BOSL2/bottlecaps.scad
Adrian Mariano 554d197976 doc fixes
2023-01-20 07:10:57 -05:00

1257 lines
50 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: bottlecaps.scad
// Bottle caps and necks for PCO18XX standard plastic beverage bottles, and SPI standard bottle necks.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/bottlecaps.scad>
// FileGroup: Threaded Parts
// FileSummary: Standard bottle caps and necks.
//////////////////////////////////////////////////////////////////////
include <threading.scad>
include <structs.scad>
include <rounding.scad>
// Section: PCO-1810 Bottle Threading
// Module: pco1810_neck()
// Usage:
// pco1810_neck([wall]) [ATTACHMENTS];
// Description:
// Creates an approximation of a standard PCO-1810 threaded beverage bottle neck.
// Arguments:
// wall = Wall thickness in mm.
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "tamper-ring" = Centered at the top of the anti-tamper ring channel.
// "support-ring" = Centered at the bottom of the support ring.
// Example:
// pco1810_neck();
// Example: Standard Anchors
// pco1810_neck() show_anchors(custom=false);
// Example: Custom Named Anchors
// expose_anchors(0.3)
// pco1810_neck()
// show_anchors(std=false);
module pco1810_neck(wall=2, anchor="support-ring", spin=0, orient=UP)
{
inner_d = 21.74;
neck_d = 26.19;
neck_h = 5.00;
support_d = 33.00;
support_width = 1.45;
support_rad = 0.40;
support_h = 21.00;
support_ang = 16;
tamper_ring_d = 27.97;
tamper_ring_width = 0.50;
tamper_ring_r = 1.60;
tamper_base_d = 25.71;
tamper_base_h = 14.10;
threadbase_d = 24.51;
thread_pitch = 3.18;
flank_angle = 20;
thread_od = 27.43;
lip_d = 25.07;
lip_h = 1.70;
lip_leadin_r = 0.20;
lip_recess_d = 24.94;
lip_recess_h = 1.00;
lip_roundover_r = 0.58;
$fn = segs(support_d/2);
h = support_h+neck_h;
thread_h = (thread_od-threadbase_d)/2;
anchors = [
named_anchor("support-ring", [0,0,neck_h-h/2]),
named_anchor("tamper-ring", [0,0,h/2-tamper_base_h])
];
attachable(anchor,spin,orient, d1=neck_d, d2=lip_recess_d+2*lip_leadin_r, l=h, anchors=anchors) {
down(h/2) {
rotate_extrude(convexity=10) {
polygon(turtle(
state=[inner_d/2,0], [
"untilx", neck_d/2,
"left", 90,
"move", neck_h - 1,
"arcright", 1, 90,
"untilx", support_d/2-support_rad,
"arcleft", support_rad, 90,
"move", support_width,
"arcleft", support_rad, 90-support_ang,
"untilx", tamper_base_d/2,
"right", 90-support_ang,
"untily", h-tamper_base_h, // Tamper ring holder base.
"right", 90,
"untilx", tamper_ring_d/2,
"left", 90,
"move", tamper_ring_width,
"arcleft", tamper_ring_r, 90,
"untilx", threadbase_d/2,
"right", 90,
"untily", h-lip_h-lip_leadin_r, // Lip base.
"arcright", lip_leadin_r, 90,
"untilx", lip_d/2,
"left", 90,
"untily", h-lip_recess_h,
"left", 90,
"untilx", lip_recess_d/2,
"right", 90,
"untily", h-lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d/2
]
));
}
up(h-lip_h) {
bottom_half() {
difference() {
thread_helix(
d=threadbase_d-0.1,
pitch=thread_pitch,
thread_depth=thread_h+0.1,
flank_angle=flank_angle,
turns=810/360,
taper=-thread_h*2,
anchor=TOP
);
zrot_copies(rots=[90,270]) {
zrot_copies(rots=[-28,28], r=threadbase_d/2) {
prismoid([20,1.82], [20,1.82+2*sin(29)*thread_h], h=thread_h+0.1, anchor=BOT, orient=RIGHT);
}
}
}
}
}
}
children();
}
}
function pco1810_neck(wall=2, anchor="support-ring", spin=0, orient=UP) =
no_function("pco1810_neck");
// Module: pco1810_cap()
// Usage:
// pco1810_cap([wall], [texture]) [ATTACHMENTS];
// Description:
// Creates a basic cap for a PCO1810 threaded beverage bottle.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "inside-top" = Centered on the inside top of the cap.
// Examples:
// pco1810_cap();
// pco1810_cap(texture="knurled");
// pco1810_cap(texture="ribbed");
// Example: Standard Anchors
// pco1810_cap(texture="ribbed") show_anchors(custom=false);
// Example: Custom Named Anchors
// expose_anchors(0.3)
// pco1810_cap(texture="ribbed")
// show_anchors(std=false);
module pco1810_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP)
{
cap_id = 28.58;
tamper_ring_h = 14.10;
thread_pitch = 3.18;
flank_angle = 20;
thread_od = cap_id;
thread_depth = 1.6;
$fn = segs(33/2);
w = cap_id + 2*wall;
h = tamper_ring_h + wall;
anchors = [
named_anchor("inside-top", [0,0,-(h/2-wall)])
];
attachable(anchor,spin,orient, d=w, l=h, anchors=anchors) {
down(h/2) zrot(45) {
difference() {
union() {
if (texture == "knurled") {
cyl(d=w, h=h, texture="diamonds", tex_size=[3,3], tex_style="concave", anchor=BOT);
} else if (texture == "ribbed") {
cyl(d=w, h=h, texture="ribs", tex_size=[3,3], tex_style="min_edge", anchor=BOT);
} else {
cyl(d=w, l=tamper_ring_h+wall, anchor=BOTTOM);
}
}
up(wall) cyl(d=cap_id, h=tamper_ring_h+wall, anchor=BOTTOM);
}
up(wall+2) thread_helix(d=thread_od-thread_depth*2, pitch=thread_pitch, thread_depth=thread_depth, flank_angle=flank_angle, turns=810/360, taper=-thread_depth, internal=true, anchor=BOTTOM);
}
children();
}
}
function pco1810_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) =
no_function("pco1810_cap");
// Section: PCO-1881 Bottle Threading
// Module: pco1881_neck()
// Usage:
// pco1881_neck([wall]) [ATTACHMENTS];
// Description:
// Creates an approximation of a standard PCO-1881 threaded beverage bottle neck.
// Arguments:
// wall = Wall thickness in mm.
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "tamper-ring" = Centered at the top of the anti-tamper ring channel.
// "support-ring" = Centered at the bottom of the support ring.
// Example:
// pco1881_neck();
// Example:
// pco1881_neck() show_anchors(custom=false);
// Example:
// expose_anchors(0.3)
// pco1881_neck()
// show_anchors(std=false);
module pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP)
{
inner_d = 21.74;
neck_d = 26.19;
neck_h = 5.00;
support_d = 33.00;
support_width = 0.58;
support_rad = 0.30;
support_h = 17.00;
support_ang = 15;
tamper_ring_d = 28.00;
tamper_ring_width = 0.30;
tamper_ring_ang = 45;
tamper_base_d = 25.71;
tamper_base_h = 11.20;
tamper_divot_r = 1.08;
threadbase_d = 24.20;
thread_pitch = 2.70;
flank_angle = 15;
thread_od = 27.4;
lip_d = 25.07;
lip_h = 1.70;
lip_leadin_r = 0.30;
lip_recess_d = 24.94;
lip_recess_h = 1.00;
lip_roundover_r = 0.58;
$fn = segs(support_d/2);
h = support_h+neck_h;
thread_h = (thread_od-threadbase_d)/2;
anchors = [
named_anchor("support-ring", [0,0,neck_h-h/2]),
named_anchor("tamper-ring", [0,0,h/2-tamper_base_h])
];
attachable(anchor,spin,orient, d1=neck_d, d2=lip_recess_d+2*lip_leadin_r, l=h, anchors=anchors) {
down(h/2) {
rotate_extrude(convexity=10) {
polygon(turtle(
state=[inner_d/2,0], [
"untilx", neck_d/2,
"left", 90,
"move", neck_h - 1,
"arcright", 1, 90,
"untilx", support_d/2-support_rad,
"arcleft", support_rad, 90,
"move", support_width,
"arcleft", support_rad, 90-support_ang,
"untilx", tamper_base_d/2,
"arcright", tamper_divot_r, 180-support_ang*2,
"left", 90-support_ang,
"untily", h-tamper_base_h, // Tamper ring holder base.
"right", 90,
"untilx", tamper_ring_d/2,
"left", 90,
"move", tamper_ring_width,
"left", tamper_ring_ang,
"untilx", threadbase_d/2,
"right", tamper_ring_ang,
"untily", h-lip_h-lip_leadin_r, // Lip base.
"arcright", lip_leadin_r, 90,
"untilx", lip_d/2,
"left", 90,
"untily", h-lip_recess_h,
"left", 90,
"untilx", lip_recess_d/2,
"right", 90,
"untily", h-lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d/2
]
));
}
up(h-lip_h) {
difference() {
thread_helix(
d=threadbase_d-0.1,
pitch=thread_pitch,
thread_depth=thread_h+0.1,
flank_angle=flank_angle,
turns=650/360,
taper=-thread_h*2,
anchor=TOP
);
zrot_copies(rots=[90,270]) {
zrot_copies(rots=[-28,28], r=threadbase_d/2) {
prismoid([20,1.82], [20,1.82+2*sin(29)*thread_h], h=thread_h+0.1, anchor=BOT, orient=RIGHT);
}
}
}
}
}
children();
}
}
function pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP) =
no_function("pco1881_neck");
// Module: pco1881_cap()
// Usage:
// pco1881_cap(wall, [texture]) [ATTACHMENTS];
// Description:
// Creates a basic cap for a PCO1881 threaded beverage bottle.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "inside-top" = Centered on the inside top of the cap.
// Examples:
// pco1881_cap();
// pco1881_cap(texture="knurled");
// pco1881_cap(texture="ribbed");
// Example: Standard Anchors
// pco1881_cap(texture="ribbed") show_anchors(custom=false);
// Example: Custom Named Anchors
// expose_anchors(0.5)
// pco1881_cap(texture="ribbed")
// show_anchors(std=false);
module pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP)
{
$fn = segs(33/2);
w = 28.58 + 2*wall;
h = 11.2 + wall;
anchors = [
named_anchor("inside-top", [0,0,-(h/2-wall)])
];
attachable(anchor,spin,orient, d=w, l=h, anchors=anchors) {
down(h/2) zrot(45) {
difference() {
union() {
if (texture == "knurled") {
cyl(d=w, h=11.2+wall, texture="diamonds", tex_size=[3,3], tex_style="concave", anchor=BOT);
} else if (texture == "ribbed") {
cyl(d=w, h=11.2+wall, texture="ribs", tex_size=[3,3], tex_style="min_edge", anchor=BOT);
} else {
cyl(d=w, l=11.2+wall, anchor=BOTTOM);
}
}
up(wall) cyl(d=28.58, h=11.2+wall, anchor=BOTTOM);
}
up(wall+2) thread_helix(d=25.5, pitch=2.7, thread_depth=1.6, flank_angle=15, turns=650/360, taper=-1.6, internal=true, anchor=BOTTOM);
}
children();
}
}
function pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) =
no_function("pco1881_cap");
// Section: Generic Bottle Connectors
// Module: generic_bottle_neck()
// Usage:
// generic_bottle_neck([wall], ...) [ATTACHMENTS];
// Description:
// Creates a bottle neck given specifications.
// Arguments:
// wall = distance between ID and any wall that may be below the support
// ---
// neck_d = Outer diameter of neck without threads
// id = Inner diameter of neck
// thread_od = Outer diameter of thread
// height = Height of neck above support
// support_d = Outer diameter of support ring. Set to 0 for no support.
// pitch = Thread pitch
// round_supp = True to round the lower edge of the support ring
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "support-ring" = Centered at the bottom of the support ring.
// Example:
// generic_bottle_neck();
module generic_bottle_neck(
wall,
neck_d = 25,
id = 21.4,
thread_od = 27.2,
height = 17,
support_d = 33.0,
pitch = 3.2,
round_supp = false,
anchor = "support-ring",
spin = 0,
orient = UP
) {
inner_d = id;
neck_d = neck_d;
supp_d = max(neck_d, support_d);
thread_pitch = pitch;
flank_angle = 15;
diamMagMult = neck_d / 26.19;
heightMagMult = height / 17.00;
sup_r = 0.30 * (heightMagMult > 1 ? heightMagMult : 1);
support_r = floor(((supp_d == neck_d) ? sup_r : min(sup_r, (supp_d - neck_d) / 2)) * 5000) / 10000;
support_rad = (wall == undef || !round_supp) ? support_r :
min(support_r, floor((supp_d - (inner_d + 2 * wall)) * 5000) / 10000);
//Too small of a radius will cause errors with the arc, this limits granularity to .0001mm
support_width = 1 * (heightMagMult > 1 ? heightMagMult : 1) * sign(support_d);
roundover = 0.58 * diamMagMult;
lip_roundover_r = (roundover > (neck_d - inner_d) / 2) ? 0 : roundover;
h = height + support_width;
threadbase_d = neck_d - 0.8 * diamMagMult;
$fn = segs(33 / 2);
thread_h = (thread_od - threadbase_d) / 2;
anchors = [
named_anchor("support-ring", [0, 0, 0 - h / 2])
];
attachable(anchor, spin, orient, d1 = neck_d, d2 = 0, l = h, anchors = anchors) {
down(h / 2) {
rotate_extrude(convexity = 10) {
polygon(turtle(
state = [inner_d / 2, 0], (supp_d != neck_d) ? [
"untilx", supp_d / 2 - ((round_supp) ? support_rad : 0),
"arcleft", ((round_supp) ? support_rad : 0), 90,
"untily", support_width - support_rad,
"arcleft", support_rad, 90,
"untilx", neck_d / 2,
"right", 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
] : [
"untilx", supp_d / 2 - ((round_supp) ? support_rad : 0),
"arcleft", ((round_supp) ? support_rad : 0), 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
]
));
}
up(h - pitch / 2 - lip_roundover_r) {
difference() {
thread_helix(
d = threadbase_d - 0.1 * diamMagMult,
pitch = thread_pitch,
thread_depth = thread_h + 0.1 * diamMagMult,
flank_angle = flank_angle,
turns = (height - pitch - lip_roundover_r) * .6167 / pitch,
taper = -thread_h * 2,
anchor = TOP
);
zrot_copies(rots = [90, 270]) {
zrot_copies(rots = [-28, 28], r = threadbase_d / 2) {
prismoid(
[20 * heightMagMult, 1.82 * diamMagMult],
[20 * heightMagMult, 1.82 * diamMagMult * .6 + 2 * sin(29) * thread_h],
h = thread_h + 0.1 * diamMagMult,
anchor = BOT,
orient = RIGHT
);
}
}
}
}
}
children();
}
}
function generic_bottle_neck(
neck_d,
id,
thread_od,
height,
support_d,
pitch,
round_supp,
wall,
anchor, spin, orient
) = no_function("generic_bottle_neck");
// Module: generic_bottle_cap()
// Usage:
// generic_bottle_cap(wall, [texture], ...) [ATTACHMENTS];
// Description:
// Creates a basic threaded cap given specifications.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// ---
// height = Interior height of the cap in mm.
// thread_od = Outer diameter of the threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// neck_od = Outer diameter of neck in mm.
// flank_angle = Angle of taper on threads.
// pitch = Thread pitch in mm.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "inside-top" = Centered on the inside top of the cap.
// Examples:
// generic_bottle_cap();
// generic_bottle_cap(texture="knurled");
// generic_bottle_cap(texture="ribbed");
module generic_bottle_cap(
wall = 2,
texture = "none",
height = 11.2,
thread_od = 28.58,
tolerance = .2,
neck_od = 25.5,
flank_angle = 15,
pitch = 4,
anchor = BOTTOM,
spin = 0,
orient = UP
) {
$fn = segs(33 / 2);
threadOuterDTol = thread_od + 2 * tolerance;
w = threadOuterDTol + 2 * wall;
h = height + wall;
neckOuterDTol = neck_od + 2 * tolerance;
threadDepth = (thread_od - neck_od) / 2 + .8;
diamMagMult = (w > 32.58) ? w / 32.58 : 1;
heightMagMult = (height > 11.2) ? height / 11.2 : 1;
anchors = [
named_anchor("inside-top", [0, 0, -(h / 2 - wall)])
];
attachable(anchor, spin, orient, d = w, l = h, anchors = anchors) {
down(h / 2) {
difference() {
union() {
// For the knurled and ribbed caps the PCO caps in BOSL2 cut into the wall
// thickness so the wall+texture are the specified wall thickness. That
// seems wrong so this does specified thickness+texture
if (texture == "knurled") {
cyl(d=w + 1.5*diamMagMult, l=h, texture="diamonds", tex_size=[3,3], tex_style="concave", anchor=BOT);
} else if (texture == "ribbed") {
cyl(d=w + 1.5*diamMagMult, l=h, texture="ribs", tex_size=[3,3], tex_style="min_edge", anchor=BOT);
} else {
cyl(d = w, l = h, anchor = BOTTOM);
}
}
up(wall) cyl(d = threadOuterDTol, h = h, anchor = BOTTOM);
}
difference(){
up(wall + pitch / 2) {
thread_helix(d = neckOuterDTol, pitch = pitch, thread_depth = threadDepth, flank_angle = flank_angle,
turns = ((height - pitch) / pitch), taper = -threadDepth, internal = true, anchor = BOTTOM);
}
}
}
children();
}
}
function generic_bottle_cap(
wall, texture, height,
thread_od, tolerance,
neck_od, flank_angle, pitch,
anchor, spin, orient
) = no_function("generic_bottle_cap");
// Module: bottle_adapter_neck_to_cap()
// Usage:
// bottle_adapter_neck_to_cap(wall, [texture], ...) [ATTACHMENTS];
// Description:
// Creates a threaded neck to cap adapter
// Arguments:
// wall = Thickness of wall between neck and cap when d=0. Leave undefined to have the outside of the tube go from the OD of the neck support ring to the OD of the cap. Default: undef
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// cap_wall = Wall thickness of the cap in mm.
// cap_h = Interior height of the cap in mm.
// cap_thread_od = Outer diameter of cap threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// cap_neck_od = Inner diameter of the cap threads.
// cap_neck_id = Inner diameter of the hole through the cap.
// cap_thread_taper = Angle of taper on threads.
// cap_thread_pitch = Thread pitch in mm
// neck_d = Outer diameter of neck w/o threads
// neck_id = Inner diameter of neck
// neck_thread_od = 27.2
// neck_h = Height of neck down to support ring
// neck_thread_pitch = Thread pitch in mm.
// neck_support_od = Outer diameter of neck support ring. Leave undefined to set equal to OD of cap. Set to 0 for no ring. Default: undef
// d = Distance between bottom of neck and top of cap
// taper_lead_in = Length to leave straight before tapering on tube between neck and cap if exists.
// Examples:
// bottle_adapter_neck_to_cap();
module bottle_adapter_neck_to_cap(
wall,
texture = "none",
cap_wall = 2,
cap_h = 11.2,
cap_thread_od = 28.58,
tolerance = .2,
cap_neck_od = 25.5,
cap_neck_id,
cap_thread_taper = 15,
cap_thread_pitch = 4,
neck_d = 25,
neck_id = 21.4,
neck_thread_od = 27.2,
neck_h = 17,
neck_thread_pitch = 3.2,
neck_support_od,
d = 0,
taper_lead_in = 0
) {
neck_support_od = (neck_support_od == undef || (d == 0 && neck_support_od < cap_thread_od + 2 * tolerance)) ? cap_thread_od + 2 * (cap_wall + tolerance) : neck_support_od;
cap_neck_id = (cap_neck_id == undef) ? neck_id : cap_neck_id;
wall = (wall == undef) ? neck_support_od + neck_d + cap_thread_od + neck_id : wall;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(neck_support_od, neck_d) - neck_id) / 2);
wallt2 = min(wall, (cap_thread_od + 2 * (cap_wall + tolerance) - cap_neck_id) / 2);
difference(){
union(){
up(d / 2) {
generic_bottle_neck(neck_d = neck_d,
id = neck_id,
thread_od = neck_thread_od,
height = neck_h,
support_d = neck_support_od,
pitch = neck_thread_pitch,
round_supp = ((wallt1 < (neck_support_od - neck_id) / 2) && (d > 0 || neck_support_od > (cap_thread_od + 2 * (cap_wall + tolerance)))),
wall = (d > 0) ? wallt1 : min(wallt1, ((cap_thread_od + 2 * (cap_wall + tolerance) - neck_id) / 2))
);
}
if (d != 0) {
rotate_extrude(){
polygon(points = [
[0, d / 2],
[neck_id / 2 + wallt1, d / 2],
[neck_id / 2 + wallt1, d / 2 - taper_lead_in],
[cap_neck_id / 2 + wallt2, taper_lead_in - d / 2],
[cap_neck_id / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(wall = cap_wall,
texture = texture,
height = cap_h,
thread_od = cap_thread_od,
tolerance = tolerance,
neck_od = cap_neck_od,
flank_angle = cap_thread_taper,
orient = DOWN,
pitch = cap_thread_pitch
);
}
}
rotate_extrude() {
polygon(points = [
[0, d / 2 + 0.1],
[neck_id / 2, d / 2],
[neck_id / 2, d / 2 - taper_lead_in],
[cap_neck_id / 2, taper_lead_in - d / 2],
[cap_neck_id / 2, -d / 2 - cap_wall],
[0, -d / 2 - cap_wall - 0.1]
]);
}
}
}
function bottle_adapter_neck_to_cap(
wall, texture, cap_wall, cap_h, cap_thread_od,
tolerance, cap_neck_od, cap_neck_id, cap_thread_taper,
cap_thread_pitch, neck_d, neck_id, neck_thread_od,
neck_h, neck_thread_pitch, neck_support_od, d, taper_lead_in
) = no_fuction("bottle_adapter_neck_to_cap");
// Module: bottle_adapter_cap_to_cap()
// Usage:
// bottle_adapter_cap_to_cap(wall, [texture]);
// Description:
// Creates a threaded cap to cap adapter.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// cap_h1 = Interior height of top cap.
// cap_thread_od1 = Outer diameter of threads on top cap.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// cap_neck_od1 = Inner diameter of threads on top cap.
// cap_thread_pitch1 = Thread pitch of top cap in mm.
// cap_h2 = Interior height of bottom cap. Leave undefined to duplicate cap_h1.
// cap_thread_od2 = Outer diameter of threads on bottom cap. Leave undefined to duplicate capThread1.
// cap_neck_od2 = Inner diameter of threads on top cap. Leave undefined to duplicate cap_neck_od1.
// cap_thread_pitch2 = Thread pitch of bottom cap in mm. Leave undefinced to duplicate cap_thread_pitch1.
// d = Distance between caps.
// neck_id1 = Inner diameter of cutout in top cap.
// neck_id2 = Inner diameter of cutout in bottom cap.
// taper_lead_in = Length to leave straight before tapering on tube between caps if exists.
// Examples:
// bottle_adapter_cap_to_cap();
module bottle_adapter_cap_to_cap(
wall = 2,
texture = "none",
cap_h1 = 11.2,
cap_thread_od1 = 28.58,
tolerance = .2,
cap_neck_od1 = 25.5,
cap_thread_pitch1 = 4,
cap_h2,
cap_thread_od2,
cap_neck_od2,
cap_thread_pitch2,
d = 0,
neck_id1, neck_id2,
taper_lead_in = 0
) {
cap_h2 = (cap_h2 == undef) ? cap_h1 : cap_h2;
cap_thread_od2 = (cap_thread_od2 == undef) ? cap_thread_od1 : cap_thread_od2;
cap_neck_od2 = (cap_neck_od2 == undef) ? cap_neck_od1 : cap_neck_od2;
cap_thread_pitch2 = (cap_thread_pitch2 == undef) ? cap_thread_pitch1 : cap_thread_pitch2;
neck_id2 = (neck_id2 == undef && neck_id1 != undef) ? neck_id1 : neck_id2;
taper_lead_in = (d >= taper_lead_in * 2) ? taper_lead_in : d / 2;
$fn = segs(33 / 2);
difference(){
union(){
up(d / 2){
generic_bottle_cap(
orient = UP,
wall = wall,
texture = texture,
height = cap_h1,
thread_od = cap_thread_od1,
tolerance = tolerance,
neck_od = cap_neck_od1,
pitch = cap_thread_pitch1
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[cap_thread_od1 / 2 + (wall + tolerance), d / 2],
[cap_thread_od1 / 2 + (wall + tolerance), d / 2 - taper_lead_in],
[cap_thread_od2 / 2 + (wall + tolerance), taper_lead_in - d / 2],
[cap_thread_od2 / 2 + (wall + tolerance), -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(
orient = DOWN,
wall = wall,
texture = texture,
height = cap_h2,
thread_od = cap_thread_od2,
tolerance = tolerance,
neck_od = cap_neck_od2,
pitch = cap_thread_pitch2
);
}
}
if (neck_id1 != undef || neck_id2 != undef) {
neck_id1 = (neck_id1 == undef) ? neck_id2 : neck_id1;
neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2;
rotate_extrude() {
polygon(points = [
[0, wall + d / 2 + 0.1],
[neck_id1 / 2, wall + d / 2],
[neck_id1 / 2, wall + d / 2 - taper_lead_in],
[neck_id2 / 2, taper_lead_in - d / 2 - wall],
[neck_id2 / 2, -d / 2 - wall],
[0, -d / 2 - wall - 0.1]
]);
}
}
}
}
function bottle_adapter_cap_to_cap(
wall, texture, cap_h1, cap_thread_od1, tolerance,
cap_neck_od1, cap_thread_pitch1, cap_h2, cap_thread_od2,
cap_neck_od2, cap_thread_pitch2, d, neck_id1, neck_id2, taper_lead_in
) = no_function("bottle_adapter_cap_to_cap");
// Module: bottle_adapter_neck_to_neck()
// Usage:
// bottle_adapter_neck_to_neck(...);
// Description:
// Creates a threaded neck to neck adapter.
// Arguments:
// ---
// d = Distance between bottoms of necks
// neck_od1 = Outer diameter of top neck w/o threads
// neck_id1 = Inner diameter of top neck
// thread_od1 = Outer diameter of threads on top neck
// height1 = Height of top neck above support ring.
// support_od1 = Outer diameter of the support ring on the top neck. Set to 0 for no ring.
// thread_pitch1 = Thread pitch of top neck.
// neck_od2 = Outer diameter of bottom neck w/o threads. Leave undefined to duplicate neck_od1
// neck_id2 = Inner diameter of bottom neck. Leave undefined to duplicate neck_id1
// thread_od2 = Outer diameter of threads on bottom neck. Leave undefined to duplicate thread_od1
// height2 = Height of bottom neck above support ring. Leave undefined to duplicate height1
// support_od2 = Outer diameter of the support ring on bottom neck. Set to 0 for no ring. Leave undefined to duplicate support_od1
// pitch2 = Thread pitch of bottom neck. Leave undefined to duplicate thread_pitch1
// taper_lead_in = Length to leave straight before tapering on tube between necks if exists.
// wall = Thickness of tube wall between necks. Leave undefined to match outer diameters with the neckODs/supportODs.
// Examples:
// bottle_adapter_neck_to_neck();
module bottle_adapter_neck_to_neck(
d = 0,
neck_od1 = 25,
neck_id1 = 21.4,
thread_od1 = 27.2,
height1 = 17,
support_od1 = 33.0,
thread_pitch1 = 3.2,
neck_od2, neck_id2,
thread_od2, height2,
support_od2, pitch2,
taper_lead_in = 0, wall
) {
no_children($children);
neck_od2 = (neck_od2 == undef) ? neck_od1 : neck_od2;
neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2;
thread_od2 = (thread_od2 == undef) ? thread_od1 : thread_od2;
height2 = (height2 == undef) ? height1 : height2;
support_od2 = (support_od2 == undef) ? support_od1 : support_od2;
pitch2 = (pitch2 == undef) ? thread_pitch1 : pitch2;
wall = (wall == undef) ? support_od1 + support_od2 + neck_id1 + neck_id2 : wall;
supprtOD2 = (d == 0 && support_od2 != 0) ? max(neck_od1, support_od2) : support_od2;
supprtOD1 = (d == 0 && support_od1 != 0) ? max(neck_od2, support_od1) : support_od1;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(supprtOD1, neck_od1) - neck_id1) / 2);
wallt2 = min(wall, (max(supprtOD2, neck_od2) - neck_id2) / 2);
taper_lead_in = (d >= taper_lead_in * 2) ? taper_lead_in : d / 2;
difference(){
union(){
up(d / 2){
generic_bottle_neck(orient = UP,
neck_d = neck_od1,
id = neck_id1,
thread_od = thread_od1,
height = height1,
support_d = supprtOD1,
pitch = thread_pitch1,
round_supp = ((wallt1 < (supprtOD1 - neck_id1) / 2) || (support_od1 > max(neck_od2, support_od2) && d == 0)),
wall = (d > 0) ? wallt1 : min(wallt1, ((max(neck_od2, support_od2)) - neck_id1) / 2)
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neck_id1 / 2 + wallt1, d / 2],
[neck_id1 / 2 + wallt1, d / 2 - taper_lead_in],
[neck_id2 / 2 + wallt2, taper_lead_in - d / 2],
[neck_id2 / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_neck(orient = DOWN,
neck_d = neck_od2,
id = neck_id2,
thread_od = thread_od2,
height = height2,
support_d = supprtOD2,
pitch = pitch2,
round_supp = ((wallt2 < (supprtOD2 - neck_id2) / 2) || (support_od2 > max(neck_od1, support_od1) && d == 0)),
wall = (d > 0) ? wallt2 : min(wallt2, ((max(neck_od1, support_od1)) - neck_id2) / 2)
);
}
}
if (neck_id1 != undef || neck_id2 != undef) {
neck_id1 = (neck_id1 == undef) ? neck_id2 : neck_id1;
neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2;
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neck_id1 / 2, d / 2],
[neck_id1 / 2, d / 2 - taper_lead_in],
[neck_id2 / 2, taper_lead_in - d / 2],
[neck_id2 / 2, -d / 2],
[0, -d / 2]
]);
}
}
}
}
function bottle_adapter_neck_to_neck(
d, neck_od1, neck_id1, thread_od1, height1,
support_od1, thread_pitch1, neck_od2, neck_id2,
thread_od2, height2, support_od2,
pitch2, taper_lead_in, wall
) = no_fuction("bottle_adapter_neck_to_neck");
// Section: SPI Bottle Threading
// Module: sp_neck()
// Usage:
// sp_neck(diam, type, wall|id=, [style=], [bead=]) [ATTACHMENTS];
// Description:
// Make a SPI (Society of Plastics Industry) threaded bottle neck. You must
// supply the nominal outer diameter of the threads and the thread type, one of
// 400, 410 and 415. The 400 type neck has 360 degrees of thread, the 410
// neck has 540 degrees of thread, and the 415 neck has 720 degrees of thread.
// You can also choose between the L style thread, which is symmetric and
// the M style thread, which is an asymmetric buttress thread. You can
// specify the wall thickness (measured from the base of the threads) or
// the inner diameter, and you can specify an optional bead at the base of the threads.
// Arguments:
// diam = nominal outer diameter of threads
// type = thread type, one of 400, 410 and 415
// wall = wall thickness
// ---
// id = inner diameter
// style = Either "L" or "M" to specify the thread style. Default: "L"
// bead = if true apply a bad to the neck. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Examples:
// sp_neck(48,400,2);
// sp_neck(48,400,2,bead=true);
// sp_neck(22,410,2);
// sp_neck(22,410,2,bead=true);
// sp_neck(28,415,id=20,style="M");
// sp_neck(13,415,wall=1,style="M",bead=true);
// Thread specs from https://www.isbt.com/threadspecs-downloads.asp
// T = peak to peak diameter (outer diameter)
// I = Inner diameter
// S = space above top thread
// H = total height of neck
_sp_specs = [
[400, //diam T I H S tpi
[[ 18, [ 17.68, 8.26, 9.42, 0.94, 8]],
[ 20, [ 19.69, 10.26, 9.42, 0.94, 8]],
[ 22, [ 21.69, 12.27, 9.42, 0.94, 8]],
[ 24, [ 23.67, 13.11, 10.16, 1.17, 8]],
[ 28, [ 27.38, 15.60, 10.16, 1.17, 6]],
[ 30, [ 28.37, 16.59, 10.24, 1.17, 6]],
[ 33, [ 31.83, 20.09, 10.24, 1.17, 6]],
[ 35, [ 34.34, 22.23, 10.24, 1.17, 6]],
[ 38, [ 37.19, 25.07, 10.24, 1.17, 6]],
[ 40, [ 39.75, 27.71, 10.24, 1.17, 6]],
[ 43, [ 41.63, 29.59, 10.24, 1.17, 6]],
[ 45, [ 43.82, 31.78, 10.24, 1.17, 6]],
[ 48, [ 47.12, 35.08, 10.24, 1.17, 6]],
[ 51, [ 49.56, 37.57, 10.36, 1.17, 6]],
[ 53, [ 52.07, 40.08, 10.36, 1.17, 6]],
[ 58, [ 56.06, 44.07, 10.36, 1.17, 6]],
[ 60, [ 59.06, 47.07, 10.36, 1.17, 6]],
[ 63, [ 62.08, 50.09, 10.36, 1.17, 6]],
[ 66, [ 65.07, 53.09, 10.36, 1.17, 6]],
[ 70, [ 69.06, 57.07, 10.36, 1.17, 6]],
[ 75, [ 73.56, 61.57, 10.36, 1.17, 6]],
[ 77, [ 76.66, 64.67, 12.37, 1.52, 6]],
[ 83, [ 82.58, 69.93, 12.37, 1.52, 5]],
[ 89, [ 88.75, 74.12, 13.59, 1.52, 5]],
[100, [ 99.57, 84.94, 15.16, 1.52, 5]],
[110, [109.58, 94.92, 15.16, 1.52, 5]],
[120, [119.56,104.93, 17.40, 1.52, 5]],
]],
[410, //diam T I H S tpi L W
[[ 18, [ 17.68, 8.26, 13.28, 0.94, 8, 9.17, 2.13]],
[ 20, [ 19.59, 10.26, 14.07, 0.94, 8, 9.17, 2.13]],
[ 22, [ 21.69, 12.27, 14.86, 0.94, 8, 9.55, 2.13]],
[ 24, [ 23.67, 13.11, 16.41, 1.17, 8, 11.10, 2.13]],
[ 28, [ 27.38, 15.60, 17.98, 1.17, 6, 11.76, 2.39]],
]],
[415, //diam T I H S tpi L W
[[ 13, [ 12.90, 5.54, 11.48, 0.94,12, 7.77, 1.14]],
[ 15, [ 14.61, 6.55, 14.15, 0.94,12, 8.84, 1.14]],
[ 18, [ 17.68, 8.26, 15.67, 0.94, 8, 10.90, 2.13]],
[ 20, [ 19.69, 10.26, 18.85, 0.94, 8, 11.58, 2.13]],
[ 22, [ 21.69, 12.27, 21.26, 0.94, 8, 13.87, 2.13]],
[ 24, [ 23.67, 13.11, 24.31, 1.17, 8, 14.25, 2.13]],
[ 28, [ 27.38, 15.60, 27.48, 1.17, 6, 16.64, 2.39]],
[ 33, [ 31.83, 20.09, 32.36, 1.17, 6, 19.61, 2.39]],
]]
];
_sp_twist = [ [400, 360],
[410, 540],
[415, 720]
];
// profile data: tpi, total width, depth,
_sp_thread_width= [
[5, 3.05],
[6, 2.39],
[8, 2.13],
[12, 1.14], // But note style M is different
];
function _sp_thread_profile(tpi, a, S, style, flip=false) =
let(
pitch = 1/tpi*INCH,
cL = a*(1-1/sqrt(3)),
cM = (1-tan(10))*a/2,
// SP specified roundings for the thread profile have special case for tpi=12
roundings = style=="L" && tpi < 12 ? 0.5
: style=="M" && tpi < 12 ? [0.25, 0.25, 0.75, 0.75]
: style=="L" ? [0.38, 0.13, 0.13, 0.38]
: /* style=="M" */ [0.25, 0.25, 0.2, 0.5],
path1 = style=="L"
? round_corners([[-1/2*pitch,-a/2],
[-a/2,-a/2],
[-cL/2,0],
[cL/2,0],
[a/2,-a/2],
[1/2*pitch,-a/2]], radius=roundings, closed=false,$fn=24)
: round_corners(
[[-1/2*pitch,-a/2],
[-a/2, -a/2],
[-cM, 0],
[0,0],
[a/2,-a/2],
[1/2*pitch,-a/2]], radius=roundings, closed=false, $fn=24),
path2 = flip ? reverse(xflip(path1)) : path1
)
// Shift so that the profile is S mm from the right end to create proper length S top gap
select(right(-a/2+1/2-S,p=path2),1,-2)/pitch;
function sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient) = no_function("sp_neck");
module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient)
{
assert(num_defined([wall,id])==1, "Must define exactly one of wall and id");
table = struct_val(_sp_specs,type);
dum1=assert(is_def(table),"Unknown SP closure type. Type must be one of 400, 410, or 415");
entry = struct_val(table, diam);
dum2=assert(is_def(entry), str("Unknown closure nominal diameter. Allowed diameters for SP",type,": ",struct_keys(table)))
assert(style=="L" || style=="M", "style must be \"L\" or \"M\"");
T = entry[0];
I = entry[1];
H = entry[2];
S = entry[3];
tpi = entry[4];
a = (style=="M" && tpi==12) ? 1.3 : struct_val(_sp_thread_width,tpi);
twist = struct_val(_sp_twist, type);
profile = _sp_thread_profile(tpi,a,S,style);
depth = a/2;
taperlen = 2*a;
beadmax = type==400 ? (T/2-depth)+depth*1.25
: diam <=15 ? (T-.15)/2 : (T-.05)/2;
W = type==400 ? a*1.5 // arbitrary decision for type 400
: entry[6]; // specified width for 410 and 415
beadpts = [
[0,-W/2],
each arc(16, points = [[T/2-depth, -W/2],
[beadmax, 0],
[T/2-depth, W/2]]),
[0,W/2]
];
isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y];
extra_bot = type==400 && bead ? -min(column(beadpts,1))+max(isect400) : 0;
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L
attachable(anchor,spin,orient,r=bead ? beadmax : T/2, l=H+extra_bot){
up((H+extra_bot)/2){
difference(){
union(){
thread_helix(d=T-.01, profile=profile, pitch = INCH/tpi, turns=twist/360, taper=taperlen, anchor=TOP);
cylinder(d=T-depth*2,h=H,anchor=TOP);
if (bead)
down(bead_shift)
rotate_extrude()
polygon(beadpts);
}
up(.5)cyl(d=is_def(id) ? id : T-a-2*wall, l=H-extra_bot+1, anchor=TOP);
}
}
children();
}
}
// Module: sp_cap()
// Usage:
// sp_cap(diam, type, wall, [style=], [top_adj=], [bot_adj=], [texture=], [$slop]) [ATTACHMENTS];
// Description:
// Make a SPI (Society of Plastics Industry) threaded bottle neck. You must
// supply the nominal outer diameter of the threads and the thread type, one of
// 400, 410 and 415. The 400 type neck has 360 degrees of thread, the 410
// neck has 540 degrees of thread, and the 415 neck has 720 degrees of thread.
// You can also choose between the L style thread, which is symmetric and
// the M style thread, which is an asymmetric buttress thread. Note that it
// is OK to mix styles, so you can put an L-style cap onto an M-style neck.
// .
// These caps often contain a cardboard or foam sealer disk, which can be as much as 1mm thick.
// If you don't include this, your cap may bottom out on the bead on the neck instead of sealing
// against the top. If you set top_adj to 1 it will make the top space 1mm smaller so that the
// cap will not bottom out. The 410 and 415 caps have very long unthreaded sections at the bottom.
// The bot_adj parameter specifies an amount to reduce that bottom extension. Be careful that
// you don't shrink past the threads.
// .
// The inner diameter of the cap is set to allow 10% of the thread depth in clearance. The diameter
// is further increased by `2 * $slop` so you can increase clearance if necessary.
// .
// Note: there is a published SPI standard for necks, but absolutely nothing for caps. This
// cap module was designed based on the neck standard to mate reasonably well, but if you
// find ways that it does the wrong thing, file a report.
// Arguments:
// diam = nominal outer diameter of threads
// type = thread type, one of 400, 410 and 415
// wall = wall thickness
// ---
// style = Either "L" or "M" to specify the thread style. Default: "L"
// top_adj = Amount to reduce top space in the cap, which means it doesn't screw down as far. Default: 0
// bot_adj = Amount to reduce extension of cap at the bottom, which also means it doesn't screw down as far. Default: 0
// texture = texture for outside of cap, one of "knurled", "ribbed" or "none. Default: "none"
// $slop = Increase inner diameter by `2 * $slop`.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Examples:
// sp_cap(48,400,2);
// sp_cap(22,410,2);
// sp_cap(28,415,1.5,style="M");
module sp_cap(diam,type,wall,style="L",top_adj=0, bot_adj=0, texture="none", anchor, spin, orient)
{
table = struct_val(_sp_specs,type);
dum1=assert(is_def(table),"Unknown SP closure type. Type must be one of 400, 410, or 415");
entry = struct_val(table, diam);
dum2=assert(is_def(entry), str("Unknown closure nominal diameter. Allowed diameters for SP",type,": ",struct_keys(table)))
assert(style=="L" || style=="M", "style must be \"L\" or \"M\"");
T = entry[0];
I = entry[1];
H = entry[2]-1;
S = entry[3];
tpi = entry[4];
a = (style=="M" && tpi==12) ? 1.3 : struct_val(_sp_thread_width,tpi);
twist = struct_val(_sp_twist, type);
dum3=assert(top_adj<S+0.75*a, str("The top_adj value is too large so the thread won't fit. It must be smaller than ",S+0.75*a));
oprofile = _sp_thread_profile(tpi,a,S+0.75*a-top_adj,style,flip=true);
bounds=pointlist_bounds(oprofile);
profile = fwd(-bounds[0].y,yflip(oprofile));
depth = a/2;
taperlen = 2*a;
assert(in_list(texture, ["none","knurled","ribbed"]));
space=2*depth/10+2*get_slop();
attachable(anchor,spin,orient,r= (T+space)/2+wall, l=H-bot_adj+wall){
xrot(180)
up((H-bot_adj)/2-wall/2){
difference(){
up(wall){
if (texture=="knurled")
cyl(d=T+space+2*wall,l=H+wall-bot_adj,anchor=TOP,texture="trunc_pyramids", tex_size=[3,3], tex_style="convex");
else if (texture == "ribbed")
cyl(d=T+space+2*wall,l=H+wall-bot_adj,anchor=TOP,chamfer2=.8,tex_taper=0,texture="trunc_ribs", tex_size=[3,3], tex_style="min_edge");
else
cyl(d=T+space+2*wall,l=H+wall-bot_adj,anchor=TOP,chamfer2=.8);
}
cyl(d=T+space, l=H-bot_adj+1, anchor=TOP);
}
thread_helix(d=T+space-.01, profile=profile, pitch = INCH/tpi, turns=twist/360, taper=taperlen, anchor=TOP, internal=true);
}
children();
}
}
// Function: sp_diameter()
// Usage:
// true_diam = sp_diameter(diam,type)
// Description:
// Returns the actual base diameter (root of the threads) for a SPI plastic bottle neck given the nominal diameter and type number (400, 410, 415).
// Arguments:
// diam = nominal diameter
// type = closure type number (400, 410 or 415)
function sp_diameter(diam,type) =
let(
table = struct_val(_sp_specs,type)
)
assert(is_def(table),"Unknown SP closure type. Type must be one of 400, 410, or 415")
let(
entry = struct_val(table, diam)
)
assert(is_def(entry), str("Unknown closure nominal diameter. Allowed diameters for SP",type,": ",struct_keys(table)))
entry[0];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap