BOSL2/regions.scad

1262 lines
59 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: regions.scad
// This file provides 2D boolean set operations on polygons, where you can
// compute, for example, the intersection or union of the shape defined by point lists, producing
// a new point list. Of course, such operations may produce shapes with multiple
// components. To handle that, we use "regions" which are lists of paths representing the polygons.
// In addition to set operations, you can calculate offsets, determine whether a point is in a
// region and you can decompose a region into parts.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Advanced Modeling
// FileSummary: Offsets and boolean geometry of 2D paths and regions.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// CommonCode:
// include <BOSL2/rounding.scad>
// Section: Regions
// A region is a list of polygons meeting these conditions:
// .
// - Every polygon on the list is simple, meaning it does not intersect itself
// - Two polygons on the list do not cross each other
// - A vertex of one polygon never meets the edge of another one except at a vertex
// .
// Note that this means vertex-vertex touching between two polygons is acceptable
// to define a region. Note, however, that regions with vertex-vertex contact usually
// cannot be rendered with CGAL. See {{is_valid_region()}} for examples of valid regions and
// lists of polygons that are not regions. Note that {{is_region_simple()}} will identify
// regions with no polygon intersections at all, which should render successfully witih CGAL.
// .
// The actual geometry of the region is defined by XORing together
// all of the polygons in the list. This may sound obscure, but it simply means that nested
// boundaries make rings in the obvious fashion, and non-nested shapes simply union together.
// Checking that a list of polygons is a valid region, meaning that it satisfies all of the conditions
// above, can be a time consuming test, so it is not done automatically. It is your responsibility to ensure that your regions are
// compliant. You can construct regions by making a suitable list of polygons, or by using
// set operation function such as union() or difference(), which all acccept polygons, as
// well as regions, as their inputs. And if you must you can clean up an ill-formed region using make_region(),
// which will break up self-intersecting polygons and polygons that cross each other.
// Function: is_region()
// Usage:
// bool = is_region(x);
// Description:
// Returns true if the given item looks like a region. A region is a list of non-crossing simple polygons. This test just checks
// that the argument is a list whose first entry is a path.
function is_region(x) = is_list(x) && is_path(x.x);
// Function: is_valid_region()
// Usage:
// bool = is_valid_region(region, [eps]);
// Description:
// Returns true if the input is a valid region, meaning that it is a list of simple polygons whose segments do not cross each other.
// This test can be time consuming with regions that contain many points.
// It differs from `is_region()` which simply checks that the object is a list whose first entry is a path
// because it searches all the list polygons for any self-intersections or intersections with each other.
// Will also return true if given a single simple polygon. Use {{make_region()}} to convert sets of self-intersecting polygons into
// a region.
// Arguments:
// region = region to check
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
// Example(2D,NoAxes): In all of the examples each polygon in the region appears in a different color. Two non-intersecting squares make a valid region.
// region = [square(10), right(11,square(8))];
// rainbow(region)stroke($item, width=.2,closed=true);
// back(11)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Nested squares form a region
// region = [for(i=[3:2:10]) square(i,center=true)];
// rainbow(region)stroke($item, width=.2,closed=true);
// back(6)text(is_valid_region(region) ? "region" : "non-region", size=2,halign="center");
// Example(2D,NoAxes): Also a region:
// region= [square(10,center=true), square(5,center=true), right(10,square(7))];
// rainbow(region)stroke($item, width=.2,closed=true);
// back(8)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): The squares cross each other, so not a region
// object = [square(10), move([8,8], square(8))];
// rainbow(object)stroke($item, width=.2,closed=true);
// back(17)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): A union is one way to fix the above example and get a region. (Note that union is run here on two simple polygons, which are valid regions themselves and hence acceptable inputs to union.
// region = union([square(10), move([8,8], square(8))]);
// rainbow(region)stroke($item, width=.25,closed=true);
// back(12)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Not a region due to a self-intersecting (non-simple) hourglass polygon
// object = [move([-2,-2],square(14)), [[0,0],[10,0],[0,10],[10,10]]];
// rainbow(object)stroke($item, width=.2,closed=true);
// move([-1.5,13])text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Breaking hourglass in half fixes it. Now it's a region:
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]];
// rainbow(region)stroke($item, width=.2,closed=true);
// Example(2D,NoAxes): A single polygon corner touches an edge, so not a region:
// object = [[[-10,0], [-10,10], [20,10], [20,-20], [-10,-20],
// [-10,-10], [0,0], [10,-10], [10,0]]];
// rainbow(object)stroke($item, width=.3,closed=true);
// move([-4,12])text(is_valid_region(object) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): Corners touch in the same polygon, so the polygon is not simple and the object is not a region.
// object = [[[0,0],[10,0],[10,10],[-10,10],[-10,0],[0,0],[-5,5],[5,5]]];
// rainbow(object)stroke($item, width=.3,closed=true);
// move([-10,12])text(is_valid_region(object) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): The shape above as a valid region with two polygons:
// region = [ [[0,0],[10,0],[10,10],[-10,10],[-10,0]],
// [[0,0],[5,5],[-5,5]] ];
// rainbow(region)stroke($item, width=.3,closed=true);
// move([-5.5,12])text(is_valid_region(region) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): As with the "broken" hourglass, Touching at corners is OK. This is a region.
// region = [square(10), move([10,10], square(8))];
// rainbow(region)stroke($item, width=.25,closed=true);
// back(12)text(is_valid_region(region) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): These two squares share part of an edge, hence not a region
// object = [square(10), move([10,2], square(7))];
// stroke(object[0], width=0.2,closed=true);
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): These two squares share a full edge, hence not a region
// object = [square(10), right(10, square(10))];
// stroke(object[0], width=0.2,closed=true);
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Sharing on edge on the inside, also not a regionn
// object = [square(10), [[0,0], [2,2],[2,8],[0,10]]];
// stroke(object[0], width=0.2,closed=true);
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): Crossing at vertices is also bad
// object = [square(10), [[10,0],[0,10],[8,13],[13,8]]];
// rainbow(object)stroke($item, width=.2,closed=true);
// back(14)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): One polygon touches another in the middle of an edge
// object = [square(10), [[10,5],[15,0],[15,10]]];
// rainbow(object)stroke($item, width=.2,closed=true);
// back(11)text(is_valid_region(object) ? "region" : "non-region", size=2);
// Example(2D,NoAxes): The polygon touches the side, but the side has a vertex at the contact point so this is a region
// poly1 = [ each square(30,center=true), [15,0]];
// poly2 = right(10,circle(5,$fn=4));
// poly3 = left(0,circle(5,$fn=4));
// poly4 = move([0,-8],square([10,3]));
// region = [poly1,poly2,poly3,poly4];
// rainbow(region)stroke($item, width=.25,closed=true);
// move([-5,16.5])text(is_valid_region(region) ? "region" : "non-region", size=3);
// color("black")move_copies(region[0]) circle(r=.4);
// Example(2D,NoAxes): The polygon touches the side, but not at a vertex so this is not a region
// poly1 = fwd(4,[ each square(30,center=true), [15,0]]);
// poly2 = right(10,circle(5,$fn=4));
// poly3 = left(0,circle(5,$fn=4));
// poly4 = move([0,-8],square([10,3]));
// object = [poly1,poly2,poly3,poly4];
// rainbow(object)stroke($item, width=.25,closed=true);
// move([-9,12.5])text(is_valid_region(object) ? "region" : "non-region", size=3);
// color("black")move_copies(object[0]) circle(r=.4);
// Example(2D,NoAxes): The inner polygon touches the middle of the edges, so not a region
// poly1 = square(20,center=true);
// poly2 = circle(10,$fn=8);
// object=[poly1,poly2];
// rainbow(object)stroke($item, width=.25,closed=true);
// move([-10,11.4])text(is_valid_region(object) ? "region" : "non-region", size=3);
// Example(2D,NoAxes): The above shape made into a region using {{difference()}} now has four components that touch at corners
// poly1 = square(20,center=true);
// poly2 = circle(10,$fn=8);
// region = difference(poly1,poly2);
// rainbow(region)stroke($item, width=.25,closed=true);
// move([-5,11.4])text(is_valid_region(region) ? "region" : "non-region", size=3);
function is_valid_region(region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Input is not a region")
// no short paths
[for(p=region) if (len(p)<3) 1] == []
&&
// all paths are simple
[for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == []
&&
// paths do not cross each other
[for(i=[0:1:len(region)-2])
if (_polygon_crosses_region(list_tail(region,i+1),region[i], eps=eps)) 1] == []
&&
// one path doesn't touch another in the middle of an edge
[for(i=idx(region), j=idx(region))
if (i!=j) for(v=region[i], edge=pair(region[j],wrap=true))
let(
v1 = edge[1]-edge[0],
v0 = v - edge[0],
t = v0*v1/(v1*v1)
)
if (abs(cross(v0,v1))<eps*norm(v1) && t>eps && t<1-eps) 1
]==[];
// internal function:
// returns true if the polygon crosses the region so that part of the
// polygon is inside the region and part is outside.
function _polygon_crosses_region(region, poly, eps=EPSILON) =
let(
subpaths = flatten(split_region_at_region_crossings(region,[poly],eps=eps)[1])
)
[for(path=subpaths)
let(isect=
[for (subpath = subpaths)
let(
midpt = mean([subpath[0], subpath[1]]),
rel = point_in_region(midpt,region,eps=eps)
)
rel
])
if (!all_equal(isect) || isect[0]==0) 1 ] != [];
// Function: is_region_simple()
// Usage:
// bool = is_region_simple(region, [eps]);
// Description:
// We extend the notion of the simple path to regions: a simple region is entirely
// non-self-intersecting, meaning that it is formed from a list of simple polygons that
// don't intersect each other at all&mdash;not even with corner contact points.
// Regions with corner contact are valid but may fail CGAL. Simple regions
// should not create problems with CGAL.
// Arguments:
// region = region to check
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
// Example(2D,NoAxes): Corner contact means it's not simple
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]];
// rainbow(region)stroke($item, width=.2,closed=true);
// move([-1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2);
// Example(2D,NoAxes): Moving apart the triangles makes it simple:
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,4.5]], [[5,5.5],[0,10],[10,10]]];
// rainbow(region)stroke($item, width=.2,closed=true);
// move([1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2);
function is_region_simple(region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Input is not a region")
[for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == []
&&
[for(i=[0:1:len(region)-2])
if (_region_region_intersections([region[i]], list_tail(region,i+1), eps=eps)[0][0] != []) 1
] ==[];
// Function: make_region()
// Usage:
// region = make_region(polys, [nonzero], [eps]);
// Description:
// Takes a list of polygons that may intersect themselves or cross each other
// and converts it into a properly defined region without
// these defects.
// Arguments:
// polys = list of polygons to use
// nonzero = set to true to use nonzero rule for polygon membership. Default: false
// eps = Epsilon for geometric comparisons. Default: `EPSILON` (1e-9)
// Example(2D,NoAxes): The pentagram is self-intersecting, so it is not a region. Here it becomes five triangles:
// pentagram = turtle(["move",100,"left",144], repeat=4);
// region = make_region(pentagram);
// rainbow(region)stroke($item, width=1,closed=true);
// Example(2D,NoAxes): Alternatively with the nonzero option you can get the perimeter:
// pentagram = turtle(["move",100,"left",144], repeat=4);
// region = make_region(pentagram,nonzero=true);
// rainbow(region)stroke($item, width=1,closed=true);
// Example(2D,NoAxes): Two crossing squares become two L-shaped components
// region = make_region([square(10), move([5,5],square(8))]);
// rainbow(region)stroke($item, width=.3,closed=true);
function make_region(polys,nonzero=false,eps=EPSILON) =
let(polys=force_region(polys))
assert(is_region(polys), "Input is not a region")
exclusive_or(
[for(poly=polys) each polygon_parts(poly,nonzero,eps)],
eps=eps);
// Function: force_region()
// Usage:
// region = force_region(poly)
// Description:
// If the input is a polygon then return it as a region. Otherwise return it unaltered.
// Arguments:
// poly = polygon to turn into a region
function force_region(poly) = is_path(poly) ? [poly] : poly;
// Section: Turning a region into geometry
// Module: region()
// Usage:
// region(r, [anchor], [spin=], [cp=], [atype=]) [ATTACHMENTS];
// Description:
// Creates the 2D polygons described by the given region or list of polygons. This module works on
// arbitrary lists of polygons that cross each other and hence do not define a valid region. The
// displayed result is the exclusive-or of the polygons listed in the input.
// Arguments:
// r = region to create as geometry
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"`
// ---
// spin = Rotate this many degrees after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 2D point. Default: "centroid"
// atype = Set to "hull" or "intersect" to select anchor type. Default: "hull"
// Example(2D): Displaying a region
// region([circle(d=50), square(25,center=true)]);
// Example(2D): Displaying a list of polygons that intersect each other, which is not a region
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
module region(r, anchor="origin", spin=0, cp="centroid", atype="hull")
{
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
r = force_region(r);
dummy=assert(is_region(r), "Input is not a region");
points = flatten(r);
lengths = [for(path=r) len(path)];
starts = [0,each cumsum(lengths)];
paths = [for(i=idx(r)) count(s=starts[i], n=lengths[i])];
attachable(anchor, spin, two_d=true, region=r, extent=atype=="hull", cp=cp){
polygon(points=points, paths=paths);
children();
}
}
// Section: Gometrical calculations with regions
// Function: point_in_region()
// Usage:
// check = point_in_region(point, region, [eps]);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against, as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D,Med): Red points are in the region.
// region = [for(i=[2:4:10]) hexagon(r=i)];
// color("#ff7") region(region);
// for(x=[-10:10], y=[-10:10])
// if (point_in_region([x,y], region)>=0)
// move([x,y]) color("red") circle(0.15, $fn=12);
// else
// move([x,y]) color("#ddf") circle(0.1, $fn=12);
function point_in_region(point, region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Region given to point_in_region is not a region")
assert(is_vector(point,2), "Point must be a 2D point in point_in_region")
_point_in_region(point, region, eps);
function _point_in_region(point, region, eps=EPSILON, i=0, cnt=0) =
i >= len(region) ? ((cnt%2==1)? 1 : -1)
: let(
pip = point_in_polygon(point, region[i], eps=eps)
)
pip == 0 ? 0
: _point_in_region(point, region, eps=eps, i=i+1, cnt = cnt + (pip>0? 1 : 0));
// Function: region_area()
// Usage:
// area = region_area(region);
// Description:
// Computes the area of the specified valid region. (If the region is invalid and has self intersections
// the result is meaningless.)
// Arguments:
// region = region whose area to compute
// Examples:
// area = region_area([square(10), right(20,square(8))]); // Returns 164
function region_area(region) =
assert(is_region(region), "Input must be a region")
let(
parts = region_parts(region)
)
-sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]);
function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)];
// Function: are_regions_equal()
// Usage:
// b = are_regions_equal(region1, region2, [either_winding])
// Description:
// Returns true if the components of region1 and region2 are the same polygons (in any order).
// Arguments:
// region1 = first region
// region2 = second region
// either_winding = if true then two shapes test equal if they wind in opposite directions. Default: false
function are_regions_equal(region1, region2, either_winding=false) =
let(
region1=force_region(region1),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2), "One of the inputs is not a region")
len(region1) != len(region2)? false :
__are_regions_equal(either_winding?_clockwise_region(region1):region1,
either_winding?_clockwise_region(region2):region2,
0);
function __are_regions_equal(region1, region2, i) =
i >= len(region1)? true :
!_is_polygon_in_list(region1[i], region2)? false :
__are_regions_equal(region1, region2, i+1);
/// Internal Function: _region_region_intersections()
/// Usage:
/// risect = _region_region_intersections(region1, region2, [closed1], [closed2], [eps]
/// Description:
/// Returns a pair of sorted lists such that risect[0] is a list of intersection
/// points for every path in region1, and similarly risect[1] is a list of intersection
/// points for the paths in region2. For each path the intersection list is
/// a sorted list of the form [PATHIND, SEGMENT, U]. You can specify that the paths in either
/// region be regarded as open paths if desired. Default is to treat them as
/// regions and hence the paths as closed polygons.
/// .
/// Included as intersection points are points where region1 touches itself at a vertex or
/// region2 touches itself at a vertex. (The paths are assumed to have no self crossings.
/// Self crossings of the paths in the regions are not returned.)
function _region_region_intersections(region1, region2, closed1=true,closed2=true, eps=EPSILON) =
let(
intersections = [
for(p1=idx(region1))
let(
path = closed1?list_wrap(region1[p1]):region1[p1]
)
for(i = [0:1:len(path)-2])
let(
a1 = path[i],
a2 = path[i+1],
nrm = norm(a1-a2)
)
if( nrm>eps ) // ignore zero-length path edges
let(
seg_normal = [-(a2-a1).y, (a2-a1).x]/nrm,
ref = a1*seg_normal
)
// `signs[j]` is the sign of the signed distance from
// poly vertex j to the line [a1,a2] where near zero
// distances are snapped to zero; poly edges
// with equal signs at its vertices cannot intersect
// the path edge [a1,a2] or they are collinear and
// further tests can be discarded.
for(p2=idx(region2))
let(
poly = closed2?list_wrap(region2[p2]):region2[p2],
signs = [for(v=poly*seg_normal) abs(v-ref) < eps ? 0 : sign(v-ref) ]
)
if(max(signs)>=0 && min(signs)<=0) // some edge intersects line [a1,a2]
for(j=[0:1:len(poly)-2])
if(signs[j]!=signs[j+1])
let( // exclude non-crossing and collinear segments
b1 = poly[j],
b2 = poly[j+1],
isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps)
)
if (isect
&& isect[1]>= -eps
&& isect[1]<= 1+eps
&& isect[2]>= -eps
&& isect[2]<= 1+eps)
[[p1,i,isect[1]], [p2,j,isect[2]]]
],
regions=[region1,region2],
// Create a flattened index list corresponding to the points in region1 and region2
// that gives each point as an intersection point
ptind = [for(i=[0:1])
[for(p=idx(regions[i]))
for(j=idx(regions[i][p])) [p,j,0]]],
points = [for(i=[0:1]) flatten(regions[i])],
// Corner points are those points where the region touches itself, hence duplicate
// points in the region's point set
cornerpts = [for(i=[0:1])
[for(k=vector_search(points[i],eps,points[i]))
each if (len(k)>1) select(ptind[i],k)]],
risect = [for(i=[0:1]) concat(column(intersections,i), cornerpts[i])],
counts = [count(len(region1)), count(len(region2))],
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
)
[for(i=[0:1]) [for(j=counts[i]) _sort_vectors(select(risect[i],pathind[i][j]))]];
// Section: Breaking up regions into subregions
// Function: split_region_at_region_crossings()
// Usage:
// split_region = split_region_at_region_crossings(region1, region2, [closed1], [closed2], [eps])
// Description:
// Splits region1 at the places where polygons in region1 touches each other at corners and at locations
// where region1 intersections region2. Split region2 similarly with respect to region1.
// The return is a pair of results of the form [split1, split2] where split1=[frags1,frags2,...]
// and frags1 is a list of paths that when placed end to end (in the given order), give the first polygon of region1.
// Each path in the list is either entirely inside or entirely outside region2.
// Then frags2 is the decomposition of the second polygon into path pieces, and so on. Finally split2 is
// the same list, but for the polygons in region2.
// You can pass a single polygon in for either region, but the output will be a singleton list, as if
// you passed in a singleton region. If you set the closed parameters to false then the region components
// will be treated as open paths instead of polygons.
// Arguments:
// region1 = first region
// region2 = second region
// closed1 = if false then treat region1 as list of open paths. Default: true
// closed2 = if false then treat region2 as list of open paths. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = square(50,center=false);
// region = [circle(d=80), circle(d=40)];
// paths = split_region_at_region_crossings(path, region);
// color("#aaa") region(region);
// rainbow(paths[0][0]) stroke($item, width=2);
// right(110){
// color("#aaa") region([path]);
// rainbow(flatten(paths[1])) stroke($item, width=2);
// }
function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) =
let(
region1=force_region(region1),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2),"One of the inputs is not a region")
let(
xings = _region_region_intersections(region1, region2, closed1, closed2, eps),
regions = [region1,region2],
closed = [closed1,closed2]
)
[for(i=[0:1])
[for(p=idx(xings[i]))
let(
crossings = deduplicate([
[p,0,0],
each xings[i][p],
[p,len(regions[i][p])-(closed[i]?1:2), 1],
],eps=eps),
subpaths = [
for (frag = pair(crossings))
deduplicate(
_path_select(regions[i][p], frag[0][1], frag[0][2], frag[1][1], frag[1][2], closed=closed[i]),
eps=eps
)
]
)
[for(s=subpaths) if (len(s)>1) s]
]
];
// Function: region_parts()
// Usage:
// rgns = region_parts(region);
// Description:
// Divides a region into a list of connected regions. Each connected region has exactly one clockwise outside boundary
// and zero or more counter-clockwise outlines defining internal holes. Note that behavior is undefined on invalid regions whose
// components cross each other.
// Example(2D,NoAxes):
// R = [for(i=[1:7]) square(i,center=true)];
// region_list = region_parts(R);
// rainbow(region_list) region($item);
// Example(2D,NoAxes):
// R = [back(7,square(3,center=true)),
// square([20,10],center=true),
// left(5,square(8,center=true)),
// for(i=[4:2:8])
// right(5,square(i,center=true))];
// region_list = region_parts(R);
// rainbow(region_list) region($item);
function region_parts(region) =
let(
region = force_region(region)
)
assert(is_region(region), "Input is not a region")
let(
inside = [for(i=idx(region))
let(pt = mean([region[i][0], region[i][1]]))
[for(j=idx(region)) i==j ? 0
: point_in_polygon(pt,region[j]) >=0 ? 1 : 0]
],
level = inside*repeat(1,len(region))
)
[ for(i=idx(region))
if(level[i]%2==0)
let(
possible_children = search([level[i]+1],level,0)[0],
keep=search([1], select(inside,possible_children), 0, i)[0]
)
[
clockwise_polygon(region[i]),
for(good=keep)
ccw_polygon(region[possible_children[good]])
]
];
// Section: Offset and 2D Boolean Set Operations
function _offset_chamfer(center, points, delta) =
let(
dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])),
endline = _shift_segment(select(points,[0,2]), delta-dist)
) [
line_intersection(endline, select(points,[0,1])),
line_intersection(endline, select(points,[1,2]))
];
function _shift_segment(segment, d) =
assert(!approx(segment[0],segment[1]),"Path has repeated points")
move(d*line_normal(segment),segment);
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension(s1,s2) =
norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2,LINE,LINE);
function _makefaces(direction, startind, good, pointcount, closed) =
let(
lenlist = list_bset(good, pointcount),
numfirst = len(lenlist),
numsecond = sum(lenlist),
prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed)
)
direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces;
function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces :
_makefaces_recurse(
startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind],
lenlist[firstind]==0? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]])
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat(faces,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]],
// Finish (unconditionally) with a quadrilateral face
[
[
firstind+startind1,
(firstind+1)%numfirst+startind1,
(secondind+lenlist[firstind])%numsecond+startind2,
(secondind+lenlist[firstind]-1)%numsecond+startind2
]
]
)
)
);
// Determine which of the shifted segments are good
function _good_segments(path, d, shiftsegs, closed, quality) =
let(
maxind = len(path)-(closed ? 1 : 2),
pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]],
pathseg_len = [for(seg=pathseg) norm(seg)],
pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]],
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1])
) [
for (i=[0:len(shiftsegs)-1])
(i>maxind)? true :
_segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha)
];
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) =
index == len(alpha) ? false :
_point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true :
_segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1);
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist(path,pathseg_unit,pathseg_len,pt) =
min([
for(i=[0:len(pathseg_unit)-1]) let(
v = pt-path[i],
projection = v*pathseg_unit[i],
segdist = projection < 0? norm(pt-path[i]) :
projection > pathseg_len[i]? norm(pt-select(path,i+1)) :
norm(v-projection*pathseg_unit[i])
) segdist
]);
// Function: offset()
// Usage:
// offsetpath = offset(path, [r=|delta=], [chamfer=], [closed=], [check_valid=], [quality=], [same_length=])
// path_faces = offset(path, return_faces=true, [r=|delta=], [chamfer=], [closed=], [check_valid=], [quality=], [firstface_index=], [flip_faces=])
// Description:
// Takes a 2D input path, polygon or region and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. If you used `delta` you can set `chamfer` to true to get chamfers.
// For paths and polygons positive offsets make the polygons larger. For paths,
// positive offsets shift the path to the left, relative to the direction of the path. Note
// that the path must not include any 180 degree turns, where the path reverses direction.
// .
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
// increases the number of samples on the segment that are checked.) Run time will increase. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
// .
// When invalid segments are eliminated, the path length decreases. If you use chamfering or rounding, then
// the chamfers and roundings can increase the length of the output path. Hence points in the output may be
// difficult to associate with the input. If you want to maintain alignment between the points you
// can use the `same_length` option. This option requires that you use `delta=` with `chamfer=false` to ensure
// that no points are added. When points collapse to a single point in the offset, the output includes
// that point repeated to preserve the correct length.
// .
// Another way to obtain alignment information is to use the return_faces option, which can
// provide alignment information for all offset parameters: it returns a face list which lists faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
// Arguments:
// path = the path to process. A list of 2d points.
// ---
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = if true path is treate as a polygon. Default: False.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// same_length = return a path with the same length as the input. Only compatible with `delta=`. Default: false
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D,NoAxes):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star, width=3);
// stroke(closed=true, width=3, offset(star, delta=10, closed=true));
// Example(2D,NoAxes):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star, width=3);
// stroke(closed=true, width=3,
// offset(star, delta=10, chamfer=true, closed=true));
// Example(2D,NoAxes):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star, width=3);
// stroke(closed=true, width=3,
// offset(star, r=10, closed=true));
// Example(2D,NoAxes):
// star = star(7, r=120, ir=50);
// #stroke(closed=true, width=3, star);
// stroke(closed=true, width=3,
// offset(star, delta=-15, closed=true));
// Example(2D,NoAxes):
// star = star(7, r=120, ir=50);
// #stroke(closed=true, width=3, star);
// stroke(closed=true, width=3,
// offset(star, delta=-15, chamfer=true, closed=true));
// Example(2D,NoAxes):
// star = star(7, r=120, ir=50);
// #stroke(closed=true, width=3, star);
// stroke(closed=true, width=3,
// offset(star, r=-15, closed=true, $fn=20));
// Example(2D,NoAxes): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
// %down(.1)polygon(test);
// Example(2D,NoAxes): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
// stroke(star,width=.3,closed=true);
// color("green")
// stroke(offset(star, delta=-9, closed=true),width=.3,closed=true); // Works with check_valid=true (the default)
// color("red")
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.3,closed=true);
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
// color("red")
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
// Example(2D,NoAxes): The extra triangles in this example show that the validity check cannot be skipped
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true),
// width=0.3, closed=true);
// Example(2D,NoAxes): The triangles are removed by the validity check
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true),
// width=0.3, closed=true);
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath, width=2);
// stroke(offset(sinpath, r=17.5),width=2);
// Example(2D,NoAxes): Region
// rgn = difference(circle(d=100),
// union(square([20,40], center=true),
// square([40,20], center=true)));
// #linear_extrude(height=1.1) stroke(rgn, width=1);
// region(offset(rgn, r=-5));
// Example(2D,NoAxes): Using `same_length=true` to align the original curve to the offset. Note that lots of points map to the corner at the top.
// closed=false;
// path = [for(angle=[0:5:180]) 10*[angle/100,2*sin(angle)]];
// opath = offset(path, delta=-3,same_length=true,closed=closed);
// stroke(path,closed=closed,width=.3);
// stroke(opath,closed=closed,width=.3);
// color("red") for(i=idx(path)) stroke([path[i],opath[i]],width=.3);
function offset(
path, r=undef, delta=undef, chamfer=false,
closed=false, check_valid=true,
quality=1, return_faces=false, firstface_index=0,
flip_faces=false, same_length=false
) =
assert(!(same_length && return_faces), "Cannot combine return_faces with same_length")
is_region(path)?
assert(!return_faces, "return_faces not supported for regions.")
let(
ofsregs = [for(R=region_parts(path))
difference([for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta),
chamfer=chamfer, check_valid=check_valid, quality=quality,closed=true)])]
)
union(ofsregs)
:
let(rcount = num_defined([r,delta]))
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
assert(!same_length || (is_def(delta) && !chamfer), "Must specify delta, with chamfer=false, when same_length=true")
assert(is_path(path), "Input must be a path or region")
let(
chamfer = is_def(r) ? false : chamfer,
quality = max(0,round(quality)),
flip_dir = closed && !is_polygon_clockwise(path)? -1 : 1,
d = flip_dir * (is_def(r) ? r : delta)
)
d==0 && !return_faces ? path :
let(
// shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)],
shiftsegs = [for(i=[0:len(path)-2]) _shift_segment([path[i],path[i+1]], d),
if (closed) _shift_segment([last(path),path[0]],d)
else [path[0],path[1]] // dummy segment, not used
],
// good segments are ones where no point on the segment is less than distance d from any point on the path
good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : repeat(true,len(shiftsegs)),
goodsegs = bselect(shiftsegs, good),
goodpath = bselect(path,good)
)
assert(len(goodsegs)-(!closed && select(good,-1)?1:0)>0,"Offset of path is degenerate")
let(
// Extend the shifted segments to their intersection points
sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))],
// If some segments are parallel then the extended segments are undefined. This case is not handled
// Note if !closed the last corner doesn't matter, so exclude it
parallelcheck =
(len(sharpcorners)==2 && !closed) ||
all_defined(closed? sharpcorners : select(sharpcorners, 1,-2))
)
assert(parallelcheck, "Path contains a segment that reverses direction (180 deg turn)")
let(
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = len(sharpcorners)==2 ? [false,false]
:
[for(i=[0:len(goodsegs)-1])
let(prevseg=select(goodsegs,i-1))
(i==0 || i==len(goodsegs)-1) && !closed ? false // In open case first entry is bogus
:
(goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0
&& (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0
],
steps = is_def(delta) ? [] : [
for(i=[0:len(goodsegs)-1])
r==0 ? 0
// if path is open but first and last entries match value is not used, but
// computation below gives error, so special case handle it
: i==len(goodsegs)-1 && !closed && approx(goodpath[i],goodsegs[i][0]) ? 0
// floor is important here to ensure we don't generate extra segments when nearly straight paths expand outward
: 1+floor(segs(r)*vector_angle(
select(goodsegs,i-1)[1]-goodpath[i],
goodsegs[i][0]-goodpath[i])
/360)
],
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
// Otherwise it's the same as sharpcorners
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
// plain sharpcorners back.
newcorners = is_def(delta) && !chamfer ? [sharpcorners]
: [for(i=[0:len(goodsegs)-1])
(!chamfer && steps[i] <=1) // Don't round if steps is smaller than 2
|| !outsidecorner[i] // Don't round inside corners
|| (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path
? [sharpcorners[i]]
: chamfer ? _offset_chamfer(
goodpath[i], [
select(goodsegs,i-1)[1],
sharpcorners[i],
goodsegs[i][0]
], d
)
: // rounded case
arc(cp=goodpath[i],
points=[
select(goodsegs,i-1)[1],
goodsegs[i][0]
],
n=steps[i])
],
pointcount = (is_def(delta) && !chamfer)?
repeat(1,len(sharpcorners)) :
[for(i=[0:len(goodsegs)-1]) len(newcorners[i])],
start = [goodsegs[0][0]],
end = [goodsegs[len(goodsegs)-2][1]],
edges = closed?
flatten(newcorners) :
concat(start,slice(flatten(newcorners),1,-2),end),
faces = !return_faces? [] :
_makefaces(
flip_faces, firstface_index, good,
pointcount, closed
),
final_edges = same_length ? select(edges, [0,each list_head (cumsum([for(g=good) g?1:0]))])
: edges
) return_faces? [edges,faces] : final_edges;
/// Internal Function: _filter_region_parts()
///
/// splits region1 into subpaths where either it touches itself or crosses region2. Classifies all of the
/// subpaths as described below and keeps the ones listed in keep1. A similar process is performed for region2.
/// All of the kept subpaths are assembled into polygons and returned as a lst.
/// .
/// The four types of subpath from the region are defined relative to the second region:
/// "O" - the subpath is outside the second region
/// "I" - the subpath is in the second region's interior
/// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath
/// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides
/// You specify which type of subpaths to keep with a string of the desired types such as "OS".
function _filter_region_parts(region1, region2, keep, eps=EPSILON) =
// We have to compute common vertices between paths in the region because
// they can be places where the path must be cut, even though they aren't
// found my the split_path function.
let(
subpaths = split_region_at_region_crossings(region1,region2,eps=eps),
regions=[force_region(region1),
force_region(region2)]
)
_assemble_path_fragments(
[for(i=[0:1])
let(
keepS = search("S",keep[i])!=[],
keepU = search("U",keep[i])!=[],
keepoutside = search("O",keep[i]) !=[],
keepinside = search("I",keep[i]) !=[],
all_subpaths = flatten(subpaths[i])
)
for (subpath = all_subpaths)
let(
midpt = mean([subpath[0], subpath[1]]),
rel = point_in_region(midpt,regions[1-i],eps=eps),
keepthis = rel<0 ? keepoutside
: rel>0 ? keepinside
: !(keepS || keepU) ? false
: let(
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
rel1 = point_in_region(sidept,regions[0],eps=eps)>0,
rel2 = point_in_region(sidept,regions[1],eps=eps)>0
)
rel1==rel2 ? keepS : keepU
)
if (keepthis) subpath
]
);
function _list_three(a,b,c) =
is_undef(b) ? a :
[
a,
if (is_def(b)) b,
if (is_def(c)) c
];
// Function&Module: union()
// Usage:
// union() CHILDREN;
// region = union(regions);
// region = union(REGION1,REGION2);
// region = union(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions or 2D polygons,
// returns the union of all given regions and polygons. Result is a single region.
// When called as the built-in module, makes the union of the given children.
// Arguments:
// regions = List of regions to union.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// color("green") region(union(shape1,shape2));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
let(regions=_list_three(regions,b,c))
len(regions)==0? [] :
len(regions)==1? regions[0] :
let(regions=[for (r=regions) is_path(r)? [r] : r])
union([
_filter_region_parts(regions[0],regions[1],["OS", "O"], eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
);
// Function&Module: difference()
// Usage:
// difference() CHILDREN;
// region = difference(regions);
// region = difference(REGION1,REGION2);
// region = difference(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions or 2D polygons,
// takes the first region or polygon and differences away all other regions/polygons from it. The resulting
// region is returned.
// When called as the built-in module, makes the set difference of the given children.
// Arguments:
// regions = List of regions or polygons to difference.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(difference(shape1,shape2));
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
let(regions = _list_three(regions,b,c))
len(regions)==0? []
: len(regions)==1? regions[0]
: regions[0]==[] ? []
: let(regions=[for (r=regions) is_path(r)? [r] : r])
difference([
_filter_region_parts(regions[0],regions[1],["OU", "I"], eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
);
// Function&Module: intersection()
// Usage:
// intersection() CHILDREN;
// region = intersection(regions);
// region = intersection(REGION1,REGION2);
// region = intersection(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions or polygons returns the
// intersection of all given regions. Result is a single region.
// When called as the built-in module, makes the intersection of all the given children.
// Arguments:
// regions = List of regions to intersect.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(intersection(shape1,shape2));
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
let(regions = _list_three(regions,b,c))
len(regions)==0 ? []
: len(regions)==1? regions[0]
: regions[0]==[] || regions[1]==[] ? []
: intersection([
_filter_region_parts(regions[0],regions[1],["IS","I"],eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
);
// Function&Module: exclusive_or()
// Usage:
// exclusive_or() CHILDREN;
// region = exclusive_or(regions);
// region = exclusive_or(REGION1,REGION2);
// region = exclusive_or(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions or 2D polygons,
// returns the exclusive_or of all given regions. Result is a single region.
// When called as a module, performs a boolean exclusive-or of up to 10 children. Note that when
// the input regions cross each other the exclusive-or operator will produce shapes that
// meet at corners (non-simple regions), which do not render in CGAL.
// Arguments:
// regions = List of regions or polygons to exclusive_or
// Example(2D): As Function. A linear_sweep of this shape fails to render in CGAL.
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2])
// color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(exclusive_or(shape1,shape2));
// Example(2D): As Module. A linear_extrude() of the resulting geometry fails to render in CGAL.
// exclusive_or() {
// square(40,center=false);
// circle(d=40);
// }
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
let(regions = _list_three(regions,b,c))
len(regions)==0? []
: len(regions)==1? force_region(regions[0])
: regions[0]==[] ? exclusive_or(list_tail(regions))
: regions[1]==[] ? exclusive_or(list_remove(regions,1))
: exclusive_or([
_filter_region_parts(regions[0],regions[1],["IO","IO"],eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
);
module exclusive_or() {
if ($children==1) {
children();
} else if ($children==2) {
difference() {
children(0);
children(1);
}
difference() {
children(1);
children(0);
}
} else if ($children==3) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
children(2);
}
} else if ($children==4) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
exclusive_or() {
children(2);
children(3);
}
}
} else if ($children==5) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
}
} else if ($children==6) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
}
} else if ($children==7) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
children(6);
}
} else if ($children==8) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
}
} else if ($children==9) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
}
} else if ($children==10) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
children(9);
}
} else {
assert($children<=10, "exclusive_or() can only handle up to 10 children.");
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap