef(p), "Module form `skew()` does not accept p= argument.")
multmatrix(
affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy)
) children();
}
function skew(p, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0, planar=false) =
assert(is_finite(sxy))
assert(is_finite(sxz))
assert(is_finite(syx))
assert(is_finite(syz))
assert(is_finite(szx))
assert(is_finite(szy))
assert(is_bool(planar))
let(
planar = planar || (is_list(p) && is_num(p.x) && len(p)==2),
m = planar? [
[ 1, sxy, 0],
[syx, 1, 0],
[ 0, 0, 1]
] : affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy)
)
is_undef(p)? m : apply(m, p);
// Section: Applying transformation matrices to
/// Internal Function: is_2d_transform()
/// Usage:
/// x = is_2d_transform(t);
/// Topics: Affine, Matrices, Transforms, Type Checking
/// See Also: is_affine(), is_matrix()
/// Description:
/// Checks if the input is a 3D transform that does not act on the z coordinate, except possibly
/// for a simple scaling of z. Note that an input which is only a zscale returns false.
/// Arguments:
/// t = The transformation matrix to check.
/// Example:
/// b = is_2d_transform(zrot(45)); // Returns: true
/// b = is_2d_transform(yrot(45)); // Returns: false
/// b = is_2d_transform(xrot(45)); // Returns: false
/// b = is_2d_transform(move([10,20,0])); // Returns: true
/// b = is_2d_transform(move([10,20,30])); // Returns: false
/// b = is_2d_transform(scale([2,3,4])); // Returns: true
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&
(t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale()
// Function: apply()
// Usage:
// pts = apply(transform, points);
// Topics: Affine, Matrices, Transforms
// Description:
// Applies the specified transformation matrix to a point, pointlist, bezier patch or VNF.
// Both inputs can be 2D or 3D, and it is also allowed to supply 3D transformations with 2D
// data as long as the the only action on the z coordinate is a simple scaling.
// .
// If you construct your own matrices you can also use a transform that acts like a projection
// with fewer rows to produce lower dimensional output.
// Arguments:
// transform = The 2D or 3D transformation matrix to apply to the point/points.
// points = The point, pointlist, bezier patch, or VNF to apply the transformation to.
// Example(3D):
// path1 = path3d(circle(r=40));
// tmat = xrot(45);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
// Example(2D):
// path1 = circle(r=40);
// tmat = translate([10,5]);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
// Example(2D):
// path1 = circle(r=40);
// tmat = rot(30) * back(15) * scale([1.5,0.5,1]);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
function apply(transform,points) =
points==[] ? []
: is_vector(points) ? apply(transform, [points])[0] // point
: is_vnf(points) ? // vnf
let(
newvnf = [apply(transform, points[0]), points[1]],
reverse = (len(transform)==len(transform[0])) && determinant(transform)<0
)
reverse ? vnf_reverse_faces(newvnf) : newvnf
: is_list(points) && is_list(points[0]) && is_vector(points[0][0]) // bezier patch
? [for (x=points) apply(transform,x)]
: assert(is_matrix(transform),"Invalid transformation matrix") // Assuming point list
let(
tdim = len(transform[0])-1,
datadim = len(points[0]),
outdim = min(datadim,len(transform)),
matrix = [for(i=[0:1:tdim]) [for(j=[0:1:outdim-1]) transform[j][i]]]
)
tdim==datadim && (datadim==3 || datadim==2) ? [for(p=points) concat(p,1)] * matrix
: tdim == 3 && datadim == 2 ?
assert(is_2d_transform(transform), str("Transforms is 3d but points are 2d"))
[for(p=points) concat(p,[0,1])]*matrix
: tdim == 2 && datadim == 3 ?
let(
matrix3d =[[ matrix[0][0], matrix[0][1], 0],
[ matrix[1][0], matrix[1][1], 0],
[ 0, 0, 1],
[ matrix[2][0], matrix[2][1], 0]]
)
[for(p=points) concat(p,1)] * matrix3d
: assert(false, str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap