BOSL2/triangulation.scad

196 lines
5.8 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: triangulation.scad
// Functions to triangulate polyhedron faces.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/triangulation.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Functions
// Function: face_normal()
// Description:
// Given an array of vertices (`points`), and a list of indexes into the
// vertex array (`face`), returns the normal vector of the face.
// Arguments:
// points = Array of vertices for the polyhedron.
// face = The face, given as a list of indices into the vertex array `points`.
function face_normal(points, face) =
let(count=len(face))
unit(
sum(
[
for(i=[0:1:count-1]) cross(
points[face[(i+1)%count]]-points[face[0]],
points[face[(i+2)%count]]-points[face[(i+1)%count]]
)
]
)
)
;
// Function: find_convex_vertex()
// Description:
// Returns the index of a convex point on the given face.
// Arguments:
// points = Array of vertices for the polyhedron.
// face = The face, given as a list of indices into the vertex array `points`.
// facenorm = The normal vector of the face.
function find_convex_vertex(points, face, facenorm, i=0) =
let(count=len(face),
p0=points[face[i]],
p1=points[face[(i+1)%count]],
p2=points[face[(i+2)%count]]
)
(len(face)>i)? (
(cross(p1-p0, p2-p1)*facenorm>0)? (i+1)%count :
find_convex_vertex(points, face, facenorm, i+1)
) : //This should never happen since there is at least 1 convex vertex.
undef
;
// Function: point_in_ear()
// Description: Determine if a point is in a clipable convex ear.
// Arguments:
// points = Array of vertices for the polyhedron.
// face = The face, given as a list of indices into the vertex array `points`.
function point_in_ear(points, face, tests, i=0) =
(i<len(face)-1)?
let(
prev=point_in_ear(points, face, tests, i+1),
test=_check_point_in_ear(points[face[i]], tests)
)
(test>prev[0])? [test, i] : prev
:
[_check_point_in_ear(points[face[i]], tests), i]
;
// Internal non-exposed function.
function _check_point_in_ear(point, tests) =
let(
result=[
(point*tests[0][0])-tests[0][1],
(point*tests[1][0])-tests[1][1],
(point*tests[2][0])-tests[2][1]
]
)
(result[0]>0 && result[1]>0 && result[2]>0)? result[0] : -1
;
// Function: normalize_vertex_perimeter()
// Description: Removes the last item in an array if it is the same as the first item.
// Arguments:
// v = The array to normalize.
function normalize_vertex_perimeter(v) =
let(lv = len(v))
(lv < 2)? v :
(v[lv-1] != v[0])? v :
[for (i=[0:1:lv-2]) v[i]]
;
// Function: is_only_noncolinear_vertex()
// Description:
// Given a face in a polyhedron, and a vertex in that face, returns true
// if that vertex is the only non-colinear vertex in the face.
// Arguments:
// points = Array of vertices for the polyhedron.
// facelist = The face, given as a list of indices into the vertex array `points`.
// vertex = The index into `facelist`, of the vertex to test.
function is_only_noncolinear_vertex(points, facelist, vertex) =
let(
face=select(facelist, vertex+1, vertex-1),
count=len(face)
)
0==sum(
[
for(i=[0:1:count-1]) norm(
cross(
points[face[(i+1)%count]]-points[face[0]],
points[face[(i+2)%count]]-points[face[(i+1)%count]]
)
)
]
)
;
// Function: triangulate_face()
// Description:
// Given a face in a polyhedron, subdivides the face into triangular faces.
// Returns an array of faces, where each face is a list of three vertex indices.
// Arguments:
// points = Array of vertices for the polyhedron.
// face = The face, given as a list of indices into the vertex array `points`.
function triangulate_face(points, face) =
let(
face = deduplicate_indexed(points,face),
count = len(face)
)
(count < 3)? [] :
(count == 3)? [face] :
let(
facenorm=face_normal(points, face),
cv=find_convex_vertex(points, face, facenorm)
)
assert(!is_undef(cv), "Cannot triangulate self-crossing face perimeters.")
let(
pv=(count+cv-1)%count,
nv=(cv+1)%count,
p0=points[face[pv]],
p1=points[face[cv]],
p2=points[face[nv]],
tests=[
[cross(facenorm, p0-p2), cross(facenorm, p0-p2)*p0],
[cross(facenorm, p1-p0), cross(facenorm, p1-p0)*p1],
[cross(facenorm, p2-p1), cross(facenorm, p2-p1)*p2]
],
ear_test=point_in_ear(points, face, tests),
clipable_ear=(ear_test[0]<0),
diagonal_point=ear_test[1]
)
(clipable_ear)? // There is no point inside the ear.
is_only_noncolinear_vertex(points, face, cv)?
// In the point&line degeneracy clip to somewhere in the middle of the line.
flatten([
triangulate_face(points, select(face, cv, (cv+2)%count)),
triangulate_face(points, select(face, (cv+2)%count, cv))
])
:
// Otherwise the ear is safe to clip.
flatten([
[select(face, pv, nv)],
triangulate_face(points, select(face, nv, pv))
])
: // If there is a point inside the ear, make a diagonal and clip along that.
flatten([
triangulate_face(points, select(face, cv, diagonal_point)),
triangulate_face(points, select(face, diagonal_point, cv))
]);
// Function: triangulate_faces()
// Description:
// Subdivides all faces for the given polyhedron that have more than three vertices.
// Returns an array of faces where each face is a list of three vertex array indices.
// Arguments:
// points = Array of vertices for the polyhedron.
// faces = Array of faces for the polyhedron. Each face is a list of 3 or more indices into the `points` array.
function triangulate_faces(points, faces) =
[
for (face=faces) each
len(face)==3? [face] :
triangulate_face(points, normalize_vertex_perimeter(face))
];
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap