mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
298 lines
8.9 KiB
OpenSCAD
298 lines
8.9 KiB
OpenSCAD
///////////////////////////////////////////
|
|
// LibFile: quaternions.scad
|
|
// Support for Quaternions.
|
|
// To use, add the following line to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/quaternions.scad>
|
|
// ```
|
|
///////////////////////////////////////////
|
|
|
|
/*
|
|
BSD 2-Clause License
|
|
|
|
Copyright (c) 2017-2019, Revar Desmera
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
|
|
// Section: Quaternions
|
|
// Quaternions are fast methods of storing and calculating arbitrary rotations.
|
|
// Quaternions contain information on both axis of rotation, and rotation angle.
|
|
// You can chain multiple rotation together by multiplying quaternions together.
|
|
// They don't suffer from the gimbal-lock issues that [X,Y,Z] rotation angles do.
|
|
// Quaternions are stored internally as a 4-value vector:
|
|
// `[X, Y, Z, W] = W + Xi + Yj + Zk`
|
|
|
|
|
|
// Internal
|
|
function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
|
|
|
|
|
|
// Function: Quat()
|
|
// Usage:
|
|
// Quat(ax, ang);
|
|
// Description: Create a new Quaternion from axis and angle of rotation.
|
|
// Arguments:
|
|
// ax = Vector of axis of rotation.
|
|
// ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function Quat(ax=[0,0,1], ang=0) = _Quat(ax/norm(ax), sin(ang/2), cos(ang/2));
|
|
|
|
|
|
// Function: QuatX()
|
|
// Usage:
|
|
// QuatX(a);
|
|
// Description: Create a new Quaternion for rotating around the X axis [1,0,0].
|
|
// Arguments:
|
|
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function QuatX(a=0) = Quat([1,0,0],a);
|
|
|
|
|
|
// Function: QuatY()
|
|
// Usage:
|
|
// QuatY(a);
|
|
// Description: Create a new Quaternion for rotating around the Y axis [0,1,0].
|
|
// Arguments:
|
|
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function QuatY(a=0) = Quat([0,1,0],a);
|
|
|
|
// Function: QuatZ()
|
|
// Usage:
|
|
// QuatZ(a);
|
|
// Description: Create a new Quaternion for rotating around the Z axis [0,0,1].
|
|
// Arguments:
|
|
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function QuatZ(a=0) = Quat([0,0,1],a);
|
|
|
|
|
|
// Function: QuatXYZ()
|
|
// Usage:
|
|
// QuatXYZ([X,Y,Z])
|
|
// Description:
|
|
// Creates a quaternion from standard [X,Y,Z] rotation angles in degrees.
|
|
// Arguments:
|
|
// a = The triplet of rotation angles, [X,Y,Z]
|
|
function QuatXYZ(a=[0,0,0]) =
|
|
let(
|
|
qx = QuatX(a[0]),
|
|
qy = QuatY(a[1]),
|
|
qz = QuatZ(a[2])
|
|
)
|
|
Q_Mul(qz, Q_Mul(qy, qx));
|
|
|
|
|
|
// Function: Q_Ident()
|
|
// Description: Returns the "Identity" zero-rotation Quaternion.
|
|
function Q_Ident() = [0, 0, 0, 1];
|
|
|
|
|
|
// Function: Q_Add_S()
|
|
// Usage:
|
|
// Q_Add_S(q, s)
|
|
// Description: Adds a scalar value `s` to the W part of a quaternion `q`.
|
|
function Q_Add_S(q, s) = q+[0,0,0,s];
|
|
|
|
|
|
// Function: Q_Sub_S()
|
|
// Usage:
|
|
// Q_Sub_S(q, s)
|
|
// Description: Subtracts a scalar value `s` from the W part of a quaternion `q`.
|
|
function Q_Sub_S(q, s) = q-[0,0,0,s];
|
|
|
|
|
|
// Function: Q_Mul_S()
|
|
// Usage:
|
|
// Q_Mul_S(q, s)
|
|
// Description: Multiplies each part of a quaternion `q` by a scalar value `s`.
|
|
function Q_Mul_S(q, s) = q*s;
|
|
|
|
|
|
// Function: Q_Div_S()
|
|
// Usage:
|
|
// Q_Div_S(q, s)
|
|
// Description: Divides each part of a quaternion `q` by a scalar value `s`.
|
|
function Q_Div_S(q, s) = q/s;
|
|
|
|
|
|
// Function: Q_Add()
|
|
// Usage:
|
|
// Q_Add(a, b)
|
|
// Description: Adds each part of two quaternions together.
|
|
function Q_Add(a, b) = a+b;
|
|
|
|
|
|
// Function: Q_Sub()
|
|
// Usage:
|
|
// Q_Sub(a, b)
|
|
// Description: Subtracts each part of quaternion `b` from quaternion `a`.
|
|
function Q_Sub(a, b) = a-b;
|
|
|
|
|
|
// Function: Q_Mul()
|
|
// Usage:
|
|
// Q_Mul(a, b)
|
|
// Description: Multiplies quaternion `a` by quaternion `b`.
|
|
function Q_Mul(a, b) = [
|
|
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
|
|
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
|
|
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
|
|
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z,
|
|
];
|
|
|
|
|
|
// Function: Q_Dot()
|
|
// Usage:
|
|
// Q_Dot(a, b)
|
|
// Description: Calculates the dot product between quaternions `a` and `b`.
|
|
function Q_Dot(a, b) = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
|
|
|
|
|
|
// Function: Q_Neg()
|
|
// Usage:
|
|
// Q_Neg(q)
|
|
// Description: Returns the negative of quaternion `q`.
|
|
function Q_Neg(q) = -q;
|
|
|
|
|
|
// Function: Q_Conj()
|
|
// Usage:
|
|
// Q_Conj(q)
|
|
// Description: Returns the conjugate of quaternion `q`.
|
|
function Q_Conj(q) = [-q.x, -q.y, -q.z, q[3]];
|
|
|
|
|
|
// Function: Q_Norm()
|
|
// Usage:
|
|
// Q_Norm(q)
|
|
// Description: Returns the `norm()` "length" of quaternion `q`.
|
|
function Q_Norm(q) = norm(q);
|
|
|
|
|
|
// Function: Q_Normalize()
|
|
// Usage:
|
|
// Q_Normalize(q)
|
|
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
|
|
function Q_Normalize(q) = q/norm(q);
|
|
|
|
|
|
// Function: Q_Dist()
|
|
// Usage:
|
|
// Q_Dist(q1, q2)
|
|
// Description: Returns the "distance" between two quaternions.
|
|
function Q_Dist(q1, q2) = norm(q2-q1);
|
|
|
|
|
|
// Function: Q_Slerp()
|
|
// Usage:
|
|
// Q_Slerp(q1, q2, u);
|
|
// Description:
|
|
// Returns a quaternion that is a spherical interpolation between two quaternions.
|
|
// Arguments:
|
|
// q1 = The first quaternion. (u=0)
|
|
// q2 = The second quaternion. (u=1)
|
|
// u = The proportional value, from 0 to 1, of what part of the interpolation to return.
|
|
// Example(3D):
|
|
// a = QuatY(15);
|
|
// b = QuatY(75);
|
|
// color("blue",0.25) Qrot(a) cylinder(d=1, h=80);
|
|
// color("red",0.25) Qrot(b) cylinder(d=1, h=80);
|
|
// Qrot(Q_Slerp(a, b, 0.6)) cylinder(d=1, h=80);
|
|
function Q_Slerp(q1, q2, u) = let(
|
|
dot = Q_Dot(q1, q2),
|
|
qq2 = dot<0? Q_Neg(q2) : q2,
|
|
dott = dot<0? -dot : dot,
|
|
theta = u * acos(constrain(dott,-1,1))
|
|
) (dott>0.9995)?
|
|
Q_Normalize(q1 + ((qq2-q1) * u)) :
|
|
(q1*cos(theta) + (Q_Normalize(qq2 - (q1 * dott)) * sin(theta)));
|
|
|
|
|
|
// Function: Q_Matrix3()
|
|
// Usage:
|
|
// Q_Matrix3(q);
|
|
// Description:
|
|
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
|
|
function Q_Matrix3(q) = [
|
|
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
|
|
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
|
|
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]]
|
|
];
|
|
|
|
|
|
// Function: Q_Matrix4()
|
|
// Usage:
|
|
// Q_Matrix4(q);
|
|
// Description:
|
|
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
|
|
function Q_Matrix4(q) = [
|
|
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
|
|
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
|
|
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: Q_Axis()
|
|
// Usage:
|
|
// Q_Axis(q)
|
|
// Description:
|
|
// Returns the axis of rotation of a normalized quaternion `q`.
|
|
function Q_Axis(q) = let(d = sqrt(1-(q[3]*q[3]))) (d==0)? [0,0,1] : [q[0]/d, q[1]/d, q[2]/d];
|
|
|
|
|
|
// Function: Q_Angle()
|
|
// Usage:
|
|
// Q_Angle(q)
|
|
// Description:
|
|
// Returns the angle of rotation (in degrees) of a normalized quaternion `q`.
|
|
function Q_Angle(q) = 2 * acos(q[3]);
|
|
|
|
|
|
// Function: Q_Rot_Vector()
|
|
// Usage:
|
|
// Q_Rot_Vector(v,q);
|
|
// Description:
|
|
// Returns the vector `v` after rotating it by the quaternion `q`.
|
|
function Q_Rot_Vector(v,q) = Q_Mul(Q_Mul(q,concat(v,0)),Q_Conj(q));
|
|
|
|
|
|
// Module: Qrot()
|
|
// Usage:
|
|
// Qrot(q) ...
|
|
// Description:
|
|
// Rotate all children by the rotation stored in quaternion `q`.
|
|
// Example(FlatSpin):
|
|
// q = QuatXYZ([45,35,10]);
|
|
// color("red",0.25) cylinder(d=1,h=80);
|
|
// Qrot(q) cylinder(d=1,h=80);
|
|
module Qrot(q) {
|
|
multmatrix(Q_Matrix4(q)) {
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|