BOSL2/convex_hull.scad

199 lines
6.7 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: convex_hull.scad
// Functions to create 2D and 3D convex hulls.
// To use, add the following line to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/convex_hull.scad>
// ```
// Derived from Linde's Hull:
// - https://github.com/openscad/scad-utils
//////////////////////////////////////////////////////////////////////
// Section: Generalized Hull
// Function: convex_hull()
// Usage:
// convex_hull(points)
// Description:
// When given a list of 3D points, returns a list of faces for
// the minimal convex hull polyhedron of those points. Each face
// is a list of indexes into `points`.
// When given a list of 2D points, or 3D points that are all
// coplanar, returns a list of indices into `points` for the path
// that forms the minimal convex hull polygon of those points.
// Arguments:
// points = The list of points to find the minimal convex hull of.
function convex_hull(points) =
!(len(points) > 0) ? [] :
len(points[0]) == 2 ? convex_hull2d(points) :
len(points[0]) == 3 ? convex_hull3d(points) : [];
// Section: 2D Hull
// Function: convex_hull2d()
// Usage:
// convex_hull2d(points)
// Description:
// Takes a list of arbitrary 2D points, and finds the minimal convex
// hull polygon to enclose them. Returns a path as a list of indices
// into `points`.
function convex_hull2d(points) =
(len(points) < 3)? [] : let(
a=0, b=1,
c = _find_first_noncollinear([a,b], points, 2)
) (c == len(points))? _convex_hull_collinear(points) : let(
remaining = [ for (i = [2:len(points)-1]) if (i != c) i ],
ccw = triangle_area2d(points[a], points[b], points[c]) > 0,
polygon = ccw? [a,b,c] : [a,c,b]
) _convex_hull_iterative_2d(points, polygon, remaining);
// Adds the remaining points one by one to the convex hull
function _convex_hull_iterative_2d(points, polygon, remaining, _i=0) =
(_i >= len(remaining))? polygon : let (
// pick a point
i = remaining[_i],
// find the segments that are in conflict with the point (point not inside)
conflicts = _find_conflicting_segments(points, polygon, points[i])
// no conflicts, skip point and move on
) (len(conflicts) == 0)? _convex_hull_iterative_2d(points, polygon, remaining, _i+1) : let(
// find the first conflicting segment and the first not conflicting
// conflict will be sorted, if not wrapping around, do it the easy way
polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i)
) _convex_hull_iterative_2d(points, polygon, remaining, _i+1);
function _find_first_noncollinear(line, points, i) =
(i>=len(points) || !collinear_indexed(points, line[0], line[1], i))? i :
_find_first_noncollinear(line, points, i+1);
function _find_conflicting_segments(points, polygon, point) = [
for (i = [0:len(polygon)-1]) let(
j = (i+1) % len(polygon),
p1 = points[polygon[i]],
p2 = points[polygon[j]],
area = triangle_area2d(p1, p2, point)
) if (area < 0) i
];
// remove the conflicting segments from the polygon
function _remove_conflicts_and_insert_point(polygon, conflicts, point) =
(conflicts[0] == 0)? let(
nonconflicting = [ for(i = [0:len(polygon)-1]) if (!in_list(i, conflicts)) i ],
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
polygon = concat([ for (i = new_indices) polygon[i] ], point)
) polygon : let(
before_conflicts = [ for(i = [0:min(conflicts)]) polygon[i] ],
after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:len(polygon)-1]) polygon[i] ],
polygon = concat(before_conflicts, point, after_conflicts)
) polygon;
// Section: 3D Hull
// Function: convex_hull3d()
// Usage:
// convex_hull3d(points)
// Description:
// Takes a list of arbitrary 3D points, and finds the minimal convex
// hull polyhedron to enclose them. Returns a list of faces, where
// each face is a list of indexes into the given `points` list.
// If all points passed to it are coplanar, then the return is the
// list of indices of points forming the minimal convex hull polygon.
function convex_hull3d(points) =
(len(points) < 3)? list_range(len(points)) : let (
// start with a single triangle
a=0, b=1, c=2,
plane = plane3pt_indexed(points, a, b, c),
d = _find_first_noncoplanar(plane, points, 3)
) (d == len(points))? /* all coplanar*/ let (
pts2d = [ for (p = points) xyz_to_planar(p, points[a], points[b], points[c]) ],
hull2d = convex_hull2d(pts2d)
) hull2d : let(
remaining = [for (i = [3:len(points)-1]) if (i != d) i],
// Build an initial tetrahedron.
// Swap b, c if d is in front of triangle t.
ifop = in_front_of_plane(plane, points[d]),
bc = ifop? [c,b] : [b,c],
b = bc[0],
c = bc[1],
triangles = [
[a,b,c],
[d,b,a],
[c,d,a],
[b,d,c]
],
// calculate the plane equations
planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
) _convex_hull_iterative(points, triangles, planes, remaining);
// Adds the remaining points one by one to the convex hull
function _convex_hull_iterative(points, triangles, planes, remaining, _i=0) =
_i >= len(remaining) ? triangles :
let (
// pick a point
i = remaining[_i],
// find the triangles that are in conflict with the point (point not inside)
conflicts = _find_conflicts(points[i], planes),
// for all triangles that are in conflict, collect their halfedges
halfedges = [
for(c = conflicts, i = [0:2]) let(
j = (i+1)%3
) [triangles[c][i], triangles[c][j]]
],
// find the outer perimeter of the set of conflicting triangles
horizon = _remove_internal_edges(halfedges),
// generate a new triangle for each horizon halfedge together with the picked point i
new_triangles = [ for (h = horizon) concat(h,i) ],
// calculate the corresponding plane equations
new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
) _convex_hull_iterative(
points,
// remove the conflicting triangles and add the new ones
concat(list_remove(triangles, conflicts), new_triangles),
concat(list_remove(planes, conflicts), new_planes),
remaining,
_i+1
);
function _convex_hull_collinear(points) =
let(
a = points[0],
n = points[1] - a,
points1d = [ for(p = points) (p-a)*n ],
min_i = min_index(points1d),
max_i = max_index(points1d)
) [min_i, max_i];
function _remove_internal_edges(halfedges) = [
for (h = halfedges)
if (!in_list(reverse(h), halfedges))
h
];
function _find_conflicts(point, planes) = [
for (i = [0:len(planes)-1])
if (in_front_of_plane(planes[i], point))
i
];
function _find_first_noncoplanar(plane, points, i) =
(i >= len(points) || !coplanar(plane, points[i]))? i :
_find_first_noncoplanar(plane, points, i+1);
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap