BOSL2/paths.scad
2021-11-05 19:31:48 -04:00

1315 lines
55 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: paths.scad
// A `path` is a list of points of the same dimensions, usually 2D or 3D, that can
// be connected together to form a sequence of line segments or a polygon.
// The functions in this file work on paths and also 1-regions, which are regions
// that include exactly one path. When you pass a 1-region to a function, the default
// value for `closed` is always `true` because regions represent polygons.
// Capabilities include computing length of paths, computing
// path tangents and normals, resampling of paths, and cutting paths up into smaller paths.
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
// Section: Utility Functions
// Function: is_path()
// Usage:
// is_path(list, [dim], [fast])
// Description:
// Returns true if `list` is a path. A path is a list of two or more numeric vectors (AKA points).
// All vectors must of the same size, and may only contain numbers that are not inf or nan.
// By default the vectors in a path must be 2d or 3d. Set the `dim` parameter to specify a list
// of allowed dimensions, or set it to `undef` to allow any dimension. (Note that this function
// returns `false` on 1-regions.)
// Example:
// bool1 = is_path([[3,4],[5,6]]); // Returns true
// bool2 = is_path([[3,4]]); // Returns false
// bool3 = is_path([[3,4],[4,5]],2); // Returns true
// bool4 = is_path([[3,4,3],[5,4,5]],2); // Returns false
// bool5 = is_path([[3,4,3],[5,4,5]],2); // Returns false
// bool6 = is_path([[3,4,5],undef,[4,5,6]]); // Returns false
// bool7 = is_path([[3,5],[undef,undef],[4,5]]); // Returns false
// bool8 = is_path([[3,4],[5,6],[5,3]]); // Returns true
// bool9 = is_path([3,4,5,6,7,8]); // Returns false
// bool10 = is_path([[3,4],[5,6]], dim=[2,3]);// Returns true
// bool11 = is_path([[3,4],[5,6]], dim=[1,3]);// Returns false
// bool12 = is_path([[3,4],"hello"], fast=true); // Returns true
// bool13 = is_path([[3,4],[3,4,5]]); // Returns false
// bool14 = is_path([[1,2,3,4],[2,3,4,5]]); // Returns false
// bool15 = is_path([[1,2,3,4],[2,3,4,5]],undef);// Returns true
// Arguments:
// list = list to check
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
// fast = set to true for fast check that only looks at first entry. Default: false
function is_path(list, dim=[2,3], fast=false) =
fast
? is_list(list) && is_vector(list[0])
: is_matrix(list)
&& len(list)>1
&& len(list[0])>0
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
// Function: is_1region()
// Usage:
// bool = is_1region(path, [name])
// Description:
// If `path` is a region with one component (a 1-region) then return true. If path is a region with more components
// then display an error message about the parameter `name` requiring a path or a single component region. If the input
// is not a region then return false. This function helps path functions accept 1-regions.
// Arguments:
// path = input to process
// name = name of parameter to use in error message. Default: "path"
function is_1region(path, name="path") =
!is_region(path)? false
:assert(len(path)==1,str("Parameter \"",name,"\" must be a path or singleton region, but is a multicomponent region"))
true;
// Function: force_path()
// Usage:
// outpath = force_path(path, [name])
// Description:
// If `path` is a region with one component (a 1-region) then return that component as a path. If path is a region with more components
// then display an error message about the parameter `name` requiring a path or a single component region. If the input
// is not a region then return the input without any checks. This function helps path functions accept 1-regions.
// Arguments:
// path = input to process
// name = name of parameter to use in error message. Default: "path"
function force_path(path, name="path") =
is_region(path) ?
assert(len(path)==1, str("Parameter \"",name,"\" must be a path or singleton region, but is a multicomponent region"))
path[0]
: path;
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
// Description:
// Returns true if the first and last points in the given path are coincident.
function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps);
// Function: close_path()
// Usage:
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
function close_path(path, eps=EPSILON) =
is_closed_path(path,eps=eps)? path : concat(path,[path[0]]);
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
function cleanup_path(path, eps=EPSILON) =
is_closed_path(path,eps=eps)? [for (i=[0:1:len(path)-2]) path[i]] : path;
/// Internal Function: _path_select()
/// Usage:
/// _path_select(path,s1,u1,s2,u2,[closed]):
/// Description:
/// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
/// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
/// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
/// Arguments:
/// path = The path to get a section of.
/// s1 = The number of the starting segment.
/// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
/// s2 = The number of the ending segment.
/// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
/// closed = If true, treat path as a closed polygon.
function _path_select(path, s1, u1, s2, u2, closed=false) =
let(
lp = len(path),
l = lp-(closed?0:1),
u1 = s1<0? 0 : s1>l? 1 : u1,
u2 = s2<0? 0 : s2>l? 1 : u2,
s1 = constrain(s1,0,l),
s2 = constrain(s2,0,l),
pathout = concat(
(s1<l && u1<1)? [lerp(path[s1],path[(s1+1)%lp],u1)] : [],
[for (i=[s1+1:1:s2]) path[i]],
(s2<l && u2>0)? [lerp(path[s2],path[(s2+1)%lp],u2)] : []
)
) pathout;
// Function: path_merge_collinear()
// Description:
// Takes a path and removes unnecessary sequential collinear points.
// Usage:
// path_merge_collinear(path, [eps])
// Arguments:
// path = A path of any dimension or a 1-region
// closed = treat as closed polygon. Default: false
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function path_merge_collinear(path, closed, eps=EPSILON) =
is_1region(path) ? path_merge_collinear(path[0], default(closed,true), eps) :
let(closed=default(closed,false))
assert(is_bool(closed))
assert( is_path(path), "Invalid path in path_merge_collinear." )
assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
len(path)<=2 ? path :
let(
indices = [
0,
for (i=[1:1:len(path)-(closed?1:2)])
if (!is_collinear(path[i-1], path[i], select(path,i+1), eps=eps)) i,
if (!closed) len(path)-1
]
) [for (i=indices) path[i]];
// Section: Path length calculation
// Function: path_length()
// Usage:
// path_length(path,[closed])
// Description:
// Returns the length of the path.
// Arguments:
// path = Path of any dimension or 1-region.
// closed = true if the path is closed. Default: false
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
function path_length(path,closed) =
is_1region(path) ? path_length(path[0], default(closed,true)) :
assert(is_path(path), "Invalid path in path_length")
let(closed=default(closed,false))
assert(is_bool(closed))
len(path)<2? 0 :
sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0);
// Function: path_segment_lengths()
// Usage:
// path_segment_lengths(path,[closed])
// Description:
// Returns list of the length of each segment in a path
// Arguments:
// path = path in any dimension or 1-region
// closed = true if the path is closed. Default: false
function path_segment_lengths(path, closed) =
is_1region(path) ? path_segment_lengths(path[0], default(closed,true)) :
let(closed=default(closed,false))
assert(is_path(path),"Invalid path in path_segment_lengths.")
assert(is_bool(closed))
[
for (i=[0:1:len(path)-2]) norm(path[i+1]-path[i]),
if (closed) norm(path[0]-last(path))
];
// Function: path_length_fractions()
// Usage:
// fracs = path_length_fractions(path, [closed]);
// Description:
// Returns the distance fraction of each point in the path along the path, so the first
// point is zero and the final point is 1. If the path is closed the length of the output
// will have one extra point because of the final connecting segment that connects the last
// point of the path to the first point.
// Arguments:
// path = path in any dimension or a 1-region
// closed = set to true if path is closed. Default: false
function path_length_fractions(path, closed) =
is_1region(path) ? path_length_fractions(path[0], default(closed,true)):
let(closed=default(closed, false))
assert(is_path(path))
assert(is_bool(closed))
let(
lengths = [
0,
each path_segment_lengths(path,closed)
],
partial_len = cumsum(lengths),
total_len = last(partial_len)
)
partial_len / total_len;
/// Internal Function: _path_self_intersections()
/// Usage:
/// isects = _path_self_intersections(path, [closed], [eps]);
/// Description:
/// Locates all self intersection points of the given path. Returns a list of intersections, where
/// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
/// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
/// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
/// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
/// of the segment, and a proportion of 1.0 indicates the end of the segment.
/// .
/// Note that this function does not return self-intersecting segments, only the points
/// where non-parallel segments intersect.
/// Arguments:
/// path = The path to find self intersections of.
/// closed = If true, treat path like a closed polygon. Default: true
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
/// Example(2D):
/// path = [
/// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
/// ];
/// isects = _path_self_intersections(path, closed=true);
/// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
/// stroke(path, closed=true, width=1);
/// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
function _path_self_intersections(path, closed=true, eps=EPSILON) =
let(
path = closed ? close_path(path,eps=eps) : path,
plen = len(path)
)
[ for (i = [0:1:plen-3]) let(
a1 = path[i],
a2 = path[i+1],
seg_normal = unit([-(a2-a1).y, (a2-a1).x],[0,0]),
vals = path*seg_normal,
ref = a1*seg_normal,
// The value of vals[j]-ref is positive if vertex j is one one side of the
// line [a1,a2] and negative on the other side. Only a segment with opposite
// signs at its two vertices can have an intersection with segment
// [a1,a2]. The variable signals is zero when abs(vals[j]-ref) is less than
// eps and the sign of vals[j]-ref otherwise.
signals = [for(j=[i+2:1:plen-(i==0 && closed? 2: 1)]) vals[j]-ref > eps ? 1
: vals[j]-ref < -eps ? -1
: 0]
)
if(max(signals)>=0 && min(signals)<=0 ) // some remaining edge intersects line [a1,a2]
for(j=[i+2:1:plen-(i==0 && closed? 3: 2)])
if( signals[j-i-2]*signals[j-i-1]<=0 ) let( // segm [b1,b2] intersects line [a1,a2]
b1 = path[j],
b2 = path[j+1],
isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps)
)
if (isect
&& isect[1]>=-eps
&& isect[1]<= 1+eps
&& isect[2]>= -eps
&& isect[2]<= 1+eps)
[isect[0], i, isect[1], j, isect[2]]
];
// Section: Resampling: changing the number of points in a path
// Input `data` is a list that sums to an integer.
// Returns rounded version of input data so that every
// entry is rounded to an integer and the sum is the same as
// that of the input. Works by rounding an entry in the list
// and passing the rounding error forward to the next entry.
// This will generally distribute the error in a uniform manner.
function _sum_preserving_round(data, index=0) =
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
let(
newval = round(data[index]),
error = newval - data[index]
) _sum_preserving_round(
list_set(data, [index,index+1], [newval, data[index+1]-error]),
index+1
);
// Function: subdivide_path()
// Usage:
// newpath = subdivide_path(path, [N|refine], method, [closed], [exact]);
// Description:
// Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length
// (`method="length"`) or they can be divided up evenly among all the path segments
// (`method="segment"`). If the extra points don't fit evenly on the path then the
// algorithm attempts to distribute them uniformly. The `exact` option requires that
// the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output path may have a different number of
// points due to rounding error.
// .
// With the `"segment"` method you can also specify a vector of lengths. This vector,
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
// double counting the endpoints, which are shared by pairs of segments, so that for
// a closed polygon the total number of points will be sum(N). Note that with an open
// path there is an extra point at the end, so the number of points will be sum(N)+1.
// Arguments:
// path = path in any dimension or a 1-region
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
// refine = number of points to add each segment.
// closed = set to false if the path is open. Default: True
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 12);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12);
// move_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
// move_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Specifying different numbers of points on each segment
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
// mypath = subdivide_path(pentagon(side=2), 17);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
// move_copies(mypath)sphere(r=.1,$fn=32);
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
let(path = force_path(path))
assert(is_path(path))
assert(method=="length" || method=="segment")
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
let(
N = !is_undef(N)? N :
!is_undef(refine)? len(path) * refine :
undef
)
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
let(
count = len(path) - (closed?0:1),
add_guess = method=="segment"?
(
is_list(N)
? assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
add_scalar(N,-1)
: repeat((N-len(path)) / count, count)
)
: // method=="length"
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
let(
path_lens = path_segment_lengths(path,closed),
add_density = (N - len(path)) / sum(path_lens)
)
path_lens * add_density,
add = exact? _sum_preserving_round(add_guess)
: [for (val=add_guess) round(val)]
)
[
for (i=[0:1:count-1])
each lerpn(path[i],select(path,i+1), 1+add[i],endpoint=false),
if (!closed) last(path)
];
// Function: subdivide_long_segments()
// Topics: Paths, Path Subdivision
// See Also: subdivide_path(), subdivide_and_slice(), jittered_poly()
// Usage:
// spath = subdivide_long_segments(path, maxlen, [closed=]);
// Description:
// Evenly subdivides long `path` segments until they are all shorter than `maxlen`.
// Arguments:
// path = path in any dimension or a 1-region
// maxlen = The maximum allowed path segment length.
// ---
// closed = If true, treat path like a closed polygon. Default: true
// Example(2D):
// path = pentagon(d=100);
// spath = subdivide_long_segments(path, 10, closed=true);
// stroke(path,width=2,closed=true);
// color("red") move_copies(path) circle(d=9,$fn=12);
// color("blue") move_copies(spath) circle(d=5,$fn=12);
function subdivide_long_segments(path, maxlen, closed=true) =
let(path=force_path(path))
assert(is_path(path))
assert(is_finite(maxlen))
assert(is_bool(closed))
[
for (p=pair(path,closed)) let(
steps = ceil(norm(p[1]-p[0])/maxlen)
) each lerpn(p[0], p[1], steps, false),
if (!closed) last(path)
];
// Function: resample_path()
// Usage:
// newpath = resample_path(path, N|spacing, [closed]);
// Description:
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
// input path that are guaranteed to appear in the output path are the starting and ending points.
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
// Note that because this function operates on a discrete input path the quality of the output depends on
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
// Arguments:
// path = path in any dimension or a 1-region
// N = Number of points in output
// ---
// spacing = Approximate spacing desired
// closed = set to true if path is closed. Default: true
// Example(2D): Subsampling lots of points from a smooth curve
// path = xscale(2,circle($fn=250, r=10));
// sampled = resample_path(path, 16);
// stroke(path);
// color("red")move_copies(sampled) circle($fn=16);
// Example(2D): Specified spacing is rounded to make a uniform sampling
// path = xscale(2,circle($fn=250, r=10));
// sampled = resample_path(path, spacing=17);
// stroke(path);
// color("red")move_copies(sampled) circle($fn=16);
// Example(2D): Notice that the corners are excluded
// path = square(20);
// sampled = resample_path(path, spacing=6);
// stroke(path,closed=true);
// color("red")move_copies(sampled) circle($fn=16);
// Example(2D): Closed set to false
// path = square(20);
// sampled = resample_path(path, spacing=6,closed=false);
// stroke(path);
// color("red")move_copies(sampled) circle($fn=16);
function resample_path(path, N, spacing, closed=true) =
let(path = force_path(path))
assert(is_path(path))
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
assert(is_bool(closed))
let(
length = path_length(path,closed),
// In the open path case decrease N by 1 so that we don't try to get
// path_cut to return the endpoint (which might fail due to rounding)
// Add last point later
N = is_def(N) ? N-(closed?0:1) : round(length/spacing),
distlist = lerpn(0,length,N,false),
cuts = _path_cut_points(path, distlist, closed=closed)
)
[ each column(cuts,0),
if (!closed) last(path) // Then add last point here
];
// Section: Path Geometry
// Function: is_path_simple()
// Usage:
// bool = is_path_simple(path, [closed], [eps]);
// Description:
// Returns true if the given 2D path is simple, meaning that it has no self-intersections.
// Repeated points are not considered self-intersections: a path with such points can
// still be simple.
// If closed is set to true then treat the path as a polygon.
// Arguments:
// path = 2D path or 1-region
// closed = set to true to treat path as a polygon. Default: false
// eps = Epsilon error value used for determine if points coincide. Default: `EPSILON` (1e-9)
function is_path_simple(path, closed, eps=EPSILON) =
is_1region(path) ? is_path_simple(path[0], default(closed,true), eps) :
let(closed=default(closed,false))
assert(is_path(path, 2),"Must give a 2D path")
assert(is_bool(closed))
// check for path reversals
[for(i=[0:1:len(path)-(closed?2:3)])
let(v1=path[i+1]-path[i],
v2=select(path,i+2)-path[i+1],
normv1 = norm(v1),
normv2 = norm(v2)
)
if (approx(v1*v2/normv1/normv2,-1)) 1
] == []
&&
_path_self_intersections(path,closed=closed,eps=eps) == [];
// Function: path_closest_point()
// Usage:
// path_closest_point(path, pt);
// Description:
// Finds the closest path segment, and point on that segment to the given point.
// Returns `[SEGNUM, POINT]`
// Arguments:
// path = path of any dimension or a 1-region
// pt = the point to find the closest point to
// closed =
// Example(2D):
// path = circle(d=100,$fn=6);
// pt = [20,10];
// closest = path_closest_point(path, pt);
// stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point(path, pt, closed=true) =
let(path = force_path(path))
assert(is_path(path), "Input must be a path")
assert(is_vector(pt, len(path[0])), "Input pt must be a compatible vector")
assert(is_bool(closed))
let(
pts = [for (seg=pair(path,closed)) line_closest_point(seg,pt,SEGMENT)],
dists = [for (p=pts) norm(p-pt)],
min_seg = min_index(dists)
) [min_seg, pts[min_seg]];
// Function: path_tangents()
// Usage:
// tangs = path_tangents(path, [closed], [uniform]);
// Description:
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
// The returns vectors will be normalized to length 1. If any derivatives are zero then
// the function fails with an error. If you set `uniform` to false then the sampling is
// assumed to be non-uniform and the derivative is computed with adjustments to produce corrected
// values.
// Arguments:
// path = path of any dimension or a 1-region
// closed = set to true of the path is closed. Default: false
// uniform = set to false to correct for non-uniform sampling. Default: true
// Example(2D): A shape with non-uniform sampling gives distorted derivatives that may be undesirable. Note that derivatives tilt towards the long edges of the rectangle.
// rect = square([10,3]);
// tangents = path_tangents(rect,closed=true);
// stroke(rect,closed=true, width=0.25);
// color("purple")
// for(i=[0:len(tangents)-1])
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2");
// Example(2D): Setting uniform to false corrects the distorted derivatives for this example:
// rect = square([10,3]);
// tangents = path_tangents(rect,closed=true,uniform=false);
// stroke(rect,closed=true, width=0.25);
// color("purple")
// for(i=[0:len(tangents)-1])
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2");
function path_tangents(path, closed, uniform=true) =
is_1region(path) ? path_tangents(path[0], default(closed,true), uniform) :
let(closed=default(closed,false))
assert(is_bool(closed))
assert(is_path(path))
!uniform ? [for(t=deriv(path,closed=closed, h=path_segment_lengths(path,closed))) unit(t)]
: [for(t=deriv(path,closed=closed)) unit(t)];
// Function: path_normals()
// Usage:
// norms = path_normals(path, [tangents], [closed]);
// Description:
// Compute the normal vector to the input path. This vector is perpendicular to the
// path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve
// at path point i to be the plane defined by point i and its two neighbors. At the endpoints of open paths
// we use the three end points. For 3d paths the computed normal is the one lying in this plane that points
// towards the center of curvature at that path point. For 2d paths, which lie in the xy plane, the normal
// is the path pointing to the right of the direction the path is traveling. If points are collinear then
// a 3d path has no center of curvature, and hence the
// normal is not uniquely defined. In this case the function issues an error.
// For 2d paths the plane is always defined so the normal fails to exist only
// when the derivative is zero (in the case of repeated points).
// Arguments:
// path = 2D or 3D path or a 1-region
// tangents = path tangents optionally supplied
// closed = if true path is treated as a polygon. Default: false
function path_normals(path, tangents, closed) =
is_1region(path) ? path_normals(path[0], tangents, default(closed,true)) :
let(closed=default(closed,false))
assert(is_path(path,[2,3]))
assert(is_bool(closed))
let(
tangents = default(tangents, path_tangents(path,closed)),
dim=len(path[0])
)
assert(is_path(tangents) && len(tangents[0])==dim,"Dimensions of path and tangents must match")
[
for(i=idx(path))
let(
pts = i==0 ? (closed? select(path,-1,1) : select(path,0,2))
: i==len(path)-1 ? (closed? select(path,i-1,i+1) : select(path,i-2,i))
: select(path,i-1,i+1)
)
dim == 2 ? [tangents[i].y,-tangents[i].x]
: let( v=cross(cross(pts[1]-pts[0], pts[2]-pts[0]),tangents[i]))
assert(norm(v)>EPSILON, "3D path contains collinear points")
unit(v)
];
// Function: path_curvature()
// Usage:
// curvs = path_curvature(path, [closed]);
// Description:
// Numerically estimate the curvature of the path (in any dimension).
// Arguments:
// path = path in any dimension or a 1-region
// closed = if true then treat the path as a polygon. Default: false
function path_curvature(path, closed) =
is_1region(path) ? path_curvature(path[0], default(closed,true)) :
let(closed=default(closed,false))
assert(is_bool(closed))
assert(is_path(path))
let(
d1 = deriv(path, closed=closed),
d2 = deriv2(path, closed=closed)
) [
for(i=idx(path))
sqrt(
sqr(norm(d1[i])*norm(d2[i])) -
sqr(d1[i]*d2[i])
) / pow(norm(d1[i]),3)
];
// Function: path_torsion()
// Usage:
// torsions = path_torsion(path, [closed]);
// Description:
// Numerically estimate the torsion of a 3d path.
// Arguments:
// path = 3D path
// closed = if true then treat path as a polygon. Default: false
function path_torsion(path, closed=false) =
assert(is_path(path,3), "Input path must be a 3d path")
assert(is_bool(closed))
let(
d1 = deriv(path,closed=closed),
d2 = deriv2(path,closed=closed),
d3 = deriv3(path,closed=closed)
) [
for (i=idx(path)) let(
crossterm = cross(d1[i],d2[i])
) crossterm * d3[i] / sqr(norm(crossterm))
];
// Section: Modifying paths
// Function: path_chamfer_and_rounding()
// Usage:
// path2 = path_chamfer_and_rounding(path, [closed], [chamfer], [rounding]);
// Description:
// Rounds or chamfers corners in the given path.
// Arguments:
// path = The path to chamfer and/or round.
// closed = If true, treat path like a closed polygon. Default: true
// chamfer = The length of the chamfer faces at the corners. If given as a list of numbers, gives individual chamfers for each corner, from first to last. Default: 0 (no chamfer)
// rounding = The rounding radius for the corners. If given as a list of numbers, gives individual radii for each corner, from first to last. Default: 0 (no rounding)
// Example(2D): Chamfering a Path
// path = star(5, step=2, d=100);
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=5);
// stroke(path2, closed=true);
// Example(2D): Per-Corner Chamfering
// path = star(5, step=2, d=100);
// chamfs = [for (i=[0:1:4]) each 3*[i,i]];
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs);
// stroke(path2, closed=true);
// Example(2D): Rounding a Path
// path = star(5, step=2, d=100);
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=5);
// stroke(path2, closed=true);
// Example(2D): Per-Corner Chamfering
// path = star(5, step=2, d=100);
// rs = [for (i=[0:1:4]) each 2*[i,i]];
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=rs);
// stroke(path2, closed=true);
// Example(2D): Mixing Chamfers and Roundings
// path = star(5, step=2, d=100);
// chamfs = [for (i=[0:4]) each [5,0]];
// rs = [for (i=[0:4]) each [0,10]];
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs, rounding=rs);
// stroke(path2, closed=true);
function path_chamfer_and_rounding(path, closed=true, chamfer, rounding) =
let (
path = deduplicate(path,closed=true),
lp = len(path),
chamfer = is_undef(chamfer)? repeat(0,lp) :
is_vector(chamfer)? list_pad(chamfer,lp,0) :
is_num(chamfer)? repeat(chamfer,lp) :
assert(false, "Bad chamfer value."),
rounding = is_undef(rounding)? repeat(0,lp) :
is_vector(rounding)? list_pad(rounding,lp,0) :
is_num(rounding)? repeat(rounding,lp) :
assert(false, "Bad rounding value."),
corner_paths = [
for (i=(closed? [0:1:lp-1] : [1:1:lp-2])) let(
p1 = select(path,i-1),
p2 = select(path,i),
p3 = select(path,i+1)
)
chamfer[i] > 0? _corner_chamfer_path(p1, p2, p3, side=chamfer[i]) :
rounding[i] > 0? _corner_roundover_path(p1, p2, p3, r=rounding[i]) :
[p2]
],
out = [
if (!closed) path[0],
for (i=(closed? [0:1:lp-1] : [1:1:lp-2])) let(
p1 = select(path,i-1),
p2 = select(path,i),
crn1 = select(corner_paths,i-1),
crn2 = corner_paths[i],
l1 = norm(last(crn1)-p1),
l2 = norm(crn2[0]-p2),
needed = l1 + l2,
seglen = norm(p2-p1),
check = assert(seglen >= needed, str("Path segment ",i," is too short to fulfill rounding/chamfering for the adjacent corners."))
) each crn2,
if (!closed) last(path)
]
) deduplicate(out);
function _corner_chamfer_path(p1, p2, p3, dist1, dist2, side, angle) =
let(
v1 = unit(p1 - p2),
v2 = unit(p3 - p2),
n = vector_axis(v1,v2),
ang = vector_angle(v1,v2),
path = (is_num(dist1) && is_undef(dist2) && is_undef(side))? (
// dist1 & optional angle
assert(dist1 > 0)
let(angle = default(angle,(180-ang)/2))
assert(is_num(angle))
assert(angle > 0 && angle < 180)
let(
pta = p2 + dist1*v1,
a3 = 180 - angle - ang
) assert(a3>0, "Angle too extreme.")
let(
side = sin(angle) * dist1/sin(a3),
ptb = p2 + side*v2
) [pta, ptb]
) : (is_undef(dist1) && is_num(dist2) && is_undef(side))? (
// dist2 & optional angle
assert(dist2 > 0)
let(angle = default(angle,(180-ang)/2))
assert(is_num(angle))
assert(angle > 0 && angle < 180)
let(
ptb = p2 + dist2*v2,
a3 = 180 - angle - ang
) assert(a3>0, "Angle too extreme.")
let(
side = sin(angle) * dist2/sin(a3),
pta = p2 + side*v1
) [pta, ptb]
) : (is_undef(dist1) && is_undef(dist2) && is_num(side))? (
// side & optional angle
assert(side > 0)
let(angle = default(angle,(180-ang)/2))
assert(is_num(angle))
assert(angle > 0 && angle < 180)
let(
a3 = 180 - angle - ang
) assert(a3>0, "Angle too extreme.")
let(
dist1 = sin(a3) * side/sin(ang),
dist2 = sin(angle) * side/sin(ang),
pta = p2 + dist1*v1,
ptb = p2 + dist2*v2
) [pta, ptb]
) : (is_num(dist1) && is_num(dist2) && is_undef(side) && is_undef(side))? (
// dist1 & dist2
assert(dist1 > 0)
assert(dist2 > 0)
let(
pta = p2 + dist1*v1,
ptb = p2 + dist2*v2
) [pta, ptb]
) : (
assert(false,"Bad arguments.")
)
) path;
function _corner_roundover_path(p1, p2, p3, r, d) =
let(
r = get_radius(r=r,d=d,dflt=undef),
res = circle_2tangents(p1, p2, p3, r=r, tangents=true),
cp = res[0],
n = res[1],
tp1 = res[2],
ang = res[4]+res[5],
steps = floor(segs(r)*ang/360+0.5),
step = ang / steps,
path = [for (i=[0:1:steps]) move(cp, p=rot(a=-i*step, v=n, p=tp1-cp))]
) path;
// Section: Breaking paths up into subpaths
/// Internal Function: _path_cut_points()
///
/// Usage:
/// cuts = _path_cut_points(path, dists, [closed=], [direction=]);
///
/// Description:
/// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
/// points and indices of the next point in the path after that point. So for example, a return
/// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
/// this point is path[5]. If the path is too short then _path_cut_points returns undef. If you set
/// `direction` to true then `_path_cut_points` will also return the tangent vector to the path and a normal
/// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
/// point. If this fails it will return a normal vector parallel to the xy plane. The output with
/// direction vectors will be `[point, next_index, tangent, normal]`.
/// .
/// If you give the very last point of the path as a cut point then the returned index will be
/// one larger than the last index (so it will not be a valid index). If you use the closed
/// option then the returned index will be equal to the path length for cuts along the closing
/// path segment, and if you give a point equal to the path length you will get an
/// index of len(path)+1 for the index.
///
/// Arguments:
/// path = path to cut
/// dists = distances where the path should be cut (a list) or a scalar single distance
/// ---
/// closed = set to true if the curve is closed. Default: false
/// direction = set to true to return direction vectors. Default: false
///
/// Example(NORENDER):
/// square=[[0,0],[1,0],[1,1],[0,1]];
/// _path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
/// _path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
/// _path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
/// _path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
function _path_cut_points(path, dists, closed=false, direction=false) =
let(long_enough = len(path) >= (closed ? 3 : 2))
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
is_num(dists) ? _path_cut_points(path, [dists],closed, direction)[0] :
assert(is_vector(dists))
assert(is_increasing(dists), "Cut distances must be an increasing list")
let(cuts = _path_cut_points_recurse(path,dists,closed))
!direction
? cuts
: let(
dir = _path_cuts_dir(path, cuts, closed),
normals = _path_cuts_normals(path, cuts, dir, closed)
)
hstack(cuts, list_to_matrix(dir,1), list_to_matrix(normals,1));
// Main recursive path cut function
function _path_cut_points_recurse(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
dind == len(dists) ? result :
let(
lastpt = len(result)==0? [] : last(result)[0], // location of last cut point
dpartial = len(result)==0? 0 : norm(lastpt-select(path,pind)), // remaining length in segment
nextpoint = dists[dind] < dpartial+dtotal // Do we have enough length left on the current segment?
? [lerp(lastpt,select(path,pind),(dists[dind]-dtotal)/dpartial),pind]
: _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
)
_path_cut_points_recurse(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
// Search for a single cut point in the path
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
// If we get to the very end of the path (ind is last point or wraparound for closed case) then
// check if we are within epsilon of the final path point. If not we're out of path, so we fail
ind==len(path)-(closed?0:1) ?
assert(dist<eps,"Path is too short for specified cut distance")
[select(path,ind),ind+1]
:let(d = norm(path[ind]-select(path,ind+1))) d > dist ?
[lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
_path_cut_single(path, dist-d,closed, ind+1, eps);
// Find normal directions to the path, coplanar to local part of the path
// Or return a vector parallel to the x-y plane if the above fails
function _path_cuts_normals(path, cuts, dirs, closed=false) =
[for(i=[0:len(cuts)-1])
len(path[0])==2? [-dirs[i].y, dirs[i].x]
:
let(
plane = len(path)<3 ? undef :
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
)
plane==undef?
( dirs[i].x==0 && dirs[i].y==0 ? [1,0,0] // If it's z direction return x vector
: unit([-dirs[i].y, dirs[i].x,0])) // otherwise perpendicular to projection
: unit(cross(dirs[i],cross(plane[0],plane[1])))
];
// Scan from the specified point (ind) to find a noncoplanar triple to use
// to define the plane of the path.
function _path_plane(path, ind, i,closed) =
i<(closed?-1:0) ? undef :
!is_collinear(path[ind],path[ind-1], select(path,i))?
[select(path,i)-path[ind-1],path[ind]-path[ind-1]] :
_path_plane(path, ind, i-1);
// Find the direction of the path at the cut points
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
[for(ind=[0:len(cuts)-1])
let(
zeros = path[0]*0,
nextind = cuts[ind][1],
nextpath = unit(select(path, nextind+1)-select(path, nextind),zeros),
thispath = unit(select(path, nextind) - select(path,nextind-1),zeros),
lastpath = unit(select(path,nextind-1) - select(path, nextind-2),zeros),
nextdir =
nextind==len(path) && !closed? lastpath :
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)
? unit(nextpath+thispath)
: (nextind>1 || closed) && approx(cuts[ind][0],select(path,nextind-1),eps)
? unit(thispath+lastpath)
: thispath
) nextdir
];
// Function: path_cut()
// Topics: Paths
// See Also: split_path_at_self_crossings()
// Usage:
// path_list = path_cut(path, cutdist, [closed=]);
// Description:
// Given a list of distances in `cutdist`, cut the path into
// subpaths at those lengths, returning a list of paths.
// If the input path is closed then the final path will include the
// original starting point. The list of cut distances must be
// in ascending order and should not include the endpoints: 0
// or len(path). If you repeat a distance you will get an
// empty list in that position in the output. If you give an
// empty cutdist array you will get the input path as output
// (without the final vertex doubled in the case of a closed path).
// Arguments:
// path = path of any dimension or a 1-region
// cutdist = Distance or list of distances where path is cut
// closed = If true, treat the path as a closed polygon. Default: false
// Example(2D,NoAxes):
// path = circle(d=100);
// segs = path_cut(path, [50, 200], closed=true);
// rainbow(segs) stroke($item, endcaps="butt", width=3);
function path_cut(path,cutdist,closed) =
is_num(cutdist) ? path_cut(path,[cutdist],closed) :
is_1region(path) ? path_cut(path[0], cutdist, default(closed,true)):
let(closed=default(closed,false))
assert(is_bool(closed))
assert(is_vector(cutdist))
assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length")
assert(cutdist[0]>0, "Cut distances must be strictly positive")
let(
cutlist = _path_cut_points(path,cutdist,closed=closed)
)
_path_cut_getpaths(path, cutlist, closed);
function _path_cut_getpaths(path, cutlist, closed) =
let(
cuts = len(cutlist)
)
[
[ each list_head(path,cutlist[0][1]-1),
if (!approx(cutlist[0][0], path[cutlist[0][1]-1])) cutlist[0][0]
],
for(i=[0:1:cuts-2])
cutlist[i][0]==cutlist[i+1][0] && cutlist[i][1]==cutlist[i+1][1] ? []
:
[ if (!approx(cutlist[i][0], select(path,cutlist[i][1]))) cutlist[i][0],
each slice(path, cutlist[i][1], cutlist[i+1][1]-1),
if (!approx(cutlist[i+1][0], select(path,cutlist[i+1][1]-1))) cutlist[i+1][0],
],
[
if (!approx(cutlist[cuts-1][0], select(path,cutlist[cuts-1][1]))) cutlist[cuts-1][0],
each select(path,cutlist[cuts-1][1],closed ? 0 : -1)
]
];
// internal function
// converts pathcut output form to a [segment, u]
// form list that works withi path_select
function _cut_to_seg_u_form(pathcut, path, closed) =
let(lastind = len(path) - (closed?0:1))
[for(entry=pathcut)
entry[1] > lastind ? [lastind,0] :
let(
a = path[entry[1]-1],
b = path[entry[1]],
c = entry[0],
i = max_index(v_abs(b-a)),
factor = (c[i]-a[i])/(b[i]-a[i])
)
[entry[1]-1,factor]
];
// Function: split_path_at_self_crossings()
// Usage:
// paths = split_path_at_self_crossings(path, [closed], [eps]);
// Description:
// Splits a 2D path into sub-paths wherever the original path crosses itself.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Returns a list of the resulting subpaths.
// Arguments:
// path = A 2D path or a 1-region.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D,NoAxes):
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
// paths = split_path_at_self_crossings(path);
// rainbow(paths) stroke($item, closed=false, width=3);
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
let(path = force_path(path))
assert(is_path(path,2), "Must give a 2D path")
assert(is_bool(closed))
let(
path = cleanup_path(path, eps=eps),
isects = deduplicate(
eps=eps,
concat(
[[0, 0]],
sort([
for (
a = _path_self_intersections(path, closed=closed, eps=eps),
ss = [ [a[1],a[2]], [a[3],a[4]] ]
) if (ss[0] != undef) ss
]),
[[len(path)-(closed?1:2), 1]]
)
)
) [
for (p = pair(isects))
let(
s1 = p[0][0],
u1 = p[0][1],
s2 = p[1][0],
u2 = p[1][1],
section = _path_select(path, s1, u1, s2, u2, closed=closed),
outpath = deduplicate(eps=eps, section)
)
if (len(outpath)>1) outpath
];
function _tag_self_crossing_subpaths(path, nonzero, closed=true, eps=EPSILON) =
let(
subpaths = split_path_at_self_crossings(
path, closed=true, eps=eps
)
) [
for (subpath = subpaths) let(
seg = select(subpath,0,1),
mp = mean(seg),
n = line_normal(seg) / 2048,
p1 = mp + n,
p2 = mp - n,
p1in = point_in_polygon(p1, path, nonzero=nonzero) >= 0,
p2in = point_in_polygon(p2, path, nonzero=nonzero) >= 0,
tag = (p1in && p2in)? "I" : "O"
) [tag, subpath]
];
// Function: polygon_parts()
// Usage:
// splitpolys = polygon_parts(poly, [nonzero], [eps]);
// Description:
// Given a possibly self-intersecting 2d polygon, constructs a representation of the original polygon as a list of
// non-intersecting simple polygons. If nonzero is set to true then it uses the nonzero method for defining polygon membership.
// For simple cases, such as the pentagram, this will produce the outer perimeter of a self-intersecting polygon.
// Arguments:
// poly = a 2D polygon or 1-region
// nonzero = If true use the nonzero method for checking if a point is in a polygon. Otherwise use the even-odd method. Default: false
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D,NoAxes): This cross-crossing polygon breaks up into its 3 components (regardless of the value of nonzero).
// poly = [
// [-100,100], [0,-50], [100,100],
// [100,-100], [0,50], [-100,-100]
// ];
// splitpolys = polygon_parts(poly);
// rainbow(splitpolys) stroke($item, closed=true, width=3);
// Example(2D,NoAxes): With nonzero=false you get even-odd mode which matches OpenSCAD, so the pentagram breaks apart into its five points.
// pentagram = turtle(["move",100,"left",144], repeat=4);
// left(100)polygon(pentagram);
// rainbow(polygon_parts(pentagram,nonzero=false))
// stroke($item,closed=true,width=2.5);
// Example(2D,NoAxes): With nonzero=true you get only the outer perimeter. You can use this to create the polygon using the nonzero method, which is not supported by OpenSCAD.
// pentagram = turtle(["move",100,"left",144], repeat=4);
// outside = polygon_parts(pentagram,nonzero=true);
// left(100)region(outside);
// rainbow(outside)
// stroke($item,closed=true,width=2.5);
// Example(2D,NoAxes):
// N=12;
// ang=360/N;
// sr=10;
// poly = turtle(["angle", 90+ang/2,
// "move", sr, "left",
// "move", 2*sr*sin(ang/2), "left",
// "repeat", 4,
// ["move", 2*sr, "left",
// "move", 2*sr*sin(ang/2), "left"],
// "move", sr]);
// stroke(poly, width=.3);
// right(20)rainbow(polygon_parts(poly)) polygon($item);
// Example(2D,NoAxes): overlapping poly segments disappear
// poly = [[0,0], [10,0], [10,10], [0,10],[0,20], [20,10],[10,10], [0,10],[0,0]];
// stroke(poly,width=0.3);
// right(22)stroke(polygon_parts(poly)[0], width=0.3, closed=true);
// Example(2D,NoAxes): Poly segments disappear outside as well
// poly = turtle(["repeat", 3, ["move", 17, "left", "move", 10, "left", "move", 7, "left", "move", 10, "left"]]);
// back(2)stroke(poly,width=.5);
// fwd(12)rainbow(polygon_parts(poly)) stroke($item, closed=true, width=0.5);
// Example(2D,NoAxes): This shape has six components
// poly = turtle(["repeat", 3, ["move", 15, "left", "move", 7, "left", "move", 10, "left", "move", 17, "left"]]);
// polygon(poly);
// right(22)rainbow(polygon_parts(poly)) polygon($item);
// Example(2D,NoAxes): When the loops of the shape overlap then nonzero gives a different result than the even-odd method.
// poly = turtle(["repeat", 3, ["move", 15, "left", "move", 7, "left", "move", 10, "left", "move", 10, "left"]]);
// polygon(poly);
// right(27)rainbow(polygon_parts(poly)) polygon($item);
// move([16,-14])rainbow(polygon_parts(poly,nonzero=true)) polygon($item);
function polygon_parts(poly, nonzero=false, eps=EPSILON) =
let(poly = force_path(poly))
assert(is_path(poly,2), "Must give 2D polygon")
assert(is_bool(nonzero))
let(
poly = cleanup_path(poly, eps=eps),
tagged = _tag_self_crossing_subpaths(poly, nonzero=nonzero, closed=true, eps=eps),
kept = [for (sub = tagged) if(sub[0] == "O") sub[1]],
outregion = _assemble_path_fragments(kept, eps=eps)
) outregion;
function _extreme_angle_fragment(seg, fragments, rightmost=true, eps=EPSILON) =
!fragments? [undef, []] :
let(
delta = seg[1] - seg[0],
segang = atan2(delta.y,delta.x),
frags = [
for (i = idx(fragments)) let(
fragment = fragments[i],
fwdmatch = approx(seg[1], fragment[0], eps=eps),
bakmatch = approx(seg[1], last(fragment), eps=eps)
) [
fwdmatch,
bakmatch,
bakmatch? reverse(fragment) : fragment
]
],
angs = [
for (frag = frags)
(frag[0] || frag[1])? let(
delta2 = frag[2][1] - frag[2][0],
segang2 = atan2(delta2.y, delta2.x)
) modang(segang2 - segang) : (
rightmost? 999 : -999
)
],
fi = rightmost? min_index(angs) : max_index(angs)
) abs(angs[fi]) > 360? [undef, fragments] : let(
remainder = [for (i=idx(fragments)) if (i!=fi) fragments[i]],
frag = frags[fi],
foundfrag = frag[2]
) [foundfrag, remainder];
/// Internal Function: _assemble_a_path_from_fragments()
/// Usage:
/// _assemble_a_path_from_fragments(subpaths);
/// Description:
/// Given a list of paths, assembles them together into one complete closed polygon path, and
/// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
/// unused path fragments.
/// Arguments:
/// fragments = List of paths to be assembled into complete polygons.
/// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
/// startfrag = The fragment to start with. Default: 0
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
function _assemble_a_path_from_fragments(fragments, rightmost=true, startfrag=0, eps=EPSILON) =
len(fragments)==0? _finished :
let(
path = fragments[startfrag],
newfrags = [for (i=idx(fragments)) if (i!=startfrag) fragments[i]]
) is_closed_path(path, eps=eps)? (
// starting fragment is already closed
[path, newfrags]
) : let(
// Find rightmost/leftmost continuation fragment
seg = select(path,-2,-1),
extrema = _extreme_angle_fragment(seg=seg, fragments=newfrags, rightmost=rightmost, eps=eps),
foundfrag = extrema[0],
remainder = extrema[1]
) is_undef(foundfrag)? (
// No remaining fragments connect! INCOMPLETE PATH!
// Treat it as complete.
[path, remainder]
) : is_closed_path(foundfrag, eps=eps)? (
// Found fragment is already closed
[foundfrag, concat([path], remainder)]
) : let(
fragend = last(foundfrag),
hits = [for (i = idx(path,e=-2)) if(approx(path[i],fragend,eps=eps)) i]
) hits? (
let(
// Found fragment intersects with initial path
hitidx = last(hits),
newpath = list_head(path,hitidx),
newfrags = concat(len(newpath)>1? [newpath] : [], remainder),
outpath = concat(slice(path,hitidx,-2), foundfrag)
)
[outpath, newfrags]
) : let(
// Path still incomplete. Continue building it.
newpath = concat(path, list_tail(foundfrag)),
newfrags = concat([newpath], remainder)
)
_assemble_a_path_from_fragments(
fragments=newfrags,
rightmost=rightmost,
eps=eps
);
/// Internal Function: _assemble_path_fragments()
/// Usage:
/// _assemble_path_fragments(subpaths);
/// Description:
/// Given a list of paths, assembles them together into complete closed polygon paths if it can.
/// Polygons with area < eps will be discarded and not returned.
/// Arguments:
/// fragments = List of paths to be assembled into complete polygons.
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
len(fragments)==0? _finished :
let(
minxidx = min_index([
for (frag=fragments) min(column(frag,0))
]),
result_l = _assemble_a_path_from_fragments(
fragments=fragments,
startfrag=minxidx,
rightmost=false,
eps=eps
),
result_r = _assemble_a_path_from_fragments(
fragments=fragments,
startfrag=minxidx,
rightmost=true,
eps=eps
),
l_area = abs(polygon_area(result_l[0])),
r_area = abs(polygon_area(result_r[0])),
result = l_area < r_area? result_l : result_r,
newpath = cleanup_path(result[0]),
remainder = result[1],
finished = min(l_area,r_area)<eps ? _finished : concat(_finished, [newpath])
) _assemble_path_fragments(
fragments=remainder,
eps=eps,
_finished=finished
);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap