mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
410 lines
18 KiB
OpenSCAD
410 lines
18 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vectors.scad
|
|
// Vector math functions.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Vector Manipulation
|
|
|
|
|
|
// Function: is_vector()
|
|
// Usage:
|
|
// is_vector(v, [length], ...);
|
|
// Description:
|
|
// Returns true if v is a list of finite numbers.
|
|
// Arguments:
|
|
// v = The value to test to see if it is a vector.
|
|
// length = If given, make sure the vector is `length` items long.
|
|
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
|
|
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
|
|
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
|
|
// Example:
|
|
// is_vector(4); // Returns false
|
|
// is_vector([4,true,false]); // Returns false
|
|
// is_vector([3,4,INF,5]); // Returns false
|
|
// is_vector([3,4,5,6]); // Returns true
|
|
// is_vector([3,4,undef,5]); // Returns false
|
|
// is_vector([3,4,5],3); // Returns true
|
|
// is_vector([3,4,5],4); // Returns true
|
|
// is_vector([]); // Returns false
|
|
// is_vector([0,4,0],3,zero=false); // Returns true
|
|
// is_vector([0,0,0],zero=false); // Returns false
|
|
// is_vector([0,0,1e-12],zero=false); // Returns false
|
|
// is_vector([0,1,0],all_nonzero=false); // Returns false
|
|
// is_vector([1,1,1],all_nonzero=false); // Returns true
|
|
// is_vector([],zero=false); // Returns false
|
|
function is_vector(v, length, zero, all_nonzero=false, eps=EPSILON) =
|
|
is_list(v) && len(v)>0 && []==[for(vi=v) if(!is_num(vi)) 0]
|
|
&& (is_undef(length) || len(v)==length)
|
|
&& (is_undef(zero) || ((norm(v) >= eps) == !zero))
|
|
&& (!all_nonzero || all_nonzero(v)) ;
|
|
|
|
|
|
// Function: v_theta()
|
|
// Usage:
|
|
// theta = v_theta([X,Y]);
|
|
// Description:
|
|
// Given a vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
|
|
function v_theta(v) =
|
|
assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
|
|
atan2(v.y,v.x);
|
|
|
|
|
|
// Function: v_mul()
|
|
// Description:
|
|
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
|
|
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// v_mul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
|
|
function v_mul(v1, v2) =
|
|
assert( is_list(v1) && is_list(v2) && len(v1)==len(v2), "Incompatible input")
|
|
[for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
|
|
|
|
|
// Function: v_div()
|
|
// Description:
|
|
// Element-wise vector division. Divides each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the quotients.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// v_div([24,28,30], [8,7,6]); // Returns [3, 4, 5]
|
|
function v_div(v1, v2) =
|
|
assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
|
|
[for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
|
|
|
|
|
// Function: v_abs()
|
|
// Description: Returns a vector of the absolute value of each element of vector `v`.
|
|
// Arguments:
|
|
// v = The vector to get the absolute values of.
|
|
// Example:
|
|
// v_abs([-1,3,-9]); // Returns: [1,3,9]
|
|
function v_abs(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) abs(x)];
|
|
|
|
|
|
// Function: v_floor()
|
|
// Description:
|
|
// Returns the given vector after performing a `floor()` on all items.
|
|
function v_floor(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) floor(x)];
|
|
|
|
|
|
// Function: v_ceil()
|
|
// Description:
|
|
// Returns the given vector after performing a `ceil()` on all items.
|
|
function v_ceil(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) ceil(x)];
|
|
|
|
|
|
// Function: unit()
|
|
// Usage:
|
|
// unit(v, [error]);
|
|
// Description:
|
|
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
|
|
// asserts an error unless `error` is given, in which case the value of `error` is returned.
|
|
// Arguments:
|
|
// v = The vector to normalize.
|
|
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
|
|
// Examples:
|
|
// unit([10,0,0]); // Returns: [1,0,0]
|
|
// unit([0,10,0]); // Returns: [0,1,0]
|
|
// unit([0,0,10]); // Returns: [0,0,1]
|
|
// unit([0,-10,0]); // Returns: [0,-1,0]
|
|
// unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
|
|
// unit([0,0,0]); // Asserts an error.
|
|
function unit(v, error=[[["ASSERT"]]]) =
|
|
assert(is_vector(v), str("Expected a vector. Got: ",v))
|
|
norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Tried to normalize a zero vector") : error) :
|
|
v/norm(v);
|
|
|
|
|
|
// Function: vector_angle()
|
|
// Usage:
|
|
// vector_angle(v1,v2);
|
|
// vector_angle([v1,v2]);
|
|
// vector_angle(PT1,PT2,PT3);
|
|
// vector_angle([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
|
|
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
|
|
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_angle(UP,LEFT); // Returns: 90
|
|
// vector_angle(RIGHT,LEFT); // Returns: 180
|
|
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
|
|
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
|
|
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
|
|
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
|
|
function vector_angle(v1,v2,v3) =
|
|
assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
|
|
|| is_consistent([v1,v2,v3]) ,
|
|
"Bad arguments.")
|
|
assert( is_vector(v1) || is_consistent(v1), "Bad arguments.")
|
|
let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
|
|
! is_undef(v2) ? [v1,v2] :
|
|
len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]]
|
|
: v1
|
|
)
|
|
assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
|
|
let(
|
|
norm0 = norm(vecs[0]),
|
|
norm1 = norm(vecs[1])
|
|
)
|
|
assert(norm0>0 && norm1>0, "Zero length vector.")
|
|
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
|
acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
|
|
|
|
|
|
// Function: vector_axis()
|
|
// Usage:
|
|
// vector_axis(v1,v2);
|
|
// vector_axis([v1,v2]);
|
|
// vector_axis(PT1,PT2,PT3);
|
|
// vector_axis([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
|
|
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
|
|
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
|
|
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
|
|
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
function vector_axis(v1,v2=undef,v3=undef) =
|
|
is_vector(v3)
|
|
? assert(is_consistent([v3,v2,v1]), "Bad arguments.")
|
|
vector_axis(v1-v2, v3-v2)
|
|
: assert( is_undef(v3), "Bad arguments.")
|
|
is_undef(v2)
|
|
? assert( is_list(v1), "Bad arguments.")
|
|
len(v1) == 2
|
|
? vector_axis(v1[0],v1[1])
|
|
: vector_axis(v1[0],v1[1],v1[2])
|
|
: assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
|
|
, "Bad arguments.")
|
|
let(
|
|
eps = 1e-6,
|
|
w1 = point3d(v1/norm(v1)),
|
|
w2 = point3d(v2/norm(v2)),
|
|
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
|
|
: (norm(v_abs(w2)-UP) > eps)? UP
|
|
: RIGHT
|
|
) unit(cross(w1,w3));
|
|
|
|
|
|
// Section: Vector Searching
|
|
|
|
// Function: vp_tree()
|
|
// Usage:
|
|
// tree = vp_tree(points, [leafsize])
|
|
// Description:
|
|
// Organizes n-dimensional data into a Vantage Point Tree, which can be
|
|
// efficiently searched for for nearest matches. The Vantage Point Tree
|
|
// is an effort to generalize binary search to n dimensions. Constructing the
|
|
// tree should be O(n log n) and searches should be O(log n), though real life
|
|
// performance depends on how the data is distributed, and it will deteriorate
|
|
// for high data dimensions. This data structure is useful when you will be
|
|
// performing many searches of the same data, so that the cost of constructing
|
|
// the tree is justified.
|
|
// .
|
|
// The vantage point tree at a given level chooses vp, the
|
|
// "vantage point", and a radius, R, and divides the data based
|
|
// on distance to vp. Points closer than R go in on branch
|
|
// of the tree and points farther than R go in the other branch.
|
|
// .
|
|
// The tree has the form [vp, R, inside, outside], where vp is
|
|
// the vantage point index, R is the radius, inside is a
|
|
// recursively computed tree for the inside points (distance less than
|
|
// or equal to R from the vantage point), and outside
|
|
// is a tree for the outside points (distance greater than R from the
|
|
// vantage point).
|
|
// .
|
|
// If the number of points is less than or equal to leafsize then
|
|
// vp_tree instead returns the list [ind] where ind is a list of
|
|
// the indices of the points. This means the list has the form
|
|
// [[i0, i1, i2,...]], so tree[0] is a list of indices. You can
|
|
// tell that a node is a leaf node by checking if tree[0] is a list.
|
|
// The leafsize parameter determines how many points can be
|
|
// store in the leaf nodes. The default value of 25 was found
|
|
// emperically to be a reasonable option for 3d data searched with vp_search().
|
|
// .
|
|
// Vantage point tree is described here: http://web.cs.iastate.edu/~honavar/nndatastructures.pdf
|
|
// Arguments:
|
|
// points = list of points to store in the tree
|
|
// leafsize = maximum number of points to store in the tree's leaf nodes. Default: 25
|
|
function vp_tree(points, leafsize=25) =
|
|
assert(is_matrix(points),"points must be a consistent list of data points")
|
|
_vp_tree(points, count(len(points)), leafsize);
|
|
|
|
function _vp_tree(ptlist, ind, leafsize) =
|
|
len(ind)<=leafsize ? [ind] :
|
|
let(
|
|
center = mean(select(ptlist,ind)),
|
|
cdistances = [for(i=ind) norm(ptlist[i]-center)],
|
|
vpind = ind[max_index(cdistances)],
|
|
vp = ptlist[vpind],
|
|
vp_dist = [for(i=ind) norm(vp-ptlist[i])],
|
|
r = ninther(vp_dist),
|
|
inside = [for(i=idx(ind)) if (vp_dist[i]<=r && ind[i]!=vpind) ind[i]],
|
|
outside = [for(i=idx(ind)) if (vp_dist[i]>r) ind[i]]
|
|
)
|
|
[vpind, r, _vp_tree(ptlist,inside,leafsize),_vp_tree(ptlist,outside,leafsize)];
|
|
|
|
|
|
// Function: vp_search()
|
|
// Usage:
|
|
// indices = vp_search(points, tree, p, r);
|
|
// Description:
|
|
// Search a vantage point tree for all points whose distance from p
|
|
// is less than or equal to r. Returns a list of indices of the points it finds
|
|
// in arbitrary order. The input points is a list of points to search and tree is the
|
|
// vantage point tree computed from that point list. The search should be
|
|
// around O(log n).
|
|
// Arguments:
|
|
// points = points indexed by the vantage point tree
|
|
// tree = vantage point tree from vp_tree
|
|
// p = point to search for
|
|
// r = search radius
|
|
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
|
|
// $fn=32;
|
|
// k = 2000;
|
|
// points = array_group(rands(0,10,k*2,seed=13333),2);
|
|
// vp = vp_tree(points);
|
|
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
|
|
// search_ind = [for(q=queries) vp_search(points, vp, q, 1)];
|
|
// move_copies(points) circle(r=.08);
|
|
// for(i=idx(queries)){
|
|
// color("blue")stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
|
|
// color("red")move_copies(select(points, search_ind[i])) circle(r=.08);
|
|
// }
|
|
function _vp_search(points, tree, p, r) =
|
|
is_list(tree[0]) ? [for(i=tree[0]) if (norm(points[i]-p)<=r) i]
|
|
:
|
|
let(
|
|
d = norm(p-points[tree[0]]) // dist to vantage point
|
|
)
|
|
[
|
|
if (d <= r) tree[0],
|
|
if (d-r <= tree[1]) each _vp_search(points, tree[2], p, r),
|
|
if (d+r > tree[1]) each _vp_search(points, tree[3], p, r)
|
|
];
|
|
|
|
function vp_search(points, tree, p, r) =
|
|
assert(is_list(tree) && (len(tree)==4 || (len(tree)==1 && is_list(tree[0]))), "Vantage point tree not valid")
|
|
assert(is_matrix(points), "Parameter points is not a consistent point list")
|
|
assert(is_vector(p,len(points[0])), "Query must be a vector whose length matches the point list")
|
|
assert(all_positive(r),"Radius r must be a positive number")
|
|
_vp_search(points, tree, p, r);
|
|
|
|
|
|
// Function: vp_nearest()
|
|
// Usage:
|
|
// indices = vp_nearest(points, tree, p, k)
|
|
// Description:
|
|
// Search the vantage point tree for the k points closest to point p.
|
|
// The input points is the list of points to search and tree is
|
|
// the vantage point tree computed from that point list. The list is
|
|
// returned in sorted order, closest point first.
|
|
// Arguments:
|
|
// points = points indexed by the vantage point tree
|
|
// tree = vantage point tree from vp_tree
|
|
// p = point to search for
|
|
// k = number of neighbors to return
|
|
// Example: Four queries to find the 15 nearest points. The circles show the radius defined by the most distant query result. Note they are different for each query.
|
|
// $fn=32;
|
|
// k = 2000;
|
|
// points = array_group(rands(0,10,k*2,seed=13333),2);
|
|
// vp = vp_tree(points);
|
|
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
|
|
// search_ind = [for(q=queries) vp_nearest(points, vp, q, 15)];
|
|
// move_copies(points) circle(r=.08);
|
|
// for(i=idx(queries)){
|
|
// color("red")move_copies(select(points, search_ind[i])) circle(r=.08);
|
|
// color("blue")stroke(move(queries[i],
|
|
// circle(r=norm(points[last(search_ind[i])]-queries[i]))),
|
|
// closed=true, width=.08);
|
|
// }
|
|
function _insert_sorted(list, k, new) =
|
|
len(list)==k && new[1]>= last(list)[1] ? list
|
|
: [
|
|
for(entry=list) if (entry[1]<=new[1]) entry,
|
|
new,
|
|
for(i=[0:1:min(k-1,len(list))-1]) if (list[i][1]>new[1]) list[i]
|
|
];
|
|
|
|
function _insert_many(list, k, newlist,i=0) =
|
|
i==len(newlist) ? list :
|
|
_insert_many(_insert_sorted(list,k,newlist[i]),k,newlist,i+1);
|
|
|
|
function _vp_nearest(points, tree, p, k, answers=[]) =
|
|
is_list(tree[0]) ? _insert_many(answers, k, [for(entry=tree[0]) [entry, norm(points[entry]-p)]]) :
|
|
let(
|
|
d = norm(p-points[tree[0]]),
|
|
answers1 = _insert_sorted(answers, k, [tree[0],d]),
|
|
answers2 = d-last(answers1)[1] <= tree[1] ? _vp_nearest(points, tree[2], p, k, answers1) : answers1,
|
|
answers3 = d+last(answers2)[1] > tree[1] ? _vp_nearest(points, tree[3], p, k, answers2) : answers2
|
|
)
|
|
answers3;
|
|
|
|
function vp_nearest(points, tree, p, k) =
|
|
assert(is_int(k) && k>0)
|
|
assert(k<=len(points), "You requested more results that contained in the set")
|
|
assert(is_matrix(points), "Parameter points is not a consistent point list")
|
|
assert(is_vector(p,len(points[0])), "Query must be a vector whose length matches the point list")
|
|
assert(is_list(tree) && (len(tree)==4 || (len(tree)==1 && is_list(tree[0]))), "Vantage point tree not valid")
|
|
subindex(_vp_nearest(points, tree, p, k),0);
|
|
|
|
|
|
// Function: search_radius()
|
|
// Usage:
|
|
// index_list = search_radius(points, queries, r, [leafsize]);
|
|
// Description:
|
|
// Given a list of points and a compatible list of queries, for each query
|
|
// search the points list for all points whose distance from the query
|
|
// is less than or equal to r. The return value index_list[i] lists the indices
|
|
// in points of all matches to query q[i]. This list can be in arbitrary order.
|
|
// .
|
|
// This function is advantageous to use especially when both `points` and `queries`
|
|
// are large sets. The method contructs a vantage point tree and then uses it
|
|
// to check all the queries. If you use queries=points and set r to epsilon then
|
|
// you can find all of the approximate duplicates in a large list of vectors.
|
|
// Example: Finding duplicates in a list of vectors. With exact equality the order of the output is consistent, but with small variations [2,4] could occur in one position and [4,2] in the other one.
|
|
// v = array_group(rands(0,10,5*3,seed=9),3);
|
|
// points = [v[0],v[1],v[2],v[3],v[2],v[3],v[3],v[4]];
|
|
// echo(search_radius(points,points,1e-9)); // Prints [[0],[1],[2,4],[3,5,6],[2,4],[3,5,6],[3,5,6],[7]]
|
|
//
|
|
function search_radius(points, queries, r, leafsize=25) =
|
|
assert(is_matrix(points),"Invalid points list")
|
|
assert(is_matrix(queries),"Invalid query list")
|
|
assert(len(points[0])==len(queries[0]), "Query vectors don't match length of points")
|
|
let(
|
|
vptree = vp_tree(points, leafsize)
|
|
)
|
|
[for(q=queries) vp_search(points, vptree, q, r)];
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|